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INTRODUCTION

Carya cathayensis (Chinese hickory) (Juglandaceae) is an 
economically important nut tree in China. Currently, more than 
15  000 ha of C. cathayensis trees are cultivated in Zhejiang 
Province. Traditional cultivation methods, monoculture of 
single varieties, over-fertilization, and excessive application of 
herbicides, have led to the occurrence of serious phytosanitary 
problems. Recently, trunk canker caused by Botryosphaeria 
dothidea, has become the most devastating disease of C. 
cathayensis (Zhang & Xu 2012), and nearly 90  % of orchard 
trees in Zhejiang Province have been affected by this pathogen 
(Yang et al. 2009). On the other hand, Carya illinoensis (pecan) 
is economically the most valuable nut tree native to North 
America, and is commercially produced in New Mexico, Georgia, 
Louisiana, and Texas, as well as Mexico. Consumption of pecan 
nuts in China has boomed since 2008 due to a global walnut 
shortage and record pecan harvests. However, the supply of 
Chinese-grown pecan is low and unpredictable, hence, China is 
the world’s largest market for pecan, and imports 50 000 t of 
US grown pecan annually to satisfy local demand (Wessel 2011, 
Zhang & Xu 2012). Carya illinoensis trees were first introduced 
to China over 100 years ago. However, productive orchards 
developed rapidly starting in 2008, when the price of pecan nuts 
soared, and the nuts were more generally accepted by Chinese 
people. In 2014, there were about 8  500 ha of commercial 
pecan orchards in China, mainly distributed in Yunnan, Jiangsu, 
Zhejiang, and Anhui Provinces. Most of the orchards planted 

with the recommended cultivars ‘Pawnee’, ‘Wichita’, ‘Caddo’, 
and ‘Jinhua’ are starting to bear and showing potential high 
yields (Zhang et al. 2015). 

China underwent several intentional introductions of 
C. illinoensis germplasm, seeds, and seedlings from the US 
since the beginning of 1900, resulting in the establishment of 
orchards in the same area as those of the native species, C. 
cathayensis. Furthermore, C. illinoensis, was also utilized in 
new plantations as rootstock for C. cathayensis scions because 
of its high resistance to the fungal pathogen Botryosphaeria 
dothidea. It has been observed that C. cathayensis grafted on 
C. illinoensis rootstocks are nearly immune to Botryosphaeria 
canker disease (Yang et al. 2009). Repeated introductions of 
new germplasm greatly increases the risk of host switches of 
potential threatening microorganisms between the two hosts. 
Global trade of plants for planting is, however, recognised as the 
main pathway for unintentional introductions of alien invasive 
forest and agricultural pests and pathogens worldwide (Brasier 
2008, Scott et al. 2019). 

The number of invasive alien pests and pathogens species 
impacting ecosystem functioning, human health, and economy 
has increased dramatically over the last decades (Early et al. 
2016, Eschen et al. 2019). Globalization and international 
trade have largely facilitated the unintentional long-distance 
movement of alien plant pests and pathogens into regions 
outside their native distribution ranges (Seebens et al. 2017). 
In the last decades, the use of sentinel plant systems has been 
reported as a promising tool to improve the detection of pests 
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and pathogens before their introduction (Vettraino et al. 2017a, 
Morales-Rodríguez et al. 2019a). Among forest pathogens, 
species from the genus Phytophthora showed a high invasion 
potential specifically because of their dominance in nurseries 
and nursery stocks and their high aggressiveness (Jung et al. 
2018, Scott et al. 2019). 

Phytophthora species are primary pathogens on thousands 
of trees, shrubs, and crop species worldwide. Depending on 
whether the lifecycle occurs mainly above- or below-ground, 
a distinction is made between soilborne Phytophthora species 
causing fine root losses, root and collar rots and bleeding 
bark cankers, and airborne Phytophthora species causing leaf 
necrosis, shoot blights, fruit rots, and also bleeding bark cankers 
(Erwin & Ribeiro 1996). The number of described Phytophthora 
species that are associated with woody plants has increased 
dramatically in the past decade (Hansen et al. 2012, Martin et al. 
2012, Scott et al. 2019). New species have been detected either 
because they were invasive causing severe diseases on new 
non-coevolved host plants, or because of intensive sampling 
campaigns, particularly in forest soils and streams (Jung et al. 
2013). In the case of Carya species, Phytophthora cactorum is 
the causal agent of Phytophthora shuck and kernel rot infection 
of pecan. The disease was first observed in Georgia (USA) in 
1988, but the causal agent was only later identified (Reilly et al. 
1998). 

