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A B S T R A C T   

Accurate segmentation of cerebral vasculature and a quantitative assessment of its morphology is critical to 
various diagnostic and therapeutic purposes and is pertinent to studying brain health and disease. However, this 
is still a challenging task due to the complexity of the vascular imaging data. We propose an automated method 
for cerebral vascular segmentation without the need of any manual intervention as well as a method to skele-
tonize the binary segmented map to extract vascular geometric features and characterize vessel structure. We 
combine a Hessian-based probabilistic vessel-enhancing filtering with an active-contour-based technique to 
segment magnetic resonance and computed tomography angiograms (MRA and CTA) and subsequently extract 
the vessel centerlines and diameters to calculate the geometrical properties of the vasculature. Our method was 
validated using a 3D phantom of the Circle-of-Willis region, demonstrating 84% mean Dice similarity coefficient 
(DSC) and 85% mean Pearson’s correlation coefficient (PCC) with minimal modified Hausdorff distance (MHD) 
error (3 surface pixels at most), and showed superior performance compared to existing segmentation algorithms 
upon quantitative comparison using DSC, PCC and MHD. We subsequently applied our algorithm to a dataset of 
40 subjects, including 1) MRA scans of healthy subjects (n = 10, age = 30 ± 9), 2) MRA scans of stroke patients 
(n = 10, age = 51 ± 15), 3) CTA scans of healthy subjects (n = 10, age = 62 ± 12), and 4) CTA scans of stroke 
patients (n = 10, age = 68 ± 11), and obtained a quantitative comparison between the stroke and normal 
vasculature for both imaging modalities. The vascular network in stroke patients compared to age-adjusted 
healthy subjects was found to have a significantly (p < 0.05) higher tortuosity (3.24 ± 0.88 rad/cm vs. 7.17 
± 1.61 rad/cm for MRA, and 4.36 ± 1.32 rad/cm vs. 7.80 ± 0.92 rad/cm for CTA), higher fractal dimension 
(1.36 ± 0.28 vs. 1.71 ± 0.14 for MRA, and 1.56 ± 0.05 vs. 1.69 ± 0.20 for CTA), lower total length (3.46 ± 0.99 
m vs. 2.20 ± 0.67 m for CTA), lower total volume (61.80 ± 18.79 ml vs. 34.43 ± 22.9 ml for CTA), lower average 
diameter (2.4 ± 0.21 mm vs. 2.18 ± 0.07 mm for CTA), and lower average branch length (4.81 ± 1.97 mm vs. 
8.68 ± 2.03 mm for MRA), respectively. We additionally studied the change in vascular features with respect to 
aging and imaging modality. While we observed differences between features as a result of aging, statistical 
analysis did not show any significant differences, whereas we found that the number of branches were signifi-
cantly different (p < 0.05) between the two imaging modalities (201 ± 73 for MRA vs. 189 ± 69 for CTA). Our 
segmentation and feature extraction algorithm can be applied on any imaging modality and can be used in the 
future to automatically obtain the 3D segmented vasculature for diagnosis and treatment planning as well as to 
study morphological changes due to stroke and other cerebrovascular diseases (CVD) in the clinic.   
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1. Introduction 

Cerebrovascular diseases (CVD) are a leading cause of death and 
disability in the US and worldwide with stroke being a major contributor 
(Benjamin et al., 2019; Saxena et al., 2019). Assessing the structural 
changes in cerebral vasculature is pertinent to brain health and diag-
nosing and characterizing disease (Liu et al., 2018; Wright et al., 2013). 
Changes in vascular structure can indicate altered function and potential 
cerebral pathophysiology (Cassot et al., 2006; Gutierrez et al., 2015) and 
hence need to be characterized and quantified (Wright et al., 2013; Chen 
et al., 2018a), which in turn requires deep knowledge of the normal 
healthy vascular geometry and morphology (Mouches and Forkert, 
2019). It has been shown in the literature that altered vascular proper-
ties such as the vessel diameters, tortuosity and the branching pattern 
are closely correlated with cerebrovascular diseases such as athero-
sclerosis and stroke (Kim et al., 2015; Lemasson et al., 2016). After an 
ischemic stroke, the reduced blood flow causes a series of changes 
leading to structural remodeling of the vasculature (Liu et al., 2014). 
Studying these acute and chronic changes in vascular structures is key to 
understanding the underlying physiological mechanism of disease and 
cerebral function. A well-segmented cerebral vasculature map is essen-
tial to visualize and quantify vessel occlusions, evaluate cerebral blood 
flow and perfusion, assess the extent of ischemia in stroke patients, and 
detect and assess other cerebral vascular malformations such as aneu-
rysms (Saxena et al., 2019; Meijs et al., 2017; Steinman et al., 2003). 
Furthermore, in neurosurgical planning, choosing the appropriate 
endovascular procedure and determining the best surgical plan neces-
sitates a 3D segmented map of the vasculature (kodoma, 1995; Mur-
ayama et al., 2019). For efficient diagnosis and treatment of stroke and 
other CVD, angiography imaging techniques such as Computed To-
mography Angiography (CTA) and Magnetic Resonance Angiography 
(MRA) are routinely performed in the clinic as well as in acute hospital 
settings to visualize the blood vessels and flow of blood in the brain 
(Saxena et al., 2019; Quaday et al., 2014). These imaging techniques, 
however, only show 2D cross sectional slices which contain other 
anatomical structures as well as noise (Hsu et al., 2017). This potentially 
leads to error in diagnosis due to the partial information regarding 
vascular structure without a 3D volume available (Saxena et al., 2019). 

Despite the clinical need, there is still a lack of a completely auto-
mated segmentation method of subject-specific 3D cerebral vasculature 
and subsequent feature extraction due to the various challenges posed 
by this problem. Cerebral vessel geometries vary greatly in length, 
diameter and tortuosity, making vessel tracking and segmentation a 
complex multi-scale problem (Luo and Zhong, 2005; Lesage et al., 2009; 
Zhao et al., 2018). Intensity inhomogeneities and inconsistent contrast 
exist due to flow velocity changes as well as varying imaging protocols 
(Zhao et al., 2018; Yu et al., 2016). An overlap of bony anatomical 
structures in CT and white/gray matter in MR can distort the vascular 
imagery due to a shadow effect (Luo and Zhong, 2005). Also, the smaller 
vessels whose diameters are at the scale of the image resolution are 
extremely hard to detect (Ajam et al., 2017). Due to all of these chal-
lenges, designing a robust segmentation method that works on all im-
aging modalities, remains the biggest challenge in visualization and 
assessment of 3D cerebral vasculature in the clinic (Ajam et al., 2017; 
Navab et al., 2015). In the past few years, there has been a significant 
effort towards solving the problem of segmentation and an increasing 
number of approaches have been proposed in the literature (Meijs et al., 
2017; Kirbas and Quek, 2004). Most of these methods, however, have 
only been evaluated on a specific type of imaging data, such as either 
MRA or CTA (Wright et al., 2013; Meijs et al., 2017; Hsu et al., 2017; 
Kandil et al., 2019; Livne et al., 2019). Clinically relevant segmentation 
algorithms need to cover a large range of image variability and need to 
be able to perform on different modalities. 

