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Metabolic syndrome is a chronic systemic disease that is particularly

manifested by obesity, diabetes, and hypertension, a�ecting multiple organs.

The increasing prevalence of metabolic syndrome poses a threat to public

health due to its complications, such as liver dysfunction and cardiovascular

disease. Impaired adipose tissue plasticity is another factor contributing to

metabolic syndrome. Emerging evidence demonstrates that fibroblast growth

factors (FGFs) are critical players in organ crosstalk via binding to specific

FGF receptors (FGFRs) and their co-receptors. FGFRs activation modulates

intracellular responses in various cell types under metabolic stress. FGF21,

in particular is considered as the key regulator for mediating systemic

metabolic e�ects by binding to receptors FGFR1, FGFR3, and FGFR4. The

complex of FGFR1 and beta Klotho (β-KL) facilitates endocrine and paracrine

communication networks that physiologically regulate globalmetabolism. This

reviewwill discuss FGF21-mediated FGFR1/β-KL signaling pathways in the liver,

adipose, and cardiovascular systems, as well as how this signaling is involved

in the interplay of these organs during the metabolic syndrome. Furthermore,

the clinical implications and therapeutic strategies for preventing metabolic

syndrome and its complications by targeting FGFR1/β-KL are also discussed.
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Introduction

FGFR (Fibroblast Growth Factor Receptor) signaling is involved in various stages of

human development and metabolic health. In humans, there are 23 distinct fibroblast

growth factors (FGFs), 18 of which (FGF1-10 and 16-23) are mitogenic signaling

molecules that bind to four high-affinity cell surface receptors, named FGFR1, FGFR2,

FGFR3, and FGFR4 (1). The ligand-binding affinity and tissue distribution of these

receptors differ across organs (2). FGFR1 is found in a wide range of cell types and

tissues and is located on chromosome 8 at position 11.23 in humans (1, 2). Structurally,

FGFRs are single-transmembrane proteins that consist of an extracellular ligand-

binding domain and a split functional intracellular kinase domain (1). The intracellular

domain is responsible for FGFR tyrosine kinase activity, along with phosphorylation or

autophosphorylation of the receptor molecule (3). Studies have shown that the binding
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of FGFs and FGFRs on the cell membrane induces a variety of

biological responses, such as stimulating the formation of new

blood vessels, promoting the development and differentiation

of embryonic tissues, participating in wound healing and tissue

regeneration, neurotrophy and regulation of endocrine effects

(3, 4).

Among the FGF family, FGF19, FGF21, and FGF23 act as

endocrine hormones that diffuse into circulation to operate on

distal tissues (4). Particularly, FGF21 is expressed in numerous

organs and is a key regulator in the body upon metabolic

or environmental stresses, such as fasting, food overload,

autophagy insufficiency, oxidative stress and exercise (5). FGF21

has significant impacts and potential therapeutic applications in

several metabolically active tissue organs, including the heart,

liver and adipose tissue which are discussed in detail further.

Emerging experimental studies highlight the metabolic effects

of FGF21 in maintenance of energy homeostasis, glucose and

lipid metabolism, and insulin sensitivity (6–8). In addition,

FGFRs are diverse in their subtypes and functions. Thus,

endocrine FGF21 not only binds to FGFR1 but also with

the obligatory co-receptor βeta-Klotho (β-KL) for signaling

specificity (9, 10). FGF21-FGFR1/β-KL signaling is therefore

involved in a variety of biological functions, including pro-

survival signals, anti-apoptotic signals, and cell proliferation and

migration stimulation (11, 12). This review discusses the current

understanding of the role of FGF21-FGFR1/β-KL signaling

pathway across multiple metabolic organs under metabolic

health and disease.

