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Abstract: In order to improve the energy efficiency (EE) performance of cooperative networks, this
study combines non-orthogonal multiple access (NOMA) with simultaneous wireless information
and power transfer (SWIPT) technologies to construct a cooperative relay network composed of
one base station (BS), multiple near users, and one far user. Based on the network characteristics,
a time-division resource allocation rule is proposed, and EE formulas regarding direct-link mode
and cooperative mode are derived. Considering user selection and decoding performance, to obtain
the optimal EE, this study utilizes a DinkelBach iterative algorithm based on the golden section
(GS-DinkelBach) to solve the EE optimization problem, which is affected by power transmitted from
the BS, achievable rates under three communication links, and quality of service (QoS) constraints of
users. The simulation results show that the GS-DinkelBach algorithm can obtain precise EE gains with
low computational complexity. Compared with the traditional NOMA–SWIPT direct-link network
model and the relay network model, the optimal EE of the established network model could be
increased by 0.54 dB and 1.66 dB, respectively.

Keywords: simultaneous wireless information and power transfer (SWIPT); non-orthogonal multiple
access (NOMA); cooperative network; energy efficiency (EE)

1. Introduction

According to the Cisco annual Internet report (2018–2023) white paper, the share of
machine-to-machine (M2M) connections will grow from 33 percent in 2018 to 50 percent
by 2023, the fifth generation (5G) speeds will be 13 times higher than the average mobile
connection, and the average 5G connection speed will reach 575 Mbps by 2023 [1]. The
rapid growth in the number of communication devices and transmission rates will cause an
explosion of data traffic. To satisfy the requirement of communication traffic in 5G, resource
allocation rules and corresponding technologies of communication networks should be
improved, and energy consumption should be taken into consideration [2].

As a promising candidate for 5G, non-orthogonal multiple access (NOMA) puts
forward the concept of a power domain that is different from the time domain, frequency
domain, and space domain. Compared with traditional orthogonal multiple access (OMA)
techniques, NOMA allows each sub-carrier to simultaneously serve multiple terminals so
that significant spectral efficiency (SE) enhancement can be obtained [3,4]. Users sharing the
same spectrum will cause great mutual interference, and the solution to this situation is the
utilization of successive interference cancellation (SIC) technology at the receiver so that the
demanded information can be correctly decoded. Apart from SIC, other technologies, such
as multiple-input multiple-output (MIMO) [5], wireless power communication (WPC) [6],
and sparse code multiple access (SCMA) [7,8], used in NOMA have also been researched
in recent years, with a predominant focus on the optimization of codec and resource
allocation.
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As another form of technology considering the power domain, simultaneous wireless
information and power transfer (SWIPT) has also attracted attention due to its potential
in solving the problem of excessive energy consumption of equipment. SWIPT refers to
the technology that allows for information and energy from a radio frequency signal to be
simultaneously received by using the radio frequency signal’s ability to not only transmit
information but also carry energy. The concept of SWIPT was firstly proposed by L. R.
Varshney in 2008, and it was explored in relation to the performance tradeoff between
energy and information rates [9]. Two kinds of common transmission methods have been
developed to combine and distinguish information signals and power signals, i.e., the
time-switching (TS) method and the power-splitting (PS) method. Information signals
and power signals are transmitted in a time-division-multiplexing manner with the TS
method or superimposed with a certain power ratio with the PS method [10]. To match the
transmission methods, the receiver architecture should be equipped with the integration of
an information decoder (ID) and energy harvester (EH).

The relaying method is described as an efficient means to improve the quality of
long-distance communication. In order to fix the problem of far users receiving weak
signals, relays closer to the signal source are utilized to forward signals and improve the
received signal strength. Through node positions, diversity methods, and related protocols,
resources can be efficiently exploited rather than wasted [11].

In recent years, the combination of NOMA and SWIPT technologies in cooperative
networks has received a considerable amount of attention. For example, in [12–14], different
types of NOMA–SWIPT cooperative relay network models are proposed, and the resource
allocation optimization methods is studied with the goal of outage performance of the
networks. On this basis, other studies also comprehensively consider the impact of the
throughput [15–19], diversity gain [20–22], and user transmission distance [23,24], verifying
that the cooperative relay network of NOMA–SWIPT fusion has a good prospect in energy
and resource optimization. Due to the adoption of the relay cooperation scheme, under the
multi-relay model, the reasonable formulation of the relay selection methods can effectively
improve the network performance. A novel buffer-aided relay selection scheme is proposed
in [25], and the corresponding performance in different communication links and modes is
analyzed. In [26], a single-source, randomly located multi-relay network is examined to
compare the communication performance in direct-link and cooperative relay. The system
model is expanded to multiple sources and users in [27]. The research conducted in [28]
also considers the bit error rate (BER) performance of multiple users after the mth best relay
selection from a practical perspective.

The NOMA–SWIPT cooperative relay network protocol and architecture based on
half duplex (HD) and full duplex (FD) relays are also respectively proposed in [29,30]. The
problem of energy harvesting and information forwarding of relay nodes is examined
to identify the solution to joint optimization of resource allocation in network nodes.
Furthermore, in [31], a hybrid HD/FD relay selection is proposed to make the network more
efficient and stable. The abovementioned works further prove that the cooperative relay
network architecture based on NOMA–SWIPT technology can not only obtain the gain of
transmission performance but also optimize energy consumption during the transmission
of the system.