In August 2016, a severe decline and dieback of C. cathayensis 
trees was observed in several orchards in the Zhejiang province, 
China. Affected trees showed dieback of the crown and cankers 
at the stem base and along roots, with tongue-shaped, orange-
brown lesions of the inner bark (Fig. 1). In 2017, during a survey, 
isolates of a Phytophthora sp. were consistently isolated from 
the necrotic lesions at the collar of diseased trees (Fig. 1F).

In the present study, a new Phytophthora species associated 
with the decline and mortality of C. cathayensis in Zhejiang 
province is described as Phytophthora cathayensis sp. nov. 
Furthermore, its pathogenicity to C. cathayensis and C. illinoensis 
is tested. 

MATERIALS AND METHODS

Sampling and Phytophthora isolation

Bark samples including cambium and adjacent xylem tissue 
were taken from active lesions of eight symptomatic trees using 
a hatchet, a knife, and a scalpel. The samples were taken to the 
laboratory and rinsed with running cold tap-water overnight 
and blotted on filter paper (Jung et al. 1996). Small tissue pieces 
were cut from different parts and depths of the phloem and 
xylem samples and plated onto selective PARPNH amended with 
10 µg/mL pimaricin, 200 µg/mL ampicillin, 10 µg/mL rifampicin, 
25 µg/mL PCNB, 50 µg/mL nystatin and 50 µg/mL hymexazol 
(Erwin & Ribeiro 1996). The plates were incubated at 20 °C in the 
dark and examined daily under the dissecting microscope for 
phytophthora-like hyphae, which were transferred to V8A (16 
g agar, 3 g CaCO3, 100 mL Campbell’s V8 juice, 900 mL distilled 
water) (Erwin & Ribeiro 1996).

At each sampled tree, four soil sub-samples were taken 1–1.5 
m apart from the base of a tree in the four cardinal directions 
and to a soil depth of ca. 30 cm after removing the organic layer. 
Soils were baited in the laboratory as described by Jung et al. 
(1996). A mix of different baits including Rhododendron leaf 

discs, carnation, and rose petals was used. Upon observation 
of lesions, the baits were plated onto PARPNH selective media. 
Cultures were stored at 25 °C on V8A for species identification.

Colony morphology, growth rates, and cardinal 
temperatures

Morphology of hyphae and colony growth patterns were 
described from 7-d-old cultures grown at 20 °C in the dark on 
V8A, potato-dextrose-agar (PDA), malt extract agar (MEA), and 
selective media (PARPHN). Colony morphologies were described 
according to Erwin & Ribeiro (1996) and Jung & Burgess (2009). 
For temperature-growth relationships, four replicate V8A plates 
per isolate were incubated at 10, 15, 20, 25, 27, 30, 32, and 35 °C. 
All isolates were sub-cultured onto V8A plates and incubated for 
24 h at 20 °C to initiate growth. Radial growth rate was recorded 
after 5–7 d along two lines intersecting the centre of the 
inoculum at right angles (Hall 1993). When no growth occurred 
after 5 d, plates were incubated at 25 °C for 5 additional days to 
determine if the temperature was lethal (Molina et al. 2010). 
The growth test was repeated twice.

Morphology of sporangia and gametangia

Sporangia were obtained by flooding 15 × 15 mm square agar discs 
taken from growing margins of 3–5-d-old colonies (Simamorra 
et al. 2015) with deionized water and with nonsterile soil extract 
(Erwin & Ribeiro 1996) in 90 mm Petri dishes and incubating 
them in the dark at 20–25  °C. After 24–36 h, dimensions and 
characteristic features of 50 mature sporangia per isolate chosen 
at random were determined at ×400 magnification (Axioskop 
microscope and AxioCam ERc5s; Carl Zeiss). For each isolate, 
dimensions and characteristic features of 50 mature oogonia, 
oospores, and antheridia chosen at random were measured at 
×400 magnification at the surface of 15 × 15 mm square agar 
plug cut from the centre of 15–20-d-old V8A cultures grown in 
the dark at 20 °C (Simamorra et al. 2015). The oospore wall index 
was calculated as the ratio between the volume of the oospore 
wall and the volume of the entire oospore (Dick 1990).