FGF21-FGFR1 signaling in liver

FGF21, along with β-KL is upregulated in the liver by

nutritional stresses like starvation, amino acid restriction, and

high-fat diet (HFD) or ketogenic diets, thereby mediating

hepatic response to nutritive stimuli (13–15). Moreover, acute

and chronic stress including exercise, oxidative stress and

liposaccharides content also increase FGF21 levels (16, 17).

Another contributor of hepatic FGF21 expression is hepatic

ER stress that is mediated by eukaryotic translation factor 2α-

activating transcription factor 4 (eIF2α-ATF4) pathway (18).

Many studies have highlighted the key role of FGF21-mediated

FGFR1/β-KL activation in the regulation of hepatic lipid

and glucose metabolism (15). The overexpression of hepatic

FGF21 in mice showed increased ketogenesis, gluconeogenesis,

and lipolysis, thereby regulating hepatic metabolism under

prolonged fasting (14). Mechanistically, FGF21 induced the

expression of peroxisome proliferator-activated receptor gamma

coactivator 1α (PGC-1α) and improved β-oxidation of fatty

acids, thereby improving adaptive starvation response in the

liver in response to prolonged chronic fasting (19). Further,

exogenous FGF21 treatment improved liver metabolism (19)

and insulin sensitivity (20) in the obese C57BL/6 mice by

inducing phosphorylation of downstream pathways, including

fibroblast growth factor receptor substrate 2 alpha (FRS2α)

and extracellular signal-regulated kinase (ERK) (20). These

studies thus indicate the role of FGF21 in improving obesity or

prolonged fasting induced metabolic stress. However, there is

a low level of endogenous FGFR1 expression in the liver (21),

so it is unclear whether the beneficial effects of FGF21-β-KL

signaling are mediated directly through FGFR1. Also, FGF21

was shown to have no effect in isolated hepatocytes from mouse

and rat (22). This results from insufficient peripheral signals

from adipose tissue, modulating the liver’s response to FGF21

indirectly. Therefore, a deeper understanding of what extent

and how FGF21-FGFR1/β-KL signaling contributes to hepatic

metabolic responses needs to be obtained.

FGF21-FGFR1 signaling in adipose
tissue

Adipocytes express both β-KL and FGFRs (mainly FGFR1

and FGFR2) and are important targets for FGFs (23). White

adipose tissue (WAT) helps in storing energy, whereas brown

adipose tissue (BAT) helps in energy expenditure by generating

heat through a process called thermogenesis (24). FGF21

expression is induced by exposure to cold or stimulation

by β-adrenergic receptors in the adipose tissue (25–28).

Multiple genetic and pharmacological studies highlight the

role of FGF21-FGFR1/β-KL signaling pathway in regulating

adipose tissue metabolism (10, 23, 29, 30). Studies showed

that long-term HFD-fed obese mice exhibited hyperglycemia,

hyperinsulinemia, and hyperlipidemia, with markedly reduced

FGFR1 and β-KL expression in adipose tissue (31). WAT-

specific knockout of β-KL/FGFR1 reduced FGF21 response in

WAT and eliminated the beneficial effects, such as weight loss

and energy expenditure in the obese rodents (31). In addition,

Chen et al. found that anti-FGFR1/β-KL bispecific antibody

(acting as FGF21 mimetic) stimulated energy expenditure

in adipocyte-selective FGFR1-deficient mice, elucidating the

indirect role of FGF21 in BAT thermogenesis via uncoupling

protein 1 (Ucp1) activation (32). Thus, BAT has gained attention

as a novel target for treating obesity and Type 2 diabetes due

to its “fat-burning” properties (33), mediated by FGF21-FGFR1

signaling (34, 35). BAT-derived FGF21 either functions locally

or escapes into the systemic circulation, having an autocrine

as well as an endocrine role in thermogenesis via PGC-1α,

mitogen-activated protein kinase (MAPK) and ERK signaling

(27, 28, 36). Moreover, prolonged treatment of FGF21 on brown

adipocytes increased glucose consumption (28) and insulin-

stimulated glucose uptake via hepatic adiponectin secretion

in a paracrine manner (22, 37, 38). This suggests a hepatic-

adipose crosstalk. However, two groups independently showed

that surgical removal of BAT did not alter the effects of FGF21

in obese rodents (7, 39), indicating that BAT activation and
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WAT browning alone are not responsible for the systemic

metabolic benefits of FGF21 treatment (40). Therefore, further

studies, especially clinical trial with existing FGF21 analogs

are needed to establish the underlying mechanisms by which

FGF21-FGFR1/ β-KL signaling governs systemic metabolism in

the adipose tissue.