Thresholding-based methods that utilize either global or local 
thresholds tend to lose vessel pixels, resulting in inaccurate segmenta-
tions (Kirbas and Quek, 2004; Passat et al., 2006). Other methods need 

varying forms of manual interventions at different stages (Chen et al., 
2018a; Luo and Zhong, 2005). Also, many of the proposed methods in 
literature that use centerline tracking require some form of manual ‘seed 
points’ or initialization due to inconsistencies in intensity along the 
vessels in different slices (Meijs et al., 2017; Ajam et al., 2017; Kirbas 
and Quek, 2004). Furthermore, geometric feature extraction for char-
acterization of cerebral vessels has been scarcely reported in the liter-
ature (Wright et al., 2013; Chen et al., 2018a; Mouches and Forkert, 
2019). These methods require manual intervention in certain stages 
during segmentation and feature extraction. Most other 3D visualization 
and feature analysis tools in literature utilize only global geometric 
features such as length and volume (Slafer et al., 1994; Peng et al., 
2010), even though local regional features provide more useful and 
targeted information on vasculopathies (Boussel et al., 2009; Bash et al., 
2005). Some of the major contributions to cerebral vessel segmentation 
in the literature and their limitations are listed in Table 1, which com-
prises of various methods, ranging from established methods – which 
require manual intervention – to fully automated methods. We have 
tried to incorporate a comparison of different kinds of methods and 
highlight their validation, applications and limitations. The comparison 
table also includes several filter-based methods as well as machine 
learning approaches. 

Furthermore, to the best of our knowledge, there are no studies 
which quantitatively compare the differences in cerebral vascular 
structure and geometry in major vascular pathological conditions such 
as stroke with healthy subjects, which is an essential investigation for 
understanding brain health and disease (Wright et al., 2013; Hsu et al., 
2017). Some studies have extracted vascular features of patients with 
intracranial arterial stenosis without a healthy control group (Chen 
et al., 2018b), or a healthy data set only (Wright et al., 2013), stating the 
importance of performing such a comparative analysis between healthy 
subjects and CVD patients (Wright et al., 2013; Hsu et al., 2017; Chen 
et al., 2018b). Another study compares the vessel tortuosity in healthy 
subjects versus patients with intracranial artery atherosclerosis (Kim 
et al., 2015) but performed this manually and visually using 2D slices of 
time of flight (TOF) MRA, lacking 3D segmentation or feature extraction, 
which could lead to miscalculation of the vascular features. 

In this work, we propose an automated method for cerebral vascular 
segmentation that does not require initializing seed points or other 
manual intervention and can be applied to any imaging modality; we 
test our method on both MRA and CTA data. Our method accounts for 
the differences in intensity inhomogeneities and tissue/bone contrast 
between MR and CT data and includes extensive validation using a 
realistic 3D phantom of the Circle of Willis. By skeletonizing the 
segmented vasculature, we extract global and regional geometric fea-
tures of the vessel network to characterize the structure of the vascular 
tree. Finally, we present a quantitative comparison of the geometric 
features of the cerebral vascular tree between healthy subjects and 
stroke patients for both MRA and CTA imaging modalities, to under-
stand and quantify the structural differences in the vasculature caused 
by ischemic stroke, the most devastating cerebrovascular disease. It has 
been shown that Alzheimer’s disease, cerebral aneurysm, stroke and 
other CVD lead to or are preceded by changes in the vasculature (Kim 
et al., 2015; Govindpani et al., 2019; Arvanitakis et al., 2016; Kimmel 
et al., 1996; Horace, 1990), which could be quantified using our 
approach of analyzing the vascular features (Govindpani et al., 2019; 
Arvanitakis et al., 2016). 

2. Materials and methods 

In this section, we first detail the steps in our automatic segmentation 
and feature extraction algorithm: 1) pre-processing, 2) vessel enhance-
ment, 3) binarization, 4) skeletonization and 5) geometric feature 
extraction. We then present the validation of our algorithm on a 3D 
phantom of the Circle of Willis (CoW) region of the vasculature. Finally, 
we apply our proposed algorithm on four angiography datasets of CTA 
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and MRA scans from healthy subjects and stroke patients to investigate 
the effect of disease, aging and imaging modality on vascular changes. 

2.1. Pre-processing 

We first performed skull-stripping using Hounsfield-unit thresh-
olding and location-based segmentation for both MRA and CTA data to 
remove the bright skull regions that affect segmentation, especially in 
the CTA data (Muschelli et al., 2015). This step prevents non-vascular 
skull pixels from being falsely enhanced in the vessel enhancement 
step due to a tubular structure or higher intensity. Omitting the skull- 
stripping step would lead to mislabeling of non-vascular pixels. MRA 
data is less susceptible to this limitation than CTA since it uses time of 
flight (TOF) imaging which enhances contrast of the flowing blood due 
to varying magnetization whereas in CTA, bony structures are enhanced. 
For ‘skull-stripping’ the CTA data, we used the validated method (and 
algorithm) presented in Muschelli et al. (2015) for brain extraction from 
CT images using HU based thresholding and positional information. This 
method includes creating a brain mask and has successfully shown good 
performance on CT images acquired under different scanners and pa-
rameters (demonstrating high generalization) and robustness. For the 
‘skull stripping’ on MR data, we chose the publicly available method 
called Brain Extraction Tool (BET) as presented in Smith (2002). After 
removing the skull, we chose the region of interest (ROI) by selecting 
slices only from the head region resulting in about 100 slices in the MRA 
and 150 slices in the CTA dataset (based on our datasets with 0.62 mm 
axial resolution in both CTA and MRA). This step involves excluding the 
additional slices below the head region and greatly improves compu-
tation speed and reduces noisy structures that reside outside the cerebral 

vasculature region of interest. 

2.2. Vessel enhancement 

The first step in the segmentation process is the vessel enhancement 
or ‘vesselness’ filtering, which is performed to suppress non-vascular 
structures and highlight the vessel pixels. We developed a custom 
multi-scale Frangi vesselness filter (Frangi et al., 1998) to obtain a 
probability map of the pixels belonging to the vascular network. After 
inputting raw MRA or CTA DICOM images, we apply a 2D Hessian based 
filter which enhances blood vessel contrast and eliminates other struc-
tures (Frangi et al., 1998). The Hessian filter can be described as a 
second-order partial derivative of the image intensity map, aimed at 
tracking the path of least curvature and preserving tubular structures 
(Refer to the Supplementary Materials). The eigenvalues of the Hessian 
matrix depend on the directional voxel spacing and provide information 
about the shape of the object in the image. Since vessels can be 
considered as 3D tubular structures at varying length scales, we assign a 
probability score of being on the vessel to every pixel with the center 
pixel having the highest probability and intensity. The pixels with a 
higher probability are more likely to belong on a vessel and retain a 
much higher intensity than the background, enhancing the vessel 
contrast. In the vessel-enhancement step, Gaussian smoothing is also 
performed along with the filtering to further reduce noise, since 
Gaussian smoothing reduces high frequency noise and results in the 
neighboring pixels being correlated (Cadena et al., 2017; Reddy, 2011). 
The variance of the Gaussian kernel used for filtering is chosen based on 
the expected diameters of the vessels, since it maximally suppresses the 
noise around the blood vessels in the second order directional 

Table 1 
A summary of related work in the literature on cerebral vascular segmentation. The geometric feature extraction column indicates whether the paper presented any 
geometric features of the vasculature and the skeletonization column indicates whether this method obtains the centerline and diameter information needed for CFD 
and mesh reconstruction. The last two columns specify the corresponding validation protocol and the major limitations which we tried to address in our method.  