However, most of the abovementioned research focuses on analyzing network outage
performance or transmission performance under the premise of using SWIPT, but there is
a lack of analysis and optimization of the energy efficiency (EE) of networks. Therefore,
inspired by current research, this paper takes a NOMA–SWIPT cooperative relay network
consisting of one base station, multiple near users, and one far user into consideration.
In order to satisfy resource scheduling under different network conditions, the system is
divided into two modes, i.e., direct-link mode and cooperative mode, and a time division
resource allocation rule is proposed. Through the analysis of channel state information
(CSI) and performance parameters of nodes in the network, an optimal near user is selected.
Then, the network EE performance is studied on the condition of ensuring the far user’s
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and optimal near user’s information reception. The EE formulas constrained by the power
transmitted from the BS, achievable rates under different communication channels and
the quality of service (QoS) of users, are given from the perspective of direct-link mode
and cooperative mode, respectively, under the network architecture proposed. Through
derivation, it can be concluded that the EE formulas in different modes of the network are
concave functions, so the corresponding EE optimization problems have optimal solutions.
On this basis, a DinkelBach iterative algorithm based on golden section (GS-DinkelBach) is
proposed. System simulation results show that the algorithm can obtain precise EE gains
with good convergence and lower computational complexity. In addition, decoding and
EE performance of users in different modes are presented. Compared with the traditional
NOMA–SWIPT non-cooperative network model and non-direct-link network model, the
optimal energy efficiency of the proposed network model can be improved by 0.54 dB and
1.66 dB, respectively.

The remainder of the paper is structured as follows: In Section 2, the system model is
constructed. Section 3 presents the corresponding resource allocation rule. In Section 4,
EE optimization problems are derived, and the GS-DinkelBach algorithm is proposed in
Section 5. Simulation and numerical results are given and analyzed in Section 6, which is
followed by a conclusion in Section 7.

2. System Model

As shown in Figure 1, the considered downlink cooperative NOMA network based
on SWIPT includes one BS, K near users U1,k (k = 1, . . . , K), and one far user U2.
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Figure 1. Downlink NOMA–SWIPT cooperative relay network.

In the constructed system model, h1,k, h2, and h3,k are the channel fading coefficients
of the BS − U1,k link, the BS − U2 link, and the U1,k − U2 link, respectively. U1,k and
U2 are both equipped with single antennae and use successive interference cancellation
(SIC) technology to decode the demanded signals x1 and x2. The BS functions as a signal-
transmitting source. Since U1,k is closer to the BS, it could perform as an energy harvester
and a cooperative relay. On the other hand, as the far user, the signal receiving quality of
U2 is worse. Thus, two modes of network situations are shown in Figure 1, i.e., direct-link
mode and cooperative mode, to ensure the communication quality of the network.

The NOMA = modulated signal transmitted by the BS can be expressed as

x =
√

P1x1 +
√

P2x2, (1)

where x1 and x2 are the signals required by U1,k and U2 with power E
[
|x1|2

]
= E

[
|x2|2

]
= 1,

and P1 and P2 are the power allocated for x1 and x2 using NOMA technology. P1 = aPs,
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P2 = (1− a)Ps, where Ps is the BS transmit power and a is the BS power allocation factor.
In the proposed network model, the channel power gain of the BS−U2 link is less than
that of the BS−U1,k link, so the BS needs to allocate more power for U2, i.e., 0 < a < 1

2 .
In order to distinguish between near users and far users, this study assumes a distance-

based Rayleigh fading channel scenario and considers the distance-dependent function
utilized in [26] as deterministic influence for path loss, which is expressed as

θ = ς(1 + d)−$ (2)

where ς and $ are the propagation coefficients and d denotes the distance of two communi-
cation nodes. The function θ should satisfy PR = θ|h|2PT , where PT and PR are transmitted
power and received power, respectively, and |h|2 is the Rayleigh channel gain.

Thus, in direct-link mode, the received signals of two users are given by

ydirect
1,k = h1,k

√
θ1,kx + n1,k, (3)

ydirect
2 = h2

√
θ2x + n2 (4)

where n1,k and n2 are the additive white Gaussian noise (AWGN) in the corresponding

communication link, n1,k ∼ CN
(

0, σ2
1,k

)
, n2 ∼ CN

(
0, σ2

2
)
.

In cooperative mode, U1,k switches into a half-duplex SWIPT relay. The receiving
antenna of U1,k is followed by a power splitter. The PS factor of U1,k is ρ, 0 < ρ < 1.
According to the system model proposed in this study, the (1− ρ) proportion of the total
signal power received from the BS in U1,k is utilized to decode information, and the rest, i.e.,
ρ proportion, is harvested as power for forwarding x2 to U2. Thus, the energy harvested in
U1,k is

Pr,k = ηρθ1,k
∣∣h1,k

∣∣2Ps, (5)

where η is the energy conversion efficiency of U1,k, 0 < η < 1. The signal used for user
detection is expressed as

ycoop
1,k =

√
1− ρydirect

1,k . (6)

Here, we ignore the additional loss of U1,k in the energy transforming process’ i.e., the
energy harvested by U1,k is completely converted into the transmission power for U1,k−U2.
Thus, the received signal of U2 from U1 is given as

yrelay
2 = h3,k

√
θ3,kPr,kx2 + n3,k, (7)

where n3,k is the AWGN under the U1,k −U2 link, n3,k ∼ CN
(

0, σ2
3,k

)
.