FGF21-FGFR1 signaling in the heart

Emerging evidence shows that FGF21-FGFR1 signaling

is also an important regulator in the heart. For instance,

it is stimulated via paracrine and endocrine FGFs and

exhibits anti-hypertrophic, anti-oxidative and anti-apoptotic

properties under physiological and pathological conditions (41–

44). Endocrine FGF21 has been shown to have cardiovascular

protective effects, specifically in ischemic/reperfusion injury

(45), isoproterenol-induced cardiac hypertrophy (46), alcoholic

cardiomyopathy (47), and hypertensive heart disease (48).

FGF21 activity in the heart is dependent on its binding to

FGFR1 and β-KL and induces cell survival via anti-oxidative

mechanisms and recovery of energy homeostasis in cardiac cells

(49). In clinics, myocardial FGF21 is increased in advanced

heart failure; however, in a pre-clinical ischemic mouse heart,

FGF21 induction is not apparent (43). Nevertheless, FGF21

inhibits cardiac remodeling by activating MAPK signaling in

an autocrine manner (41). Following myocardial infarction,

FGF21 exerts its cardioprotective action via ERK 1/2 and AMP-

activated protein kinase (AMPK) in an acute manner and

via Phosphoinositide 3-kinases (PI3K)/ protein kinase B (Akt)

in a sustained fashion (45, 50). Of note, cardiomyocytes can

also produce FGF21 in response to disturbances in cellular

metabolism (51). An earlier study demonstrated that FGF21 is

secreted into the culture media at a basal rate of 0.05 ng/mL

per 24 h, thereby establishing FGF21 as a cardiomyokine.

The cardiac FGF21 autocrine loop is likely a compensatory

mechanism initiated in response to oxidative stress (52).

Global FGF21 knockout results in heightened cardiomyocyte

inflammatory response via increased nuclear factor kappa B

activity and upregulation of interleukin 6, concomitant with

repressed fatty acid oxidation. Moreover, hypertrophic stimuli

induce transcriptional upregulation of cardiac FGF21 via Sirtuin

1- PPARα pathway (46). FGF21 directly affects the heart,

owing to FGFR1 and β-KL expression in the myocardium

(53); however, the molecular basis whereby the FGF21-FGFR1

pathway is involved in cardiac metabolism is elusive.

In streptozotocin (STZ)-induced diabetes, cardiac FGF21

mRNA level is increased significantly (54). FGF21 mediated

FGFR1 activation enhanced ERK1/2 phosphorylation, p38

MAPK activity, and AMPK activation, thereby impeding

diabetes-induced apoptosis (53). FGF21 global knockout

mice are more likely to develop STZ-induced diabetic

cardiomyopathy. This is accompanied by severe cardiac

dysfunction, structural changes, oxidative stress, and cardiac

lipid accumulation via cluster of differentiation 36 (CD36)

upregulation owing to decreased lipid oxidation, and impaired

glucose oxidation. Conversely, using genetic or pharmacological

modulation, FGF21 displays cardioprotective properties under

dysregulated glucose and lipid metabolism (55–57) FGF21

also promotes lipophagy in mouse cardiomyocytes in obesity-

related cardiomyopathy by preventing lipid accumulation

(58). In addition, FGF21 protects the heart against Type 2

diabetes by either AMPK-protein kinase B (PKB, also known

as AKT)-nuclear factor erythroid 2-related factor 2 (NRF2)-

mediated anti-oxidative pathway or acetyl-CoA carboxylase

(ACC)-Carnitine palmitoyltransferase I (CPT-1) lipid-lowering

pathway, primarily attributable to managing lipotoxicity (59).