DNA isolation, amplification, and sequencing 

The Phytophthora isolates were grown on potato dextrose broth 
at 20 °C for 2 wk and the mycelium was harvested. Genomic 
DNA was extracted following the protocol recommended by 
the NucleoSpin Plant II Mini kit (Macherey Nagel, Germany) 
following the manufacturers’ instructions. DNA concentration 
was assessed by gel electrophoresis, and DNA was diluted 1:10 
to perform PCR and finally stored at -20 °C (Morales‐Rodríguez 
et al. 2019b). The region spanning the internal transcribed 
spacer (ITS) region of the ribosomal DNA was amplified using 
the primers ITS-6 and ITS-4 (White et al. 1990, Cooke et al. 
2000). The PCR amplification mixture, PCR conditions, the clean-
up of products, and sequencing were as described by Grünwald 
et al. (2011). The mitochondrial gene cox1 was amplified with 
primers Fm84 and Fm83 (Martin & Tooley 2003). The PCR 
amplification mixture was the same as for the ITS region, but the 
PCR conditions were as described previously (Martin & Tooley 
2003). Moreover, beta-tubulin (Btub) and heat shock protein 
90 (HSP90) were amplified as indicated in Blair et al. (2008) 
using the primers Btub-F1/Btub-R1 and HSP90-F1/HSP90-R2. 
All PCR products were evaluated for successful amplification 
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Fig. 1. A–C. Severe dieback and mortality in Carya cathayensis orchard in Zhejiang province. D. Necrosis descending to the root. E. Edge of a collar rot 
lesion. F. Collar rot, tongue-shaped, brown-dark orange necrosis of the inner bark.
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using agarose gel electrophoresis. Amplicons were purified with 
NucleoSpin Gel and PCR Cleanup (Macherey Nagel, Germany). 
Sequencing reactions were performed by Eurofins Scientific 
(Luxemburg) and forward and reverse sequences assembled and 
edited using BioEdit v. 7.0.5.3 (Ibis Bioscience, CA, USA).

Phylogenetic analysis

Sequences of Clade 4 taxa were downloaded from GenBank 
BLAST hits, IDphy (http://idtools.org/id/phytophthora/
index.php), and lists in relevant publications on Phytophtora 
phylogenetic and Clade 4 taxa (Simamora et al. 2015, Bose et 
al. 2017). Sequences of Phytophthora plurivora (Clade 2) and 
P. pseudosyringae (Clade 3) were used as outgroups. GenBank 
accession numbers for the sequences generated here and the 
source and accession numbers for sequences downloaded are 
listed in Supplementary Material Table S1 and S2. Sequences 
were aligned using ClustalW, included in MEGA v. 7, under 
default settings, all the alignments were inspected and adjusted 
manually if required (Alignments available at TreeBASE: ID 
25838). A Bayesian phylogenetic analysis was done using 
MrBayes v. 3.2.7a (Ronquist et al. 2012). As reported by Morales‐
Rodríguez et al. (2019b), evolutionary history was inferred 
using the maximum‐likelihood method based on the general 
time‐reversible model (Nei & Kumar 2000) according to the 
result obtained using jModelTest v. 2.1.7 (Darriba et al. 2012;). 
Alignments and maximum likelihood analyses were conducted 
with MEGA v. 7 (Kumar et al. 2016). 

Under-bark inoculation test

The methodology reported by Ginetti et al. (2014) was used for 
the under-bark inoculation test under greenhouse conditions. 
One-year-old C. illinoensis (stem diam ca. 8–10 mm) and 2-yr-
old C. cathayensis plants (diam ca. 15–20 mm) were used for 
inoculation trials, 10 plants per Carya species and per isolate. 
At 5 cm above the collar, a 0.5 cm disc of bark was removed 
aseptically, an even-sized V8A disc cut from the margin of freshly 
growing cultures of Phytophthora cathayensis isolates was 
placed on the wound, covered with the removed bark piece and 
autoclaved wet gauze, and sealed with Parafilm®. Two isolates 
were tested. After 10 d, lesion length (mm) and area (mm2) were 
measured after removal of the outer bark. Re-isolations were 
made using PARPNH to fulfill Koch’s postulates. The experiment 
was repeated twice.