Authors Method Modality  Skeletonization Geometric 
Feature 
Extraction 

Validation 
Protocol 

Major Limitations 

Flasque et al. (2001) Centerline tracking and 
modeling 

MRA 

Manual or 
Semi- 
Automatic 

✓ × Phantom Manual intervention required 

Passat et al. (2006) ATLAS registration with 
anatomical modeling and hit-or- 
miss transform 

PC-MRA ✓ × Manual Manual intervention required 

Chen et al. (2018b) Semi-automated Open-Curve 
Active Contour Vessel Tracing 

3D MRA ✓ ✓ Manual Some manual intervention 
required, only tested on patients 
with intracranial arterial 
stenosis 

Gao et al. (2012) Statistical model analysis and 
curve evaluation 

MRA × × Manual Intensity based statistical 
analysis and local curve 
evaluation resulting in under- 
segmentation 

Wright et al. (2013) Neuron_Morpho plugin in 
ImageJ for segmentation 
(discontinued), morphometric 
analysis and feature extraction 

MRA ✓ ✓ NA Insufficient Validation, 
performance accuracy unclear 

Hsu et al.(2017) Multiscale composite filter and 
mesh generation 

MRA 

Fully 
Automatic 

✓ Limited Manual, 
phantom 

Not tested on CT data, limited 
feature extraction 

Wang et al. (2015) Otsu and Gumbel distribution- 
based threshold 

MRA × × Manual Misclassification of skull pixels, 
under- segmentation of small 
vessels 

Chen et al. (2018a) Deep learning 3D U-Net 
architecture without manual 
annotation 

MRA (CTA 
for training 
data) 

× × Manual Thresholding based filtering to 
generate training data, 
insufficient validation 

Meijs et al. (2017) Random forest classifier with 
local histogram features 

4D CT × × Manual No geometrical information, 
manual validation 

Zhao et al. (2018) Weighted Symmetry Filter MRA, 
Retinal 
images 

× × Manual, 
phantom 

No skeleton or geometrical 
information 

Livne et al. (2019) Deep learning-based U-net 
architecture 

MRA × × Manual Poor inter-modal performance 
(monocentric data), no skeleton 
or geometrical information, no 
healthy dataset  
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derivatives obtained with the Hessian filter. The multi-scale nature of 
the filter allows us to set local as well as global parameters, with the 
capability of detecting vessels as small in diameter as the image 
resolution. 

In our implementation, we use the following parameters for the 
vesselness and Gaussian filtering: Scale is defined as the standard devi-
ation of the Gaussian kernel used for the analysis, which should be close 
to the expected radius of the vessel. Minimum (Maximum) Scale is the 
minimum (maximum) expected vessel radius in mm, at which the 
relevant structure is expected to be found, and Number of Scales (N) is an 
empirical parameter to set the range of radii detected. Since we are 
limited by the resolution of imaging, the Minimum Scale is the smallest 
‘detectable’ radius and was set to half the size of a pixel, to detect vessels 
as thin in diameter as the pixel size. The Maximum scale was set to the 
largest possible vessel diameter. With this method, we can detect vessels 
with the diameter in the range of the image resolution (in our case, up to 
0.23 mm, the finest resolution of the stroke MRA data). So, we set 
minimum value for human vasculature to one pixel by default and the 
maximum value to 10 mm (Reina-De La Torre et al., 1998). Step size 
between the minimum and maximum scale can be defined as small as 
needed (the algorithm will run longer for a larger number of steps) based 
on the size of the expectant structures. We set the default as 1 pixel (0.23 
mm), attributing to the varying vessel scales in human vasculature. 

The Gaussian filtering for noise reduction is performed for different 
variances (σ), close to the expected vessel diameter calculated as:σ =

(Maximum Scale − Minimum Scale)/(N − 1). Auxiliary scalar function ‘c’ 
incorporates the grayscale range of the input data and its value at every 
pixel is normalized to the maximum intensity of the image and hence 
depends on the gray-scale range of the input images. Half the value of 
the maximum Hessian norm has proven to work in most cases, based on 
previous literature (Navab et al., 2015; Frangi et al., 1998). This is 
chosen based on the input image dataset and was set to 500 since the 
input grayscale images had 1024 intensity levels from 0 to 1. Additional 
information regarding the working principles of the Frangi vesselness 
filtering can be found in the Supplementary Materials. 

2.3. Binarization 

We segment the grayscale vessel probability map obtained using the 
vesselness filtering into a binary network of vessels using the ‘Chan- 
Vese’ Active Contours method (Chan and Vese, 2001). This method 
detects objects or regions of interest in an image based on parametric 
curve evolution and can iteratively detect objects without a gradient- 
defined boundary, using energy minimization. This segmentation tech-
nique, in combination with the pre-processing and multi-scale vessel-
ness filtering provides a 3D binary mask of the vasculature to be used for 
vectorization and feature extraction. The default number of iterations of 
active contours was set to 750 and a binary mask specifying rectangular 
ROI boundaries around the brain was provided as input. The algorithm 
then moves the mask to locate the object from the vesselness probability 
maps based on the specified number of iterations, without the need of 
any manual initialization or seed points. The number of iterations was 
chosen based on the size of the images, since the contours move from the 
edges into the center of the image, tracing ROI boundaries. Based on 
most clinical imaging datasets of image size 512 × 512, we set the 
number of iterations to 1000. Due to the higher intensity of the vessel 
pixels and suppression of other structures in the preprocessing and 
vessel enhancement steps, the active contours automatically trace the 
vascular network, providing a binary volume. For additional noise 
reduction, we multiply the vesselness map with a binary elliptical 3D 
mask confined to the ROI, before binarizing, to eliminate any stray 
skull/edge pixels, as well as the superficial venous structures. Finally, to 
eliminate dangling structures or remnant noise from the segmentation, 
we perform an area opening operation (xxxx) to discard disconnected 
segments smaller than 10 mm long using 3D 26-point connectivity 
(Chris Solomon, 2020). The result of this step is a 3D connected binary 

network of the cerebral arteries. 