Therefore, in cooperative mode, considering maximal ratio combining (MRC), the
total signal U2 received in time slot T is given as

ycoop
2 = h2

√
θ2P1x1 +

(
h2
√

θ2P2 + h3,k

√
θ3,kPr,k

)
x2 + n2 + n3,k. (8)

3. Resource Allocation Rule

As mentioned in Section 2, in order to ensure the quality, this paper assumes that the
NOMA–SWIPT cooperative relay network model proposed in Figure 1 can achieve mode
switching in a working time slot T according to proposed time-division resource allocation
rule. The rule composed of two modes is shown in Figure 2.

The mode switching of the proposed network depends on the CSI and achievable
rates in three communication links. Let the target rates for U1,k and U2 to correctly decode
x1 and x2 be R1 and R2, respectively. Thus, the SINR thresholds in different modes should
be expressed as Ωdirect

x1,th = 2R1 − 1, Ωdirect
x2,th = 2R2 − 1, Ωcoop

x1,th = 22R1 − 1, Ωcoop
x2,th = 22R2 − 1.
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At the beginning of each working time slot T, the system will compare the CSI
condition of the BS−U2 link and transmission SINR for U2 to decode x2. If the signal to
interference plus noise ratio (SINR) of U2 is greater than threshold, i.e., Ωdirect

x2,U2
≥ Ωdirect

x2,th ,
U2 will send a 1 bit ACK to the BS and U1,k; then, the network will stay in direct-link mode,
where

Ωdirect
x2,U2

=
θ2|h2|2P2

θ2|h2|2P1 + σ2
2

. (9)

In this mode, U1,k and U2 will directly receive the radio frequency (RF) signal sent by
the BS only.

On the other hand, if the SINR of U2 is lower than the threshold, i.e., Ωdirect
x2,U2,k

< Ωdirect
x2,th ,

U2 will send a 1 bit NACK to the BS and U1,k; then, the network will switch into cooperative
mode. In this mode, the working time slot is divided into two halves with a length of T/2.
In the first time slot, U1,k receives a superimposed signal and functions as an RF signal
energy harvester. In the second time slot, U1,k functions as a cooperative relay, which could
forward the cooperation signal to U2 using RF energy harvested in the first time slot.

According to the system model and time division resource allocation rule summarized,
achievable rates in direct-link mode and cooperative mode could be derived under CSI
constraints.

In direct-link mode, U1,k first considers x1 as interference to decode the information
of x2 through SIC technology. Thus, the achievable rate for U1,k to decode x2 under the
BS−U1,k link in direct-link mode is given by

Rdirect
x2,U1,k

= log2

(
1 + Ωdirect

x2,U1,k

)
, (10)

where

Ωdirect
x2,U1,k

=
θ1,k
∣∣h1,k

∣∣2P2

θ1,k
∣∣h1,k

∣∣2P1 + σ2
1,k

. (11)

Then, the information of x2 will be discarded to obtain the demanded information of
U1,k, i.e., x1. The achievable rate is given by

Rdirect
x1,U1,k

= log2

(
1 + Ωdirect

x1,U1,k

)
, (12)

where

Ωdirect
x1,U1,k

=
θ1,k
∣∣h1,k

∣∣2P1

σ2
1,k

. (13)

As a far user, U2 only needs to decode the information of x2 through the same technol-
ogy in U1,k, and the achievable rate is given by
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Rdirect
x2,U2

= log2

(
1 + Ωdirect

x2,U2

)
, (14)

In cooperative mode, the third communication link, i.e., the U1,k −U2 link, is built.
U1,k will re-encode x2 instead of discarding it. Different from direct-link mode, the power
splitter in U1,k will be utilized through on-off keying. Thus, the PS factor is considered in
the formula. The achievable rates for U1,k to decode x1 and x2 under the BS−U1,k link in
cooperative mode are respectively given by

Rcoop
x1,U1,k

= log2

(
1 + Ωcoop

x1,U1,k

)
, (15)

Rcoop
x2,U1,k

= log2

(
1 + Ωcoop

x2,U1,k

)
, (16)

where

Ωcoop
x1,U1,k

=
(1− ρ)θ1,k

∣∣h1,k
∣∣2P1

σ2
1,k

, (17)

Ωcoop
x2,U1,k

=
(1− ρ)θ1,k

∣∣h1,k
∣∣2P2

(1− ρ)θ1,k
∣∣h1,k

∣∣2P1 + σ2
1,k

. (18)

The change in U1,k’s function will not affect the achievable rates for U2 to decode x2
under the BS−U2 link in the first time slot. Moreover, U2 also receives the re-encoded sig-
nal forwarded from U1,k in the second time slot. Thus, as a receiver using MRC technology,
the achievable rate for U2 to decode x2 is given as

Rcoop
x2,U2

= log2

(
1 + Ωcoop

x2,U2

)
, (19)

where

Ωcoop
x2,U2

=
θ2|h2|2P1

θ2|h2|2P1 + σ2
2

+
θ3,k
∣∣h3,k

∣∣2Pr

σ2
3,k

. (20)