Statistical analysis

ANOVA was carried out to determine if morphometric and 
growth rate differences between isolates were statistically 
significant. Data normality and equal variances were tested by 
the Shapiro-Wilk and Bartlett test, respectively. Pathogenicity 
test data “area of the necrosis” had to be transformed using 
Ln(x) to get a normal distribution (Sokal & Rohlf 1995). A two-
way ANOVA was done with isolate and Carya species as factors. 
Because of the significant interaction between factors the data 
were analysed with one-way ANOVA; mean separation was 
accomplished by Tukey’s honestly significant difference (HDS) 
test. Statistical analyses were carried out using GraphPad Prism 
v. 8 (GraphPad Software, San Diego, CA, USA).

RESULTS

Phytophthora isolation 

A unique Phytophthora morphotype was isolated from the 
active lesions on the collar of all C. cathayensis symptomatic 
trees sampled. The same morphotype was never recovered 
from the baited soil samples. Three isolates were selected for 
the species description (CP29, CP30, and CP31).

Phylogenetic analysis 

All the gene regions sequenced for P. cathayensis had a 
maximum of 96  % similarity with described Phytophthora 
species and, in the case of ITS, a 100 % identity with a non-
described Phytophthtora isolate from C. illinoensis in the USA 
(isolate P168825, GU997621). GenBank accession numbers 
for all the gene regions sequenced for P. cathayensis are 
presented on Table S2. According to the result from jModelTest 
the evolutionary history was inferred by using the Maximum 
Likelihood method based on the General Time Reversible model 
(Nei & Kumar 2000). The tree with the highest log likelihood 
(-7025.85) is shown in Fig. 2. A discrete Gamma distribution 
was used to model evolutionary rate differences among sites [5 
categories (+G, parameter = 0.2259)]. The analysis involved 26 
nucleotide sequences. There were a total of 3 402 positions in 
the final dataset. The species most closely related were P. litchi 
and P. palmivora.

Taxonomy

Phytophthora cathayensis C. Morales-Rodríguez, Y. Wang & A. 
Vannini, sp. nov. MycoBank MB834619. Fig. 3.

Etymology: Name refers to Carya cathayensis, the host plant 
from which all isolates were obtained.

Typus: China, Zhejiang, Hangzhou, Lina, Tuankou, isolated from 
small pieces of cambium and adjacent xylem tissue from Carya 
cathayensis tree with collar canker, 2017, C. Morales-Rodríguez 
CP30 (holotype preserved as metabolically inactive culture, 
China General Microbial Culture Collection, CGMCC No. 19655; 
ex-type culture, CGMCC No. 19655).

Sporangia (Fig. 3): Papillate persistent sporangia were abundantly 
produced in distilled water and non-sterile soil extract 8–12 h 
on simple sporangiophores. Sporangia were rarely observed 
on solid agar. Semi-papillate sporangia were also occasionally 
observed. Although predominantly ovoid (90 %, Fig. 3A–C, 
E), various sporangial shapes were observed including ovoid, 
elongated ovoid, and limoniform (Fig. 3). Occasionally forming a 
conspicuous basal plug (Fig. 3C) that protruded into the empty 
sporangium. Sporangia were typically borne terminally, but 
some were laterally attached (Fig. 3D–E). Sporangia produced 
on the tips of radiating hyphae of a hyphal swelling (Fig. 3E) 
or with short hyphal appendices (Fig. 3B) were common. 
Sporangia of each isolate released zoospores between 15–20 h 
after flooding, zoospores were spherical and motile. Sporangia 
averaged 27.3 ± 4.0 μm in length and 18.6 ± 2.4 μm in breadth 
(full range), the average length to breadth ratio was 1.5 ± 0.1. 
The mean papilla dimensions were 5.3 ± 1.1 μm in length and 
2.36 ± 0.6 μm in breadth, the average length to breadth ratio 
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was 2.4 ± 0.6 μm. Chlamydospores rarely produced, on average 
30.5 ± 3 μm (Fig. 3F). Oogonia, oospores, and antheridia (Fig. 
3J–O): Phytophthora cathayensis is homothallic. Gametangia 
were readily produced in single culture by all isolates. Oogonia 
terminal at the main hyphae, globose to slightly subglobose with 
smooth walls. Mean oogonial diameter on V8A was 24.5 ± 1.6 
μm (overall range 20.19–28.99 μm;). Oospores were globose 
with a mean diameter of 22.2 ± 1.3 μm (overall range 18.35–
25.23 μm), an average oospore wall thickness of 1.6 ± 0.2 μm, 
and a mean oospore wall index of 0.2 ± 0.02 (overall range 0.15–
0.26). The mean proportion of plerotic oopores was 80.66 %. 
The percentage of oogonial or oospore abortion was low (15 %). 
Antheridia mostly lateral and sessile with a short stalk, one 
per oogonium, attached near the stalk and rarely displaced, 
paragynous, cylindrical or club-shaped, averaging 11.4 ± 1.3 × 
9.4 ± 1.2 μm. Isolates of P. cathayensis formed appressed to 
submerged colonies with a stellate growth pattern on MEA, 
stoloniferous felty colonies with submerged margins on PDA and 
uniform and slightly cottony on PARPNH (Fig. 4). On V8A colony 
morphology was more variable, ranging from stellate patterns to 
uniform pattern. Diameters of primary hyphae of P. cathayensis 
averaged 4.5 ± 0.7 µm and varied from 2.7 to 5.8 µm. All isolates 
tested had identical cardinal temperatures and similar radial 
growth rates at all temperatures (Fig. 5). The maximum growth 
temperature for P. cathayensis was 30 °C. All isolates were 
unable to grow at 32 °C and did not resume growth when plates 
previously incubated for 5 d at 32.5 °C were transferred to 25 °C. 
The optimum temperature for growth was 25 °C with growth 
rates of 10.2 ± 0.6 mm/d. At 20 °C P. cathayensis showed growth 