2.4. Skeletonization 

The binary vessel map was used to create a connected vascular 
network from which we extracted the geometric features corresponding 
to the entire vessel tree. We used medial axis thinning (Lee et al., 1994) 
to obtain the centerlines of the binary map and calculate the radii and 
angles at each point on the centerline. Having determined the 3D 
centerline representation and the corresponding voxel indices on the 
centerline, we used the connected segments to calculate the 3D angles 
(axial and sagittal) between these points. To obtain the radius at each 
point on the centerline, we calculated the geodesic distance map 
(Kimmel et al., 1996) between center pixels and the boundary pixels and 
take the shortest distance between them as the radius at that point. To 
perform this, we first traced the exterior boundaries of the objects in the 
ROI as well as the inner edges of any ‘holes’ present using the Moore 
neighborhood tracing method (xxxx; Horace, 1990) and then calculated 
the distance from the center pixel using the geodesic distance method. 
This provides the radius of the vessel at every point on the centerline. 
Once we obtained the centerline network with precise radii at every 
point, we define a ‘branching node’ of the vascular tree as a point which 
is connected to three other points in 3D space, i.e., a bifurcation. After 
identifying all the branching nodes, we calculated the length of each 
vessel segment, defined as a series of connected points between two 
neighboring branching nodes. We then obtained quantifiable metrics of 
the vascular geometry in terms of these connected vessel segments. With 
this comprehensive information about the cerebral vascular tree, we can 
reconstruct the arterial vasculature using the centerlines, radius and 
angular information by constructing 3D circles along the vessel center-
line to form a 3D volume. 

2.5. Geometric feature extraction 

With the information contained in the skeletonized segments about 
the measurements of diameter, centerline points, angles, bifurcation 
points and branching structure, we then calculated the global and local 
morphometric features of the complete vascular tree. The features 
calculated were as follows: 1) total length of the vessel network, calcu-
lated by summing the length of all the skeletal segments, 2) total number 
of branches, where a branch was defined as a sequence of points along 
the vessel starting at a bifurcation node and ending either at the next 
bifurcation or at the last point on the vessel (in the case of a terminating 
branch), 3) average and maximum branch length, defined as the mean and 
maximum geodesic length of all branches in the network, 4) average 
diameter of all points on the centerline, 5) total vessel volume, calculated 
by considering the vessels as cylinders with a varying diameter along the 
total length, 6) fractal dimension, determined using the box counting 
method based on the Minkowski-Bouligand dimension (Dubuc et al., 
1989; Reishofer et al., 2012; Fernández and Jelinek, 2001), which 
provides a measure of morphological complexity in the cerebral vascu-
lature, and 7) vessel tortuosity, defined using the sum of angles mea-
surement (SOAM) (Bullitt et al., 2008), and calculated as the sum of all 
the angles between sets of 3 points on the centerline divided by the total 
length. These features have been linked to potential vascular pathology 
such as atherosclerosis and even brain tumor malignancy and can be 
used to study the changes in vessel structure in such cerebrovascular 
diseases (Kim et al., 2015; Zanto et al., 2011). 

2.6. Validation 

The accuracy of any vascular extraction method is determined by the 
precision of segmentation and the ability of the vessel enhancement and 
noise suppressing techniques. We extensively validated our method 
using a 3D vascular phantom of the Circle of Willis. This phantom es-
tablishes a physiologically realistic ground truth of the major arteries in 
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the brain, against which the performance of our method was quantita-
tively evaluated since we know its geometrical properties. Using 
Somos® NeXt (Stratasys Ltd.), which is a commonly used standard in 
literature for medical phantoms (Liu et al., 2018; Filippou and Tsoum-
pas, 2018), we 3D printed and CT scanned the physical 3D phantom to 
replicate human CTA data and ran our segmentation algorithm on the 
scan (0.44 × 0.44 × 0.6 mm3, with 433 slices in total) acquired using a 
Siemens Somatom Definition Flash CT scanner at Banner University 
Medical Center (Tucson, AZ). Subsequently, we compared the recon-
structed 3D geometry from the CT scan data with the ‘ground truth’ 
(original binary phantom STL) and performed error analysis to quantify 
the performance of the segmentation algorithm. The validation metrics 
used were Pearson’s correlation coefficient (Asuero et al., 2006), Dice 
similarity coefficient (Zou et al., 2004), modified Hausdorff distance 
(Dubuisson, 2002), and surface distance image registration error 
(Nanayakkara et al., 2009). 

2.6.1. Performance with CT image acquisition noise and image resolution 
Having validated our algorithm against the physical phantom, to 

investigate the effect of noise on our algorithm’s performance, we ran 
the algorithm on the same phantom STL with varying levels of added 
Poisson and Gaussian noise, to mimic the additional noise common in CT 
scans. Furthermore, we studied the performance of segmentation and 
reconstruction algorithms at different image resolutions. We down- 
sampled the phantom’s STL image resolution from 0.48 × 0.6 × 0.6 
mm3 to 0.8 × 0.8 × 1.03 mm3 and then to 1.12 × 1.43 × 1.5 mm3 (64% 
down-sampled at each step) to replicate currently used varying MR and 
CT image resolutions. Subsequently, we performed the segmentation 
and reconstruction algorithms to assess the ideal or minimum resolution 
needed for efficient reconstruction of the vascular network. 

2.6.2. Comparison with existing algorithms 
For further validation, we quantitatively compared the results from 

our segmentation to the currently existing methods for vessel enhance-
ment and extraction from existing image processing software such as 
ImageJ/FIJI (Schindelin et al., 2009). Some of the existing algorithms 
which can be used to enhance vessels and create a binary map are auto/ 
manual local thresholding, such as Renyi Entropy based thresholding 
(Sahoo et al., 1997) and Phansalkar Thresholding (Phansalkar et al., 
2011), Seeded Region Growing Segmentation (Adams and Bischof, 
1994), and Trainable Weka Segmentation (Arganda-Carreras et al., 
2017). We applied these methods to the 3D phantom in the FIJI envi-
ronment, along with ImageJ’s implementation of Frangi Vesselness 
filtering and compared against our results. We chose these algorithms as 
they are open-source and widely used for segmentation. 

2.7. Healthy vs. Stroke comparison 

The geometric properties described in the previous section were 
obtained for the cerebral vasculature of four groups of data: 1) MRA 
scans of healthy subjects (n = 10, age = 30 ± 9), 2) MRA scans of stroke 
patients (n = 10, age = 51 ± 15) and 3) CTA scans of healthy subjects (n 
= 10, age = 62 ± 12), 4) CTA scans of stroke patients (n = 10, age = 68 
± 11). We included stroke and control groups for both modalities with a 
dataset comparatively large to similar studies in literature (Wright et al., 
2013; Chen et al., 2018a, 2018b; Hsu et al., 2017). All groups include 
both male and female subjects in an approximately equal ratio (Table 4). 
For the healthy datasets, subjects with any history of hypertension, 
diabetes or any head trauma were excluded. The CTA stroke patient 
dataset consists of older adults within the same age range as the healthy 
CTA dataset and with major vessel occlusion in the M1 and M2 segments 
of the middle cerebral artery (MCA) or internal carotid artery (ICA) sites, 
which are the most common sites of vessel occlusion in an ischemic 
stroke (Blood Vessels of the Brain, 2020). Similarly, for the stroke MRA 
dataset, we chose age-adjusted patients with the healthy MRA dataset as 
much as possible, given that stroke occurs mostly in older populations. 

The average age of the subjects in the two groups falls within the same 
category (middle-aged) with mean ages 30 and 51 for healthy and stroke 
respectively. We further discuss the effects of different ages between 
groups in Section 4. The stroke MRA dataset also contains patients with 
M1, M2 or the ICA occluded. 