It should be noted that due to the SINR of U1,k and U2 in different modes, the com-
parison of Ωdirect

x1,U1,k
and Ωdirect

x1,th , Ωdirect
x2,U2

and Ωdirect
x2,th , Ωcoop

x1,U1,k
and Ωcoop

x1,th, and Ωcoop
x2,U2

and Ωcoop
x2,th

will influence whether the network operates successfully.
To obtain optimal system performance, a feasible U1,k should be selected. In direct-link

mode, the standard to achieve near-user selection is that the channel gain of the BS−U1,k
link should be optimal compared with others. Compared with direct-link mode, an extra
link in cooperative mode should be considered. Based on the partial relay selection (PRS)
scheme [32], we prioritize the optimal channel gain of the BS −U1,k link so that U1,k’s
power for forwarding signals and communication quality with the BS can be ensured,
which is the premise of cooperative communication. Thus, the standard for optimal near
user selection can be expressed as

max
i=1,...,K

θ1,i|h1,i|2. (21)

4. Energy Efficiency Analysis

As the ratio of data transmission to energy consumption, EE is regarded as a compre-
hensive standard to represent the network performance and considered as the objective
function in optimization problems for wireless networks [33]. In this section, EE formulas
and corresponding optimization problems in different network modes are derived.

4.1. EE Analysis in Direct-Link Mode

In direct-link mode, the network only operates the BS − U1,k and BS − U2 links.
According to the definition of EE and the correlation formulas, the analytical expression of
EE in direct-link mode is given as
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EEdirect
k =

T
(

Rdirect
x1,U1,k

+ Rdirect
x2,U2

)
(Ps + Pc)T

=

log2

(
1 +

θ1,k|h1,k|2P1

σ2
1,k

)
+ log2

(
1 + θ2|h2|2P2

θ2|h2|2P1+σ2
2

)
Ps + Pc

. (22)

Thus, the EE optimization problem in direct-link mode can be summarized as

max
Ps

EEdirect
k

s.t. C1 : Ωdirect
x1,U1,k

≥ Ωdirect
x1,th ,

C2 : Ωdirect
x2,U2

≥ Ωdirect
x2,th ,

C3 : θ1,k
∣∣h1,k

∣∣2 = max
i=1,...,K

θ1,i|h1,i|2,

C4 : Ps ≥ Pmin.

(23)

where Pc is power consumed by the hardware circuit (mainly used for information decoding
and re-encoding), and Pmin is the minimum power constraint to the BS. QoS requirements
should be satisfied through these constraints to ensure normal communication.

4.2. EE Analysis in Cooperative Mode

The cooperative mode defined in this paper is used to add the U1,k −U2 commu-
nication link on the basis of direct-link mode, so the parameters considered in the EE
optimization problem are more complicated.

The EE analytical expression in cooperative mode is given as

EEcoop
k =

T
2

(
Rcoop

x1,U1,k
+Rcoop

x2,U2

)
(Ps+Pc)

T
2 +(PCR−PEH) T

2

=

1
2 log2

(
1+

(1−ρ)θ1,k|h1,k|2P1
σ2

1,k

)
+ 1

2 log2

(
1+

θ2|h2|2P2
θ2|h2|2P1+σ2

2
+

θ3,k|h3,k|2Pr

σ2
3,k

)
1
2 Ps+

1
2 Pc+

1
2 ηρθ1,k|h1,k|2Ps− 1

2 ηρθ1,k|h1,k|2Ps

(24)

where PEH is the energy harvested by U1,k from the BS when acting as an EH with a
power splitter, and PCR is the forwarding power of U1 when transmitting information to
U2 as a cooperative relay. In this paper, we consider an ideal condition in which there
is no additional energy loss in the process between energy harvesting and information
forwarding in U1,k, i.e., PCR = PEH = ηρθ1,k

∣∣h1,k
∣∣2Ps.

It can be observed that EE in cooperative mode is not only determined by BS transmis-
sion power Ps, but it is also affected by the PS factor ρ of the SWIPT relay (U1,k’s function in
cooperative mode). The EE optimization problem in cooperative mode can be summarized
as

max
Ps ,ρ1,k

EEcoop
k

s.t. C5 : Ωdirect
x1,U1

≥ Ωdirect
x1,th ,

C6 : Ωdirect
x2,U2

< Ωdirect
x2,th ,

C7 : Ωcoop
x1,U1,k

≥ Ωcoop
x1,th,

C8 : Ωcoop
x2,U2

≥ Ωcoop
x2,th,

C9 : θ1,k
∣∣h1,k

∣∣2 = max
i=1,...,K

θ1,i|h1,i|2,

C10 : Pr ≥ Prmin,
C11 : Ps ≥ Pmin,
C12 : 0 < η < 1,
C13 : 0 < ρ < 1.

(25)

Compared with direct-link mode, the cooperative mode needs to optimize more
parameters and consider more comprehensive QoS constraints.



Sensors 2021, 21, 5720 8 of 18

For the dual-parameter optimization problem, the dual-layer solution can be per-
formed, i.e., optimizing Ps in the inner layer and ρ in the outer layer. However, at the same
time, computational complexity will be increased.