Moreover, upon hyperglycemia and hyperlipidemia,

endoplasmic reticulum (ER) stress is invoked by oxidative

stress, lipid deposition, and abnormal proteins synthesis

in cardiomyocytes (60). Maladaptive ER stress eventually

disturbs lipid synthesis, calcium homeostasis, protein quality

control, leading to cell death (61). FGF21 diminishes ER

stress-mediated myocardial apoptosis via reduction of

ATF4-C/EBP homologous protein (CHOP) pathway (62).

Although cardiac-specific overexpression of FGF21 does not

play a major role in cardiac energy metabolism under an

unstressed-state, FGF21 secretion is activated upon cardiac

ER stress altering cardiac glucose oxidation in an autocrine

manner (63).

Additionally, FGF21 signaling exerts anti-inflammatory

effects by inhibiting PI3K/AKT signaling in the diabetic

heart (56) and by promoting AMPK-paraoxonase 1 axis

in high-glucose stressed cardiomyocytes (64). On the

other hand, FGFR1 signaling is necessary for anti-fibrosis.

Endothelial FGFR1 knockout mice showed considerable

kidney and heart fibrosis (65). Moreover, FGF21 has anti-

oxidative properties via AMPK activation in endothelial

cells under diabetic stress (66). Furthermore, global β-KL

knockout mice show reduced serum levels of adiponectin,

known to modulate FGF21 signaling in several organs.

Accordingly, global adiponectin knockout mice display

diminished cardioprotective effects of FGF21 (67). In general,

current research points to the potential importance of

further investigating cardiac FGF21-FGFR1/β-KL signaling in

metabolic stress.

Multi-organ crosstalk mediated by
FGF21

FGF21 response in organs appears to be influenced by

tissue-specific interactions (68), summarized in Figure 1.

FGF21 stimulates adiponectin secretion from adipocytes,

which confers metabolic actions on the other cells/tissue,

such as blood vessels (69). The effects of FGF21 are due to
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FIGURE 1

FGF21-FGFR1/β-KL regulation of multi-organ crosstalk under metabolic stress. FGF21-FGFR1/β-KL signaling is vital in regulating systemic and

organ responses under pathophysiological metabolic stress. Hepatic sourced FGF21 (circle) reduces ketone metabolism in the cardiomyocytes,

induces secretion of adiponectin from WAT, and modulates systemic metabolism. Moreover, hepatic sourced FGF21 passes through the

blood-brain barrier and is involved in regulation of circadian rhythm and appetite response. In a feedback loop, β-KL signaling in the

VMH-specific glutamatergic neurons contributes to modulating hepatic nutrient uptake. The release of CRF and corticosterone from the brain is

responsible for regulating energy expenditure in the adipose tissue and liver gluconeogenesis, respectively. Cardiac sourced FGF21 (triangle)

promotes thermogenesis in the adipose tissue, thus improving overall metabolic health. Under the adipo-hepatic communication, reduced

expression of adipose FGFR1 aggravates hepatic steatosis and adipose FGF21 (square) increases the expression of hepatic FGF21. Hence,

multi-organ crosstalk mediated by FGF21-FGFR1/β-KL signaling alleviates metabolic distress by improving insulin sensitivity, glucose, and lipid

levels in the body, along with increased energy expenditure in the adipose tissue and weight loss. BAT, brown adipose tissue; β-KL, beta-klotho;

CRF, corticotropin releasing factor; FGF21, fibroblast growth factor 21; FGFR1, fibroblast growth factor receptor 1; VMH, ventromedial

hypothalamus; WAT, white adipose tissue (created with Biorender.com).