2.7.1. Medical imaging protocols 
The CTA datasets from healthy subjects and stroke patients were 

both acquired at 0.43 × 0.43 × 0.62 mm3 resolution using the GE 
Lightspeed scanner at 100-120KV. All the CTA data were acquired after 
bolus injection of 90–120 ml contrast media with the injection rate of 
4–5 ml/s (Omnipaque-350 mg/ml for stroke patients and Isovue-370 
mg/ml for healthy subjects). The stroke CTA data was collected at the 
Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland and the 
healthy CTA data were collected at Stanford Healthcare, California, 
USA. From these datasets, CTA scans of 10 healthy subjects and 10 S 
patients were used for the comparative study. For the MRA study, we 
utilized data from 10 healthy subjects and 10 S patients as well. The 
MRA scans for healthy subjects were obtained from the MIDAS public 
database (Mouches and Forkert, 2019), wherein time of flight (TOF) 
MRA brain images from healthy volunteers were acquired at 0.5 × 0.5 ×
0.8 mm3 and were collected and made available by the CASILab at The 
University of North Carolina at Chapel Hill and distributed by the 
MIDAS Data Server at Kitware, Inc. (Mouches and Forkert, 2019). The 
MRA scans of stroke patients were acquired using the Siemens 1.5T MR 
scanner with 0.23 × 0.23 × 0.62 mm3 resolution for two subjects, 0.35 
× 0.35 × 0.62 mm3 resolution for one subject, and 0.41 × 0.41 × 0.62 
mm3 resolution for the remaining subjects. 

The data was not specifically obtained for the purpose of this study 
and is not currently public due to privacy issues of clinical data. Requests 
can be made to obtain the data via email to the corresponding author 
and will be shared upon obtaining the necessary permissions from the 
administering institution. The code for the segmentation and data 
analysis was developed in-house by the authors and will eventually be 
made public via a GitHub repository. Any requests for the code until the 
public release can be made via email to the corresponding author. 

Having extracted the vascular features from healthy and stroke 
subjects, we compared the features between the healthy and stroke 
groups in each modality (CTA and MRA) using a one-way ANOVA. We 
also ran a three-factor ANOVA with age and imaging modality as the 
additional factors along with disease, to fit a least-squares regression 
model and assess the significance of aging and imaging modalities on 
our data using the JMP software by SAS. Along with the main effects, the 
JMP software was also used to analyze the interaction effects due to 
aging. 

3. Results 

3.1. Segmentation and feature extraction algorithms 

We observed accurate reconstruction of the phantom using our 
segmentation algorithm (Fig. 1A–C). Validation studies using the 3D 
phantom show that our algorithm detects vessels accurately with a slice- 
averaged Dice similarity coefficient (DSC) of 84.0%, Pearson’s correla-
tion coefficient (PCC) of 83.4% and a modified Hausdorff distance of at 
most 3 pixels (Fig. 1D–F and Table 2). The surface distance error pre-
sents a visual representation of the false positive or false negative pixels 
overlapping (Fig. 1H) and quantitatively corresponds to the number of 
pixels mentioned in the Modified Hausdorff Distance (Table 2). We can 
see that the error between the original and reconstructed images is 
confined to the surface pixels of the vessels due to slight thinning but 
overall, the algorithm detects every vessel segment with high accuracy 
and allows for a complete reconstruction with the loss being restricted to 
1–3 pixels confined to the surface (Fig. 1G–H). For the visualization of 
the error in a 2D cross-section, the slice shown in Fig. 1H was chosen 
specifically due to a large number of vessel cross-sections of various sizes 
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being present as this could potentially lead to a larger error. This slice- 
overlay and error demonstrates the performance of our algorithm and a 
visual representation of the accuracy of reconstruction at varying vessel 
scales (Fig. 1G). 

Furthermore, in our validation scheme, we demonstrate the impact 
of noise on our algorithm. The noise added phantom with varying levels 
(10%, 20%) of Poisson and Gaussian noise was also reconstructed with 
83% DSC along with the CT scanned 3D printed phantom with inherent 
CT acquisition noise (Table 2), providing comparison against ground 
truth for data with CT noise. This establishes the accuracy of our method 
when used with existing noise induced by image acquisition and 
reconstruction. We observed a slight increase in DSC and PCC with 
added noise (Table 2) since Gaussian and Poisson noise add grayscale 
pixels randomly around the ROI, falsely appending a few pixels ‘missed’ 
in the segmented volume as the error is confined only to the pixels on the 
surface. We also studied the effects of image resolution in the vessel 
extraction and reconstruction, inferring that at worse resolutions below 
the standard CTA and MRA resolution (~0.5–0.6 mm), discontinuities 
appear in the segmented binary map, which leads to an over/under 
estimation of the radius at certain points and a decrease in the Dice 
similarity coefficient (Supplementary Materials). The quantitative 
comparison of results from ImageJ/FIJI using currently existing 

segmentation protocols against our method using the 3D phantom as the 
ground truth showed that our method of binarization combined with our 
implementation of the Frangi vesselness filtering outperforms the 
ImageJ/FIJI algorithms (Fig. 2 and Table 3). 

3.2. Subject-specific vascular architectures 

We applied our validated algorithms to four different image data-
bases of MRA and CTA of healthy and stroke subjects. The results from 
the different steps of pre-processing, vessel enhancement, segmentation, 
and skeletonization of a representative MRA from a healthy subject are 
given in Fig. 3. We can see the vesselness map obtained by the vessel 
enhancement filtering after pre-processing and the subsequent aniso-
tropic diffusion. It can be seen clearly that the MCA (middle cerebral 
artery) and the internal carotid arteries (ICA) have the highest proba-
bility value(s) in the vesselness map and hence appear the brightest. The 
smaller vessels such as the communicating arteries can be seen but are 
faint in comparison. Overall, we can clearly see the enhanced contrast in 
the vessels and the suppression of other structures. The binarized map 
obtained using the active contours segmentation shows how the auto-
matic algorithm picks up the faint segments for better connectivity 
which thresholding-based algorithms tend to miss, without the need for 
manually placing seed points. As the last step, the 3D volume is recon-
structed using the extracted centerline, diameter and angular informa-
tion in the skeletonized visualization of the centerline trajectory and 
corresponding diameters. 