If the optimal value of a single variable can be expressed by other variables through
formula simplification and transformation, it can be directly replaced. In brief, it will be
easier to solve the problem if dual-layer optimization can be transformed into single-layer
optimization. For EE formulas of cooperative mode, the optimal relay PS factor ρ under
fixed BS transmission power Ps needs to be calculated and expressed by Ps; then, the single-
layer iteration for the updated problem can be carried out to determine the maximum
EE.

EEcoop
k =

T
2

(
Rcoop

x1,U1,k
+Rcoop

x2,U2

)
(Ps+Pc)

T
2 +(PCR−PEH) T

2

=
log2

[(
1+

(1−ρ)θ1,k|h1,k|2P1
σ2

1,k

)(
1+

θ2|h2|2P2
θ2|h2|2P1+σ2

2
+

θ3,k|h3,k|2Pr

σ2
3,k

)]
Ps+Pc

(26)

The optimal EE under fixed Ps can be deduced if H(ρ) is optimal, which is expressed
as

H(ρ) =

(
1 +

(1−ρ)θ1,k|h1,k|2P1

σ2
1,k

)(
1 + θ2|h2|2P2

θ2|h2|2P1+σ2
2
+

θ3,k|h3,k|2Pr

σ2
3,k

)
= Aρ2 + Bρ + C,

(27)

where

A = −
θ2

1,kθ3,k
∣∣h1,k

∣∣4∣∣h3,k
∣∣2ηP1Ps

σ2
1,kσ2

3,k
, (28)

B =

(
1 +

θ1,k
∣∣h1,k

∣∣2P1

σ2
1,k

)
θ1,kθ3,k

∣∣h1,k
∣∣2∣∣h3,k

∣∣2ηPs

σ2
3,k

−
(

1 +
θ2|h2|2P2

θ2|h2|2P1 + σ2
2

)
θ1,k
∣∣h1,k

∣∣2P1

σ2
1,k

, (29)

C =
(

1 +
θ1,k
∣∣h1,k

∣∣2P1

σ2
1,k

)(
1 +

θ2|h2|2P2

θ2|h2|2P1 + σ2
2

)
. (30)

Thus, the optimal PS factor ρ∗ and corresponding H(ρ∗) can be written as

ρ∗ = − B
2A , (31)

Hopt = H(ρ∗) = H∗(Ps) (32)

Through (31) and (32), max
Ps ,ρ

EEcoop
k can be simplified into max

Ps
EEcoop

k .

5. Algorithm for EE Optimization

As analyzed in Section 4, EE optimization problems in the two different modes are
both fractional programming problems. Thus, in this section, the DinkelBach iterative
algorithm [34] is considered to maximize EE. Moreover, another algorithm based on the
golden section [35] method, named GS-DinkelBach, is proposed to shorten the calculation
steps in the DinkelBach algorithm and obtain lower computational complexity.

5.1. DinkelBach Iterative Algorithm

Taking EE optimization in cooperative mode as an example, the main influential
element of the simplified EE optimization problem is the BS transmission power Ps, so it
can be regarded as the BS transmission power optimization problem, which is a typical
fractional programming problem. To solve such problems, the DinkelBach algorithm can be
utilized.

Following from Section 4.2, through transformation, the EE formula can be expressed as
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EEcoop
k =

log2 H∗(Ps)

Ps + Pc
. (33)

Let the total achievable rate of the network R(Ps) = log2 H∗(Ps) and the total power
consumption E(Ps) = Ps + Pc. For R(Ps) ≥ 0 and E(Ps) ≥ 0, the premise of achieving max-
imum energy efficiency q∗ is that the optimal BS transmission power and corresponding
R(Ps

∗) and E(Ps
∗) are calculated and obtained, so the fractional problem can be trans-

formed into a subtractive problem, i.e.,

max
Ps

R(Ps)− q∗E(Ps) = R(Ps
∗)− q∗E(Ps

∗) = 0. (34)

Thus, the EE optimization problem is changed to

max
Ps

log2 H∗(Ps)− q(Ps + Pc).

s.t. C5 − C13.
(35)

The DinkelBach iterative algorithm for maximum EE in cooperative mode is imple-
mented in Algorithm 1.

Algorithm 1. DinkelBach iterative algorithm for EE optimization in cooperative mode.
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ℎ , , ℎ , ℎ , , 𝜃 , , 𝜃 , 𝜃 , , 𝑎, 𝑃 , 𝜌, 𝜂, 𝜎 , , 𝜎  and 𝜎 , . 
− The iteration step 𝑚 = 0 and the present trigger 𝑓𝑙𝑎𝑔 = 0. 
− The iteration precision 𝜀. 
− The iteration EE 𝑞( ) = 0. 
− Present optimal BS transmission power 𝑃 ( ). 
− Objective function 𝐹 𝑃 ( ), 𝑞( ) = 𝑅 𝑃 ( ) − 𝑞( )𝐸 𝑃 ( ) . 

1: 𝐰𝐡𝐢𝐥𝐞 𝑓𝑙𝑎𝑔 == 0 do 
2: For the present 𝑞( ), choose 𝑃 ( ) satisfying the solution of (35). 

3: if 𝐹 𝑃 ( ), 𝑞( ) ≥ 𝜀 then 𝑛 = 𝑛 + 1 and update 𝑞( ) = ( )( ) . 