rates of 7.5 ± 0.6 mm/d on V8A, 4.6 ± 0.5 mm/d on PDA, and 5.5 
± 0.2 mm/d on MEA.

Notes: Phytophthora cathayensis is phylogenetically related 
to P. litchii and P. palmivora (Fig. 2) although, morphologically, 
it is easily distinguishable from both species as well as from 
P. megakarya by having non-caducous sporangia and a 
homothallic mating system (Table 1). Phytophthora cathayensis 
produces smaller sporangia with a higher l/b ratio compared 
to P. alticola, P. arenaria, P. boodjera, and P. quercetorum. 
Terminal chlamydospores can be produced by P. cathayensis 
and P. quecetorum but are absent in P. alticola, P. arenaria and 
P. boodjera (Table 1). The diameter of the oogonium is similar 
to P. arenaria and smaller than in P. alticola, P. boodjera, and P. 
quercetorum (Table 1).

Under-bark inoculation test

Both isolates of P. cathayensis were pathogenic to both C. 
illinoensis and C. cathayensis plants with C. cathayensis being 
much more susceptible (Figs 6, 7). The two-way ANOVA showed 
an interaction between factors (inoculated isolate and species 
of Carya) for both parameters measured, length of necrosis 
(interaction F = 9.49; P < 0.05), and area of necrosis (F = 30.85; P < 
0.05). Consequently, a separate one-way ANOVA was performed 
for the individual data sets. Carya cathayensis was significantly 
more susceptible to P. cathayensis, showing longer necroses 
and larger necrotic areas than C. illinoensis (F = 87.65; P < 0.05 
and F = 101.98; P < 0.05). Because of the low susceptibility of C. 

1/100
1/100

1/100

1/100

1/100
1/84

1/52

1/99

0.68/52

0.97/52

1/99

0.95/56

1/98

1/100

0.95/69

0.98/89

0.82/54

1/99

1/98

0.8/69
1/93

P. megakarya 61J5
P. megakarya P8516 
P. megakarya 22H7
P. boodjera VHS27017
P. boodjera CBS138637
P. boodjera VHS27021
P. boodjera VHS27382
P. alticola CBS141719
P. alticola CBS141718
P. alticola CBS121939
P. arenaria CBS127950
P. arenaria CBS 125800 
P. arenaria DDS1221
P. arenaria VHS15489
P. quercetorum P15555
P. quercetorum CBS121119
P. palmivora P0255
P. palmivora P0633
P. palmivora P3738
P. litchii P19950
P. litchii P15218
P. cathayensis sp. nov. CP29
P. cathayensis sp. nov. CP30
P. cathayensis sp. nov. CP31
P. plurivora P16840
P. pseudosyringae P10437