We repeated this process on 40 healthy and stroke subjects including 
CTA and MRA scans (Table 4). Two healthy and two stroke subjects from 
the MRA dataset are represented in Fig. 4 for visual comparison. The 
segmented vasculature of the stroke subjects clearly shows the MCA M1 
segment (left) and ICA (right) being cut off at the point marked by the 
arrow. Table 4 contains the quantitative information about the extracted 
geometrical features and a comparison between healthy and stroke 
vascular geometry. The total length, total number of branches, average 
diameter, average and maximum branch length, total volume, fractal 
dimension and vessel tortuosity are reported for the healthy and stroke 
subjects. The obtained values for the average diameter, length and 
branching of cerebral arterial trees agree with the values reported in 

Fig. 1. Validation of segmentation algorithm using a 3D phantom. (A) Extracted vasculature overlaid on TOF image of an axial slice of the brain and the 3D CoW 
phantom shown relative to the cerebral vasculature along with its extracted centerlines (embedded panel) for a visual representation, (B) original 3D phantom of the 
CoW with a 2D slice showing a cross section, (C) the 3D volume reconstructed using the CT scan of the 3D printed phantom with the corresponding 2D cross section 
shown for visual comparison of the 2D slices, (D) Dice similarity coefficient (DSC) per 2D axial slice corresponding to the reconstruction of the 3D phantoms on the 
left post CT scanning the 3D printed phantom, (E) box plots of the DSC and the Pearson correlation coefficient (PCC) showing the data points corresponding to each 
slice laid over a 95% confidence interval, along with (F) histogram of the DSC and PCC demonstrating the accuracy of the segmentation along with a distribution fit 
and, (G) corresponding 2D slices in B and C, showing an overlap of the original and segmented cross section, indicating the error for visualization (the ‘error pixels’ 
can be seen in red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Validation and error analysis results for the 3D phantom as well as the quanti-
fication of performance with varying levels of added noise. Lastly, segmentation 
results using CT scan images of the 3D printed phantom to account for CT 
induced noise and comparison with ground truth data. Values are presented as 
the slice-average ± standard deviation.   

Dice similarity 
coefficient (%) 

Pearson’s 
correlation (%) 

Modified Hausdorff 
distance (pixels) 

Phantom STL 84.3 ± 0.3 83.9 ± 0.3 3 ± 2 
Phantom + 10% 

noise 
84.7 ± 0.5 84.2 ± 0.4 3 ± 2 

Phantom + 20% 
noise 

83.7 ± 0.5 83.1 ± 0.4 3 ± 2 

3D print + CT of 
phantom 

84.6 ± 0.3 84.5 ± 0.3 2 ± 2  
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literature (Hsu et al., 2017; Chen et al., 2018b). Many of the extracted 
geometrical features are significantly different in stroke patients as 
compared to healthy subjects for both imaging modalities based on the 
ANOVA test performed. Each ANOVA has 19 total degrees of freedom 
(1betweenand18withingroups). As hypothesized, the total length, vol-
ume and average diameter of cerebral vessels in stroke patients were 
lower whereas the fractal dimension, tortuosity was higher. The number 
of branches and branch length are higher in the stroke patients, although 
not statistically significant for either group. Certain features were only 

significantly different in either the MRA or the CTA groups and we hy-
pothesize that this is due to the mean ages being significantly different in 
the healthy and stroke MRA groups. The CTA stroke and healthy groups 
were closely age-matched and consisted of older adults. This effect of 
aging is discussed in detail in Section 4. 

In order to investigate the potential differences in the vascular 
pattern between the four subject groups with CTA and MRA due to 
inherent differences in the imaging modalities as well as due to the 
different mean ages between the datasets, we performed a three-factor 
ANOVA test with disease, age, and imaging modality as the effect fac-
tors. While we observed differences between features as a result of 
aging, statistical analysis did not show any significant differences due to 
aging, given our sample size (Table 5). We saw a significant difference in 
the number of branches between the datasets from CTA compared to 
those from MRA (between modalities). However, we did not see sig-
nificant differences in other features with respect to imaging modality 
(Table 5). 

4. Discussion 

In this paper, we present a method to automatically segment and 
reconstruct cerebral vasculature, without the use of seed points or 
manual initialization, to obtain a connected network of the vessels. 

Fig. 2. The segmentation results from existing methods (implemented in ImageJ/FIJI) along with the current proposed method for visual comparison.  

Table 3 
Performance comparison of segmentation results and subsequent error analysis 
using existing methods in ImageJ/FIJI. Results are reported in as slice average ±
standard deviation.  

Segmentation 
method 

Dice Similarity 
Coefficient (%) 

Pearson’s 
correlation (%) 

Modified Hausdorff 
Distance (pixels) 

Auto local 
thresholding 

58 ± 13.1 57.6 ± 11.2 5 ± 4 

Region growing 64.1 ± 15.6 63.3 ± 11.9 4 ± 3 
Otsu/Renyi 

Entropy 
65.2 ± 11.3 66.4 ± 10.3 4 ± 3 

Proposed method 84.3 ± 0.3 83.9 ± 0.3 3 ± 2  

Fig. 3. Vessel segmentation and skeletonization: (A) raw stack of 2D MRA/CTA images, (B) vesselness probability map obtained after pre-processing and filtering, 
(C) binarized volume obtained using active contours segmentation, and (D) skeleton of the cerebral vasculature centerlines and surface cross-sections depicted by 3D 
circles and corresponding diameter values from segmentation. 

Fig. 4. A visual comparison of the vesselness map and corresponding binary volume of the cerebral vasculature: (A) two healthy subjects, and (B) two stroke patients. 
The red arrows on the stroke image data depicts the location of the occlusion. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Though the vessel enhancement filtering (Frangi Filter) and contour- 
based segmentation has been in use for many years, we use efficient 
pre-processing, noise removal and combine these established methods to 
achieve accurate segmentation. This method overcomes the limitations 
of semi-automatic methods in literature which need manual interven-
tion, with minimal pre-processing and no further post-processing 
required. We tested our method on MRA as well as CTA data, but it is 
extendable to other angiography modalities without being restricted to 
specific imaging protocols and can detect small vessels at the size of the 
image resolution without any manual initialization or intervention 
needed. We validated our method through extensive error analysis 
studies using a digital 3D phantom of the Circle of Willis and studied the 
effect of noise level in our algorithm. The physiologically realistic 
phantom utilized for validation served as a ground truth which allowed 
for quantification of the algorithm’s performance, using multiple stan-
dard evaluation metrics. Furthermore, we 3D printed the digital phan-
tom to obtain a physical model of the CoW, perform CT imaging and 
further validate our method on those scans, comparing with absolute 
ground truth. Furthermore, we compared our results against other 
existing methods and showed superior performance visually as well as 
quantitatively (Fig. 2, Table 3). This demonstrates that other methods 
such as auto local thresholding, entropy or class-based segmentation and 
other methods such as region growing, which need seed points fail to 
achieve the segmentation accuracy of our method. An advantage of this 
method is that even in cases where the ‘vesselness’ map derived from 
Frangi filtering appears visually too faint (lower probability of those 
pixels than others due to thinner/low contrast vessels), the active con-
tours is able to trace the vessel pixels and include them in the binary 
volume as the probability is higher than the background (Fig. 4). Hence, 
this combination algorithm overcomes the challenges of inconsistent 
intensity values over the length scales of various vessels and outperforms 
other methods. Recent advancements using machine learning-based 
methods using various kinds of neural networks (Livne et al., 2019) 
also show promise for future implementation. However, currently, there 
is a lack of robust and reliable inter-modality models that study 
geometrical features in healthy and pathological states. 

We further developed the algorithm to include automatic feature 
extraction of the vessels to characterize patient-specific cerebral 
vasculature. This algorithm skeletonizes the vascular network and ex-
tracts regional geometric features including length, diameter, branching 
pattern, fractal dimension and tortuosity, which can be used to study the 

mechanism of vascular pathology and biometrics of structural changes 
in the cerebral vessels. Such analysis of vascular features has been very 
scarcely reported in literature with no other work presenting a com-
parison of healthy with pathological vasculature. 