4: else 𝑓𝑙𝑎𝑔 = 1. 
5: end if 
6: end while 

Output: 
− Maximum EE 𝑞∗ = 𝑞( ). 
− Optimal 𝑃 ∗ = 𝑃 ( ). 
− Optimal 𝜌∗. 

5.2. GS-DinkelBach Iterative Algorithm 
In Algorithm 1, the essence of step 2 is still the traversal method, which should be 

optimized. For the objective function 𝐹(𝑃 , 𝑞) in (35), it can be proved that 𝐹 (𝑃 , 𝑞) < 0, 
so it is a concave function with unimodality. In this condition, a solution using the golden 
section could be employed to reduce the complexity of the searching optimal value. Using 
the golden section method, the probe point can be continuously updated by comparing 
the corresponding function value. As an algorithm similar to the traditional dichotomy, 
its complexity is much lower than that of the traversal scheme. 

Let the feasible searching interval be 𝛼 , 𝛽 . If the function value at the probe point 𝜆  is greater than that at the probe point 𝜇 , the search interval will be updated as 𝛼 , 𝛽 = 𝛼 , 𝜇 . Otherwise, the search interval will be updated as 𝛼 , 𝛽 =𝜆 , 𝛽 . The probe points satisfy 𝛽 − 𝜆 = 𝜇 − 𝛼 , (36) 𝛽 − 𝛼 = 𝛾(𝛽 − 𝛼 ). (37) 

By combining (36) and (37), expressions of the probe points could be obtained, 𝜆 = 𝛼 + (1 − 𝛾)(𝛽 − 𝛼 ), (38) 𝜇 = 𝛼 + 𝛾(𝛽 − 𝛼 ). (39) 

Assuming that 𝐹(𝜆 ) ＞ 𝐹(𝜇 ), 𝛽 = 𝜇  and 𝜇 = 𝛼 + 𝛾(𝛽 − 𝛼 ) = 𝛼 + 𝛾(𝜇 − 𝛼 ) = 𝛼 + 𝛾(𝛼 + 𝛾(𝛽 − 𝛼 ) − 𝛼 ) = 𝛼 + 𝛾 (𝛽 − 𝛼 ) 

(40) 

5.2. GS-DinkelBach Iterative Algorithm

In Algorithm 1, the essence of step 2 is still the traversal method, which should be
optimized. For the objective function F(Ps, q) in (35), it can be proved that F′′ (Ps, q) < 0, so
it is a concave function with unimodality. In this condition, a solution using the golden
section could be employed to reduce the complexity of the searching optimal value. Using
the golden section method, the probe point can be continuously updated by comparing
the corresponding function value. As an algorithm similar to the traditional dichotomy, its
complexity is much lower than that of the traversal scheme.

Let the feasible searching interval be [αn, βn]. If the function value at the probe
point λn is greater than that at the probe point µn, the search interval will be updated as
[αn+1, βn+1] = [αn, µn]. Otherwise, the search interval will be updated as [αn+1, βn+1] =
[λn, βn]. The probe points satisfy

βn − λn = µn − αn, (36)
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βn+1 − αn+1 = γ(βn − αn). (37)

By combining (36) and (37), expressions of the probe points could be obtained,

λn = αn + (1− γ)(βn − αn), (38)

µn = αn + γ(βn − αn). (39)

Assuming that F(λn) > F(µn), βn+1 = µn and

µn+1 = αn+1 + γ(βn+1 − αn+1)
= αn + γ(µn − αn)
= αn + γ(αn + γ(βn − αn)− αn)
= αn + γ2(βn − αn)

(40)

Set γ2 = 1− γ, i.e., γ =
√

5+1
2 ≈ 0.618; thus, there exists only one probe point that

needs to be updated each time. In conclusion, formulas for updating the probe points
based on the golden section are described as

λn = αn + 0.382(βn − αn), (41)

µn = αn + 0.618(βn − αn). (42)

The implementation steps of the golden section algorithm for BS transmission power
selection are presented in Algorithm 2.

Algorithm 2. Golden section algorithm for power selection.
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Algorithm 2 Golden section algorithm for power selection 
Input: 
Initialize: 

ℎ , , ℎ , ℎ , , 𝜃 , , 𝜃 , 𝜃 , , 𝑎, 𝑃 , 𝜌, 𝜎 , , 𝜎 , 𝜎 ,  and 𝑞( ). 
− The iteration step 𝑛 = 0 and trigger 𝑓𝑙𝑎𝑔 = 0. 
− The iteration precision 𝜏. 
− Interval 𝛼 , 𝛽 = 0, 𝑃  of the power allocation 𝑃 ( ). 
− Probe point 𝜆 = 0.382𝑃, 𝜇 = 0.618𝑃. 

1: while 𝑓𝑙𝑎𝑔 == 0 do 
2: if 𝛽 − 𝛼 ≤ 𝜏 then 
3: 𝑃( ) = 𝛼 . 
4: 𝑓𝑙𝑎𝑔 = 1. 
5: else 
6: if 𝐹 𝜆 , 𝑞( ) ≤ 𝐹 𝜇 , 𝑞( )  then 
7: 𝑛 = 𝑛 + 1. 
8: Update interval 𝛼 , 𝛽 = 𝜆 , 𝛽 . 
9: Update 𝜆 = 𝜇 , 𝜇 = 𝛼 + 0.618(𝛽 − 𝛼 ). 