its direct action on hepatocytes or cardiomyocytes, and/or

indirect impacts on the brain–hepatic axis. Peripheral signals,

along with gastro-intestinal hormones, are responsible

for conveying metabolic information to the brain and

modulating glucose homeostasis and energy intake in

the body (70). Although FGF21 is not expressed in the

central nervous system (CNS), it can pass through the

blood-brain barrier, allowing communication between

peripheral tissues and the CNS (71). It was evidenced by a

study utilizing β-KLCamk2a mouse, that lacks β-KL in the

hypothalamus and the hindbrain. This model confirmed

central FGF21 signaling involved in the regulation of the

circadian rhythm and starvation response (72). Additionally,

β-KL- glutamatergic knockout mice elucidated that FGF21-

FGFR1/β-KL signaling in the ventromedial hypothalamus

decreases sucrose consumption/sweet-taste preference,

eventually protecting the hepatic metabolism (73). FGF21

is also responsible for stimulating corticotropin-releasing

factor and corticosterone in the brain, which subsequently

participates in energy expenditure in the BAT (74–76) and

hepatic gluconeogenesis, respectively (72, 77). Moreover, a

large cohort study conducted by Jiao et al. found that FGFR1

protein in adipose tissue increased in the obese women, and

the hypothalamic expression of FGFR1 was increased in the

diet-induced obese rats (78). This study thus highlighted FGFR1

as a novel obesity gene that influences adipose tissue and

the hypothalamus, thereby initiating obesity and modulating

appetite, respectively.

Moreover, the hepatic-cardiac signaling circuit has

been documented in human heart failure samples. This

study highlights the endocrine action of hepatocyte

sourced FGF21, resulting in enhanced binding of FGF21

to diseased cardiomyocytes. This increase in FGF21

binding was associated with reduced ketone metabolism

in the heart (11). In addition, cardiac-sourced FGF21

modulates the metabolic phenotype of BAT by promoting
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thermogenesis in obese mice with cardiac muscle autophagy

deficiency (12). Collectively, further research is needed

to explore the role of hepatic- and/or cardiac-sourced

FGF21 on FGFR1 signaling across multiple organs under

metabolic stress.

Moreover, adipocyte lipolysis releases fatty acids into the

bloodstream. These fatty acids subsequently enhance FGF21

expression via an indirect mechanism by activating PPARα

in hepatocytes (79). Interestingly, one study highlighted

that global β-KL knockout increases energy expenditure

from BAT, making the mice resistant to obesity (80).

Moreover, adipo-hepatic communication was noticed by

adipocyte ablation of FGFR1. Adipocyte-specific deletion of

FGFR1 aggravates hepatic steatosis (81), indicating the plausible

FGFR1 regulation on maintenance of energy homeostasis across

multiple organs. Finally, the browning of epicardial adipose

tissue (EAT) contributes to atrial fibrillation under diabetic

stress. Mechanistically, micro-RNA (miR)-21-3p is significantly

upregulated in serum from diabetic patients and participates

in atrial fibrosis under hyperglycemia conditions by reducing

FGFR1 in EAT (82).

FGF21 resistance in obesity and
diabetes

Despite increased serum levels of FGF21 in obesity patients,

no metabolic benefits were observed. Therefore, the term

“FGF21 resistance” was examined in animal studies, showing

reduced FGFR1 and β-KL in adipose tissue in obese mice

(83). FGF21 effects on insulin sensitivity is then impeded (84).

In addition, FGF21 resistance was also observed post FGF21

administration in obese mice (85). Of note, regarding the role

of expression of β-KL in FGF21 resistance in adipose tissue,

different results have been reported in obese mice. Although

β-KL reduction is not associated with FGF21 resistance (86),

its overexpression enhances FGF21 action in adipocytes (87).