4.1. Effect of disease 

Using this algorithm, we performed a comparative study of the 
vascular geometry in stroke patients and healthy subjects to quantify the 
structural changes in the cerebral vasculature induced by ischemic 
stroke, which is the largest contributor to death and disability due to 
cerebrovascular disease. Performing a three-factor ANOVA test, we ex-
pected to find the average diameter, volume and total length in stroke 
patients to be smaller due to a major vessel being occluded with a higher 
tortuosity and fractality since these have been shown to be indicators of 
vascular pathology (Gutierrez et al., 2015; Kim et al., 2015; Jiang et al., 
2017). We also hypothesized that the number of branches would be 
smaller in the stroke data due to vessel occlusion but there is also con-
tradictory information in literature regarding this as the vasculature 
tends to sprout additional smaller branches to compensate for the stroke 
(Liu et al., 2014; Shuaib et al., 2011). The results show that the vascular 
geometry differs significantly between the two groups for both the im-
aging modalities and to the best of our knowledge, this is the first study 
to present this quantitative comparison data using automated segmen-
tation and skeletonization of vasculature. 

As we hypothesized, compared to the healthy results, the stroke 
vasculature was found to have a lower volume (61.80 ± 18.79 ml vs. 
34.43 ± 22.9 ml for CTA) and total length (3.46 ± 0.99 vs. 2.20 ± 0.67 
for CTA and 3.05 ± 0.38 vs. 2.88 ± 0.86 for MRA) as well as smaller 
average diameter (2.75 ± 0.37 mm vs. 2.27 ± 0.15 mm for MRA and 2.4 
± 0.21 vs. 2.18 ± 0.07 for CTA); however, the vascular network of stroke 
patients possessed higher tortuosity (3.24 ± 0.88 vs. 7.17 ± 1.61 rad/cm 
for MRA and 4.36 ± 1.32 vs. 5.80 ± 0.92 rad/cm for CTA), fractality 
(1.36 ± 0.28 vs. 1.71 ± 0.14 for MRA and 1.56 ± 0.05 vs. 1.69 ± 0.20 for 
CTA) and varying branching pattern (Table 4). This is consistent with 
findings from literature, where higher complexity and tortuosity were 
observed in stroke patients along with additional smaller branches 
forming for collateral flow. We conclude that the volume and total 
length can still be lower because the newer collateral branches formed 
are smaller than the major vessel network missing in the segmented 
volume due to the occlusion. However, since the stroke MRA group has 

Table 4 
A comparison of geometric features of the cerebral vascular tree of healthy subjects vs. stroke patients. Values are presented as average ± standard deviation of 10 
subjects in each group with the bold font highlighting features that are significantly different between groups (p < 0.05).   

Healthy MRA Stroke MRA p - value F-value Healthy CTA Stroke CTA p-value F-value 
Number of subjects (female) 10 (6) 10 (5)   10 (4) 10 (4)   

Age (years) 30 ± 9.3 51 ± 15.5  0.001  62 ± 12 65 ± 13.3  0.620  
Total length (m) 3.05 ± 0.38 2.88 ± 0.86  0.45  0.571 3.46 ± 0.99 2.20 ± 0.67  0.006  9.441 
Number of branches 139 ± 76 258 ± 63  0.001  14.952 171 ± 54.9 211 ± 75.69  0.209  1.695 
Average branch length (mm) 14.81 ± 1.97 8.68 ± 2.03  <0.001  48.087 8.72 ± 1.72 9.89 ± 2.07  0.159  2.157 
Maximum branch length (mm) 59.25 ± 10.78 88.72 ± 30.87  0.007  9.020 71.11 ± 10.9 59.38 ± 6.10  0.009  8.367 
Average diameter (mm) 2.75 ± 0.37 2.27 ± 0.15  0.003  10.903 2.4 ± 0.21 2.18 ± 0.07  0.051  1.974 
Total volume (ml) 67.07 ± 25.55 48.31 ± 18.92  0.07  3.482 61.80 ± 18.79 38.00 ± 21.83  0.017  6.823 
Fractal dimension 1.36 ± 0.28 1.71 ± 0.14  0.004  10.619 1.56 ± 0.05 1.69 ± 0.20  0.049  4.434 
Tortuosity (rad/cm) 3.24 ± 0.88 7.17 ± 1.61  <0.001  33.260 4.36 ± 1.32 5.80 ± 0.92  0.015  7.101  

Table 5 
Results (p-values) from a three-factor ANOVA to test for significant differences in the features by accounting for age, imaging modality (CTA vs. MRA) and disease 
(healthy vs. stroke). The features which are significantly different have been highlighted in bold.  

Effect Factor Total 
length 

Number of 
branches 

Average branch 
length 

Maximum branch 
length 

Average 
diameter 

Total 
volume 

Fractal 
dimension 

Tortuosity 

Disease  0.154  0.030  0.039  0.048  0.055  0.261  0.006  <0.001 
Age  0.618  0.432  0.283  0.869  0.424  0.781  0.118  0.461 
Modality  0.112  0.038  0.069  0.209  0.966  0.723  0.905  0.223  
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older subjects than the healthy MRA group, the volume is not signifi-
cantly lower in them due to higher tortuosity and branching. In the CTA 
data, the healthy and stroke groups are more closely age-matched, and 
both consist of older adults, resulting in an overall higher tortuosity and 
other altered features. This brings up a very interesting discussion 
around the effects of aging on cerebral vasculature. 

4.2. Effect of aging 

It is important to note that aging has a significant impact on vascular 
impairment since the two groups presented in the MRA data have 
different age ranges (30 ± 9 years for healthy subjects and 51 ± 15 years 
for stroke patients). Multiple studies have noted that aging results in an 
increase in arterial stiffness, arteriolar tortuosity and endothelial mo-
lecular dysfunction, potentially leading to hypo-perfusion (Xu et al., 
2017). These alterations in the vasculature, in turn lead to pathophysi-
ological manifestations such as atherosclerotic vascular diseases, stroke, 
aneurysms, vascular inflammation, hypertension and hemorrhages 
(Ungvari et al., 2018; Donato et al., 2018). Hence these structural 
changes in the vasculature found in stroke patients, are also directly 
correlated with the aging process. This can be seen in the differences in 
the features between younger and older subjects even within the same 
group (for example, healthy subjects from the CTA group with an older 
mean age have higher tortuosity, fractality and number of branches than 
the healthy subjects from the MRA group with a younger mean age). in 
order to study the effect of aging, we performed a three-factor ANOVA 
test to account for the age differences while studying the difference in 
vasculature, and while statistical analysis did not show any significant 
differences, we infer that this could be observed using a larger popula-
tion sample. 