10: else 
11: 𝑛 = 𝑛 + 1. 
12: Update interval 𝛼 , 𝛽 = 𝛼 , 𝜇 . 
13: Update 𝜇 = 𝜆 , 𝜆 = 𝛼 + 0.382(𝛽 − 𝛼 ). 
14: end if 
15: end if 
16: end while 
Output:  − Present-optimal 𝑃 ( ). 

As the combination of the golden section and DinkelBach, the GS-DinkelBach iterative 
algorithm can not only reduce the complexity of the searching optimal value but also ob-
tain the maximum EE. 

6. Simulation Results 
In this section, simulation and numerical analyses are conducted on the decoding 

and EE performance of different users in different states. Moreover, the superiority of the 
proposed NOMA–SWIPT cooperative relay system and GS-DinkelBach iterative algorithm 
is verified. The parameters of the simulations are shown in Table 1. 
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As the combination of the golden section and DinkelBach, the GS-DinkelBach iterative
algorithm can not only reduce the complexity of the searching optimal value but also obtain
the maximum EE.

6. Simulation Results

In this section, simulation and numerical analyses are conducted on the decoding
and EE performance of different users in different states. Moreover, the superiority of the
proposed NOMA–SWIPT cooperative relay system and GS-DinkelBach iterative algorithm
is verified. The parameters of the simulations are shown in Table 1.

Table 1. Parameters and corresponding values of simulations.

Parameters Values

Modulation method 4QAM
Numbers of near users K = 3

Distance between BS and far user U2 d2 = 2 km
Propagation coefficients ς = 1, $ = 3 [26]

Efficiency of energy harvester η = 0.7
Hardware circuit energy consumption Pc = 0.05 W
Target data rates (bit per channel use) R1 = R2 = 0.1

Times of Monte Carlo simulation 100,000

In order to study a relatively realistic network model, we simulated the process of
channel transmission through Monte Carlo simulation. In these simulations, the distance
between the BS and far user U2 is fixed, and three near users U1,k (k = 1, 2, 3) are randomly
located (although the distances are fixed at 0.1 km, 0.6 km and 1.1 km, respectively, and the
angles between near users and far user are unknown, so the two-dimensional topology
model of the system is still random). Moreover, channel coefficients in communication
links are also generated randomly using Raleigh fading. Through simulated channel
transmission, the decoding performance of users in different modes is shown in Figures 3
and 4.
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to obtain extra gain of 𝑥  from 𝑈 , . As analyzed in Section 3, the premise of ensuring 

0 5 10 15 20 25 30 35 40
SNR(dB)

10-4

10-3

10-2

10-1

100

BE
R

U1,1(x1,1 decoded, d1,1=0.1km)
U1,2(x1,2 decoded, d1,2=0.6km)
U1,3(x1,3 decoded, d1,3=1.1km)
U2(x2 decoded, d2=2km)

0 5 10 15 20 25 30 35 40
SNR(dB)

10-4

10-3

10-2

10-1

100

BE
R

U2(x2 decoded, MRC from BS and U1,1)
U2(x2 decoded, MRC from BS and U1,2)
U2(x2 decoded, MRC from BS and U1,3)
U2(x2 decoded, direct-link mode)

Figure 3. Decoding performance of users: (a) in direct-link mode (Ps = 1, a = 0.2); (b) in cooperative mode (Ps = 1, a = 0.2,
ρ = 0.6).
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Figure 3 shows the decoding performance of U1,k and U2 in different modes. In
Figure 3a, for near users, it can be seen that the BER is affected by the distances between
users and the BS, which gradually increases with the lengthened distance and is even worse
than that of U2 in low SNR, referring to U1,3. This is due to the utilization of SIC technology,
where more energy is allocated for the signal x2 required by U2. To decode the required
signal x1, U1,k has to inevitably face the interference of residual x2. Adding the distance
influence, the decoding performance of U1,3 is unsuitable to be a part of the proposed
networks. From Figure 3b, it can be observed that U2 could achieve higher performance
gain in cooperative mode than in direct-link mode, where MRC is exploited in U2 to obtain
extra gain of x2 from U1,k. As analyzed in Section 3, the premise of ensuring forwarding
quality is the higher performance of BS − U1,k link communication. Considering the
transmission requirements of communication distances, the BS − U1,1 − U2 link is the
optimal performance communication link, which verifies the feasibility of the PRS scheme
from the perspective of decoding performance.

Under the condition of user selection, Figure 4 summarizes the decoding performance
of U1,1 and U2 in two modes. The performance of U1,1 to decode x1 in direct-link mode is
similar to the performance of decoding x2 in cooperative mode. This is due to the influence
of residual x2 when x1 is decoded in direct-link mode and additional loss caused by power
splitting of U1,1 in cooperative mode. However, the decoding performance in these two
cases is better than that of U1,1 decoding x1 in cooperative mode, which experiences power
splitting and information decoding and is affected by losses of both the above. From the
perspective of the transmission link, the BER performance of U2 receiving x2 through
U1,1 −U2 link transmission is also presented. Since only x2 is transmitted, for a single
link, the far user only decodes x2, and there is no redundant interference, so its decoding
performance can be an order of magnitude higher than U2 decoding x2 in direct-link mode
under high SNR conditions. Through MRC, the performance of U2 decoding x2 is improved
and is even better than that of others when the noise impact is sufficiently low. Overall, it
should be noted that the decoding performance of the total network is not ideal because of
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the imperfect SIC (a difficult decision in decoding, which leads signal detection error) in
actual simulation.