Additionally, β-KL has been shown to be an integral part

of the FGF21 machinery in the liver. In the mice lacking

β-KL, FGF21 was defective in regulating lipid and glucose

metabolism at the whole organism level in diet-induced obesity

(30). Thus, further preclinical and clinical studies are required to

determine the molecular basis of FGF21 resistance, particularly

in distinct cells.

Recently, serum FGF21 levels were associated with

diastolic cardiac dysfunction in humans with cardiovascular

diseases, such as dyslipidemic patients with coronary artery

disease (50), but only a few reports have examined FGF21’s

role in heart failure (88). Pre-clinical model shows that

FGF21 resistance is likely involved in the impairment

of glucose uptake in heart (50). Although there was no

discernible difference in FGFR1 levels in hearts from obese

and lean rat, β-KL was less expressed in the heart, possibly

explaining FGF21 resistance (50). However, exploration

of molecular basis and targeting potential of FGF21

resistance in heart is needed for therapeutic implications

of heart failure.

Targeting FGF21-FGFR1/β-KL
signaling to tackle metabolic stress

It is acknowledged that targeting the FGF21-FGFR1

signaling pathway is advantageous for tackling metabolic stress.

Of note, there is an increase in circulating levels of fibroblast

activation protein alpha (FAP), a prolyl peptidase related

to the dipeptidyl peptidase IV (DPP-IV) enzyme. Increased

circulating FAP levels are associated with decreased levels of

bioactive to total FGF21, thus impairing its metabolic regulation

potential (89). Hence, using long-lasting FGF21 analogs and

targeting FGFR1 signaling to combat resistance in several

organs could be advantageous. However, the tissue specific

effects have not yet been investigated in detail. FGF21 analogs

are reported to adjust systemic metabolism in obese and

diabetes in clinical trials and pre-clinical studies. For instance,

LY2405319, improved dyslipidemia in obese patients with Type

2 diabetes (90) and diabetic monkeys (91, 92). Recently, AKR-

001, an Fc-FGF21 analog, also showed beneficial effects on

insulin sensitivity and lipoprotein profile in Type 2 diabetes

patients (93).

Because pharmacokinetic properties of FGF21 analogs

remain the most challenging for balancing therapeutic

benefits and mechanism-related toxicity, further research

on targeting FGFR1/β-KL signaling is crucial to identify

novel therapeutic potentials (94). For instance, endocrine

FGF23 bears structural similarity to FGF21 and FGF23 C-

terminal alteration to FGF21 C-terminal enhances the ability

of scaffold forming of FGF21-like molecule to FGFR1/β-

KL complex (95). In addition, one bi-specific avimer for

the complex of FGFR1 and β-KL, C3201, improves insulin

sensitivity and lipid profiles in male obese cynomolgus

monkeys (96). Of note, the FGFR1c/β-KL bispecific antibody,

BFKB8488A, demonstrated sustained improvements in cardio-

metabolism and weight loss, despite that insulin sensitivity

was not consistently improved and lipoprotein responses

varied in obese humans (97). However, it is necessary to

further investigate the tissue-specific effects of the above-

mentioned agents, including on cardiac, liver and adipose

tissue function.

Conclusion

FGF21 is an endocrine and cell-autonomous autocrine

regulator displaying a varied response across different organs

in a stress- and time-dependent manner (43, 98). Most
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studies have focused on hepatic sourced FGF21 (endocrine

action) in the past. However, adipose- and cardiac muscle-

sourced FGF21 require further attention to delineate their

paracrine and/or autocrine roles in metabolic diseases. In

addition, downstream effectors of the FGF21-FGFR1 signaling

cascade in distinct cells also require further investigation.

Moreover, the molecular basis underlying FGF21 resistance

in organs is undocumented. Finally, the lack of improvement

in insulin sensitivity in humans, despite the beneficial effects

of FGF21 analogs, necessitates the development of novel

therapeutic approaches targeting FGFR1/β-KL signaling in

metabolic organs.
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