4.3. Effect of imaging modality 

CTA and MRA imaging modalities inherently have differences in 
their imaging datasets due to varying principles and protocols of image 
acquisition. While CTA is faster, cheaper and more readily available, 
MRA has high accuracy and reproducibility and fewer artifacts (Ghouri 
et al., 2019). Also, the skull-stripping problem discussed earlier is 
prominent in CTA data due to the bright skull pixels along with hard-
ening artifact and bright streaks that can sometimes corrupt CT data. 
Thus, we investigated the effect of imaging modality in our study to 
present a comprehensive examination of vascular geometry and subse-
quent pathology captured by both CTA and MRA. We included the im-
aging modality as one of the effecting factors in the three-factor ANOVA 
test to observe differences in the features between the two modalities. 
The only feature that was significantly different (p < 0.05) was the 
number of branches. This reveals that there could potentially be dif-
ferences in the data acquired using imaging modalities and is something 
to be explored with a larger dataset. 

4.4. Limitations 

There could be discontinuities in the binary network if the original 
image dataset itself has inconsistent and poor contrast in some slices 
where the vessel cross section cannot be seen entirely. In such cases, our 
algorithm eliminates the corresponding vascular regions which were 
disconnected from the entire structure, in an attempt to only preserve 
the completely connected network. With a more comprehensive un-
derstanding of human cerebral vasculature, we would be able to 
implement a method to detect and correct for such discontinuities, 
especially for geometric feature analysis and CFD studies. 

Furthermore, using ‘modality’ as a factor for the ANOVA while 
comparing healthy and stroke data, we saw that heteroscedasticity is a 
concern for this data since there is no qualitative/quantitative infor-
mation on the differences in angiography images from CT and MR in 
terms of the factors that would impact segmentation accuracy. We plan 

on studying this in more detail with a large sample of data from both 
modalities. There are a lot of factors to consider before comparing the 
modalities (such as, assessing the differences due to the inherent mo-
dality and varying protocols) and it would be ideal to utilize data from 
the same patients, which was outside the scope of this work. 

Lastly, a persistent limitation in our method as well as other methods 
reported in the literature is the imaging resolution and the inability to 
detect and segment microvasculature which would provide a greater 
insight into cerebral hemodynamics. 

4.5. Conclusion 

This method provides a basis for a quantitative tool to study vascular 
pathology in various underlying cerebrovascular diseases as well as to 
accurately segment vasculature for visualization and assessment in the 
efficient diagnosis and treatment of stroke. Moreover, we quantitatively 
compare healthy and stroke geometries in multi-modality imaging data 
to study the effects of disease, aging and modality. This part of the work 
is crucial in studying the vascular morphology and changes caused by 
(or leading to) cerebrovascular diseases since vascular geometry has the 
potential to be one of the main biomarkers for prevention and person-
alized treatment of stroke and other CVD. Apart from these diagnostic 
and prognostic applications, reconstruction of patient-specific cerebro-
vascular network is a vital step for computational fluid dynamics (CFD) 
modeling studies which can analyze cerebral hemodynamics (Steinman 
et al., 2003; Payne and El-Bouri, 2017) and provide outcomes for various 
forms of vascular interventions. Important components of CFD studies 
include 3D reconstruction of the patient’s vascular network and a 
knowledge of geometric features such as the centerlines, diameters and 
bifurcations (Hsu et al., 2017; Payne and El-Bouri, 2017). 

5. Data and code availability statement 

The CTA datasets from healthy subjects and stroke patients were 
both acquired at 0.43 × 0.43 × 0.62 mm3 resolution using the GE 
Lightspeed scanner at 100–120 KV. All the CTA data were acquired after 
bolus injection of 90–120 ml contrast media with the injection rate of 4- 
5 ml/s. The stroke CTA data was collected at the Centre Hospitalier 
Universitaire Vaudois, Lausanne, Switzerland and the healthy CTA data 
as collected at Stanford Healthcare, California, USA. From these data-
sets, CTA scans of 10 healthy subjects and 10 stroke patients were used 
for the comparative study. For the MRA study, we utilized data from 10 
healthy subjects and 10 stroke patients as well. The MRA scans for 
healthy subjects were obtained from the MIDAS public database, 
wherein time of flight (TOF) MRA brain images from healthy volunteers 
were acquired at 0.5 × 0.5 × 0.8 mm3 and made available by the 
CASILab at The University of North Carolina at Chapel Hill, and 
distributed by the MIDAS Data Server at Kitware, Inc. The MRA scans of 
stroke patients were acquired using the Siemens 1.5T MR scanner with 
0.23 × 0.23 × 0.62 mm3 resolution for two subjects, 0.35 × 0.35 × 0.62 
mm3 resolution for one subject, and 0.41 × 0.41 × 0.62 mm3 resolution 
for the remaining subjects at the Centre Hospitalier Universitaire Vau-
dois, Lausanne, Switzerland. 

The data was not specifically obtained for the purpose of this study 
and is not currently public due to privacy issues of clinical data. Requests 
can be made to obtain the data via email to the corresponding author 
and will be shared upon obtaining the necessary permissions from the 
administering institution. 

The code for the segmentation and data analysis was developed in- 
house by the authors and will eventually be made public via a GitHub 
repository. Any requests for the code until the public release can be 
made via email to the corresponding author. 
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Zanto, T.P., Hennigan, K., Östberg, M., Clapp, W.C., Gazzaley, A., 2011. Vessel tortuosity 
and brain tumor malignancy: a blinded study. Acad. Radiol. 46 (4), 564–574. 

Zhao, Y., Zheng, Y., Liu, Y., Zhao, Y., Luo, L., Yang, S., et al., 2018. Automatic 2-D/3-D 
vessel enhancement in multiple modality images using a weighted symmetry filter. 
IEEE Trans. Med. Imaging 37 (2), 438–450. 

Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M.C., Kaus, M.R., Haker, S.J., et al., 
2004. Statistical validation of image segmentation quality based on a spatial overlap 
index. Acad. Radiol. 11 (2), 178–189. 

A. Deshpande et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S2213-1582(21)00017-6/h0265
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0265
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0265
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0280
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0280
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0285
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0285
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0290
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0290
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0290
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0295
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0295
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0295
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0300
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0300
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0305
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0305
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0310
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0310
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0315
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0315
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0315
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0320
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0320
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0325
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0325
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0330
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0330
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0330
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0335
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0335
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0340
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0340
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0340
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0345
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0345
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0345
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0350
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0350
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0355
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0355
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0355
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0360
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0360
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0365
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0365
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0365
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0370
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0370
http://refhub.elsevier.com/S2213-1582(21)00017-6/h0370

	Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature
	1 Introduction
	2 Materials and methods
	2.1 Pre-processing
	2.2 Vessel enhancement
	2.3 Binarization
	2.4 Skeletonization
	2.5 Geometric feature extraction
	2.6 Validation
	2.6.1 Performance with CT image acquisition noise and image resolution
	2.6.2 Comparison with existing algorithms

	2.7 Healthy vs. Stroke comparison
	2.7.1 Medical imaging protocols


	3 Results
	3.1 Segmentation and feature extraction algorithms
	3.2 Subject-specific vascular architectures

	4 Discussion
	4.1 Effect of disease
	4.2 Effect of aging
	4.3 Effect of imaging modality
	4.4 Limitations
	4.5 Conclusion

	5 Data and code availability statement
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary data
	References