0.007

Fig. 2. Bayesian tree for Clade 4 Phytophthora species produced from concatenated sequences of the ITS, beta-tubulin, cytochrome oxidase I and 
heat shock protein 90 gene regions using GTR + G model. Maximum likelihood was conducted on the same dataset with MEGA v. 7 and resulted in 
the same topology. Numbers above the branches reflect support obtained from the analysis of the same dataset (Bayesian posterior probabilities/
Bootstrap values estimated by MEGA v. 7). Phytophthora plurivora (clade 2) and P. pseudosyringae (clade 3) were used as outgroup. The scale bar 
corresponds to substitutions per nucleotide site.
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Fig. 3. A. Ovoid papillate, laterally inserted sporangia. B. Laterally inserted sporangium with short hyphal appendice. C. Conspicuous basal plugs on 
empty sporangium. D. Laterally inserted semipapillate sporangium with markedly curved apex and swelling before sporangial base. E. Sporangia 
produced on the tips of hyphae radiating from a hyphal swelling. F. Globose chlamydospore with thin walls. G. Limoniform sporangium. H. Elongated 
ovoid semipapillate sporangium. I. Hyphal swelling. J. Paragynous antheridium on an immature oogonium. K. Mature oogonia with thick-walled 
oospore and two pellucid bodies. L. Oospore germination. M. Mature aplerotic oogonia with think walled oospore and ooplast. N. Aborted oospore. 
O. Aplerotic and plerotic oospores. Scale bars = 5 μm.
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Fig. 4. A–D. Colony morphologies of Phytophthora cathayensis sp. nov. Cultures were grown at 20 °C on A (upper line). V8A. B. PDA. C. MEA. D. 
PARPNH. Photographed 7 d after inoculation.

Fig. 5. Radial growth rates (mean ± SE) of three isolates of Phytophthora cathayensis on V8 juice agar at different temperatures.
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illinoensis no difference in the pathogenicity between isolates 
was found in the two parameters, lesion length (F = 5.70; P > 
0.05) and area (F = 0.59; P > 0.05). In contrast, on C. cathayensis 
isolate CP30 showed greater aggressiveness with significantly 
higher values in the length of necrosis (F = 61.30; P < 0.05) and 
in the area of necrosis (F = 140.99; P < 0.05).

DISCUSSION

Phytophthora cathayensis is described here based on 
physiological, morphological, and phylogenetic analyses. All 
these analyses strongly support the designation of the new 
species P. cathayensis within Phytophthora Clade 4. 

With the same tree topology, the results presented here 
are consistent with previous phylogenetic studies obtained for 
the genus Phytophthora (Yang et al. 2017), and those specific 
to clade 4 (Balci et al. 2008, Simamora et al. 2015, Bose et al. 
2017). It is possible to differentiate a consistent group formed 
by P. quercetorum, P. arenaria, P. boodjera, and P. alticola from 
which P. megakarya is separated. An additional group includes 
P. cathayensis, P. litchii, and P. palmivora. This group, although 
well-defined by the Bayesian posterior probabilities values, 
presents low bootstrap values in maximum likelihood. According 
to Russo & Selvatti (2018), the bootstrap test supports the 
repeatability of the data; that is, the probability of retrieving 
the same clade using an independent data set (other molecular 
markers, morphology, etc.). Looking at the results obtained from 

Fig. 6. Necrotic lesions caused by Phytophthora cathayensis (isolate CP30) in the under-bark inoculation trial after 10 d 25 °C: on A. Carya illinoensis 
and B. Carya cathayensis. Scale bars = 1 cm.
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the analysis of the markers separately (Fig. S1), it is evident how 
the position of this “sub-clade” varies. A more phylogenetically 
in-depth study including a larger number of isolates is necessary 
to study the possible existence of different subclades within 
Clade 4.

Clade 4 represents species of Phytophthora with different 
hosts and diverse origins. Phytophthora boodjera has only been 
found in Western Australia (WA) and has mostly been isolated 
from dead and dying eucalypt seedlings in plant production 
nurseries in disturbed urban landscapes. It has been isolated 
from natural ecosystems on only three occasions (from Banksia 
media, B. grandis, and Corymbia calophylla) and currently 
it is considered to be an introduced species (Simamora et 
al. 2015). Phytophthora arenaria (Rea et al. 2011) has been 
recovered exclusively from natural Kwongan vegetation on the 
coastal sand plains of south-west Australia, and it has been 
suggested to be native to WA. Phytophthora alticola has been 
isolated as a pathogen of cold-tolerant Eucalyptus species and 
from Acacia mearnsii plantations, and it is probably native to 
South Africa (Bose et al. 2017). Phytophthora quercetorum 
has been reported from North America where it was isolated 
from the soil rhizosphere, and is associated with oak (Balci 
et al. 2008). Phytophthora megakarya is an oomycete plant 
pathogen that causes black pod disease in cocoa trees in west 
and central Africa (Opoku et al. 2000). Phytophthora palmivora 
is a cosmopolitan pathogen with a wide host range, including 
some very important economic crops such as cacao, papaya, 
black pepper, rubber, coconut, and citrus. The centre of origin 
is believed to be southeastern Asia (McHaw & Coffey 1994). 
Phytophthora litchi, formerly Peronophythora litchi, has been 
reported causing blossom blight on Litchi chinensis in Taiwan 
(Ann et al. 2012), China (Yu 1998), Vietnam (Vien et al. 2001) 
and Japan (Kobayashi 2007) and on Euphoria longana in Taiwan 
(Ann et al. 2012).

The inoculation trials fulfilled Koch’s postulates. Phytophthora 
cathayensis was slightly aggressive to C. illinoensis, but showed 
high aggressiveness to C. cathayensis.  The internal transcribed 
spacer sequence of P. cathayensis shared 100  % identity 

with an undescribed Phytophthora sp. P16825 in the World 
Phytophthora Genetic Resource Collection (WPC), isolated from 
C. illinoensis in Georgia in 2009. It was isolated specifically from 
pecan shuck which surrounds the nut (https://chassintranet.
ucr.edu/phyto/#/productDetails/5035). Carya illinoensis is 
cultivated for its seed in the southern USA, primarily in Georgia, 
and in Mexico, which produces nearly half of the world’s total 
production. Georgia is the largest pecan (from Carya illinoensis) 
producing state in the USA, accounting for approximately 30 % 
of national production (Wells 2014). Nowadays commercial C. 
illinoensis orchards in China are mainly distributed in Yunnan, 
Jiangsu, Zhejiang, and Anhui Provinces, areas that overlap with 
the traditional cultivation of C. cathayensis. Approximately 90 % 
of pecan processing in China is done in Lin'an, a city in Zhejiang 
Province, the origin of C. cathayensis (Yang et al. 2009) where P. 
cathayensis was isolated.

“Darwinian evolution predicts that being adapted to and co‐
evolved with their hosts, many of these pathogens are unlikely to 
do noticeable damage in their native ecosystems, and so are less 
likely to be detected” (Brasier 2008). Plant and microorganisms 
in the same natural environment have evolved together in 
association. These microorganisms often cause little noticeable 
damage to their host plants, having developed a natural balance 
through co-evolution. However, when a microorganism is 
introduced to another region of the world, important problems 
may arise where native plants have little resistance and the 
pathogen has eluded its natural enemies (Vettraino et al. 2017a). In 
the Chinese orchards of C. cathayensis sampled during this study, 
it is possible to observe a severe decline and high tree mortality 
due to P. cathayensis. Although Phytophthora are important 
forest pathogens, the present disease has not yet been described 
or reported in C. illinoensis orchards elsewhere in the world, not 
even in the USA where it seems probable that P. cathayensis 
was isolated for the first time. Furthermore, the pathogenicity 
analyses performed in this study showed that C. illinoensis is 
much less susceptible to P. cathayensis than C. cathayensis. 
Alien pathogens often enter into new countries on either non-
hosts or unknown hosts, on infected but asymptomatic hosts, 

Fig. 7. Mean of length of necrosis (left) and area of the necrosis (right) caused by Phytophthora cathayensis isolates on Carya illinoensis and C. 
cathayensis 7 d post inoculation. Different letters indicate significant differences at P < 0.05, according to Tukey’s post-hoc test. Vertical bars indicate 
standard deviation. 
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or associated commodities (Vettraino et al. 2017a). According to 
Darwinian theory, it can be that C. illinoensis is a natural host of 
P. cathayensis, and due to their co-evolution, the disease is not 
that noticeable. According to this assumption, it is likely that P. 
cathayensis was introduced unnoticed with exotic propagation 
material of C. illinoensis from the USA, with a subsequent host shift 
to C. cathayensis. However, more detailed studies are required to 
clarify the centre of origin of P. cathayensis based on genotypic 
and phenotypic variability between and within the populations at 
the putative center of origin and area of invasion (Vettraino et al. 
2017b, Scott et al. 2019).
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