To analyze the comprehensiveness performance of the system, the energy efficiency of
the network under different modes and user selections is presented in Figure 5, and the
BER and EE performance in the different BS power allocation factor is shown in Figure 6.

Sensors 2021, 21, 5720 14 of 19 
 

 

 
Figure 5. EE performance of networks under different user selections (𝑃 = 10, 𝑎 = 0.2, 𝜌 = 0.6). 

As shown in Figure 5, when the SNR is low, the EE of the network in direct-link mode 
is higher than that in cooperative mode. This is due to the fact that the achievable rate of 𝑥  transmitted from the cooperative relay under the condition of low SNR cannot make 
up for the achievable rate of 𝑥  after power splitting in the relay. Considering the fading 
led by the increased distance, 𝑈 ,  should be selected for better EE performance, and the 
network could receive cooperative EE gain in a lower SNR compared with other selec-
tions. 

 
Figure 6. EE and BER performance comparison in cooperative mode under different BS power allo-
cation factors (𝑃 = 10, 𝜌 = 0.6). 

0 5 10 15 20 25 30 35 40
SNR(dB)

0

0.5

1

1.5

2

2.5

U1,1 selected, direct-link mode
U1,1 selected, cooperative mode
U1,2 selected, direct-link mode
U1,2 selected, cooperative mode
U1,3 selected, direct-link mode
U1,3 selected, cooperative mode

0 5 10 15 20 25 30 35 40
SNR(dB)

10-5

10-4

10-3

10-2

10-1

100

BE
R

0

0.5

1

1.5

2

2.5

En
er

gy
 E
ffi

ci
en

cy
(b

its
/J)

BER(a=0.1)
BER(a=0.2)
BER(a=0.3)
EE(a=0.1)
EE(a=0.2)
EE(a=0.3)

Figure 5. EE performance of networks under different user selections (Ps = 10, a = 0.2, ρ = 0.6).
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Figure 6. EE and BER performance comparison in cooperative mode under different BS power
allocation factors (Ps = 10, ρ = 0.6).

As shown in Figure 5, when the SNR is low, the EE of the network in direct-link mode
is higher than that in cooperative mode. This is due to the fact that the achievable rate of
x2 transmitted from the cooperative relay under the condition of low SNR cannot make
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up for the achievable rate of x1 after power splitting in the relay. Considering the fading
led by the increased distance, U1,1 should be selected for better EE performance, and the
network could receive cooperative EE gain in a lower SNR compared with other selections.

It should be noted that when the BS power allocation is dynamic, the influence of
EE and BER on network performance is inconsistent, which is verified in Figure 6. As the
power allocation factor increases, the EE of the network in cooperative mode becomes
higher but at the same time is accompanied by a decrease in BER in the far user. Although
the influence of the BS power allocation factor on the network EE and BER is monotonous,
considering the overall performance, there still exists a trade-off, and future work could
focus on this.

Figure 7 shows the influence curves of BS transmission power Ps and the relay PS factor
ρ on EE performance in the two modes. As shown in Figure 7a, on the premise of fixed ρ,
the network EE will reach a peak value, which is the optimal EE with the corresponding
optimal Ps. It can be clearly observed that as the fractional denominator of the EE formula,
network energy consumption has a greater impact on network performance as with the
continuous increase in Ps, so the curve will show a downward trend after reaching the
peak value and gradually tend to 0. The overall curve presents a unimodal characteristic as
analyzed in Section 5. On the other hand, as shown in Figure 7b, when Ps is fixed, there
also exists an optimal ρ to obtain the corresponding optimal EE in cooperative mode. It
could be concluded that the network EE is a concave function on BS transmission power
and the relay PS factor. Thus, the joint optimization of BS transmission power and the relay
PS factor is meaningful, and the iterative algorithm could be utilized, as shown in Figure 8.
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Figure 7. Influence curves of different parameters on EE: (a) BS transmission power Ps (a = 0.2, ρ = 0.6); (b) relay PS factor
ρ (a = 0.2, Ps = 1).

As can be seen in Figure 8, the GS-DinkelBach iterative algorithm and the traversal
scheme are compared to prove the convergence of the proposed algorithm and the accuracy
of the results. Through the algorithm, the EE reaches an optimal value through eight
iterations in direct-link mode and cooperative mode. With the increase in iteration times,
the EEs of the two different modes both gradually converge into stable values. Comparing
the GS-DinkelBach algorithm with the traditional DinkelBach algorithm, the computational
complexity of the proposed algorithm is O

(
8 log1/0.618(N)

)
, while the computational

complexity of the traditional DinkelBach algorithm is O(8N). The algorithm proposed
in this paper has lower computational complexity, and the superiority becomes more
significant as the number of searching steps N of Ps increases.

The purpose of the simulation in Figure 9 is to compare the EE performance of different
system models. It can be seen from Figure 9 that the NOMA–SWIPT cooperative relay
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network proposed in this paper has performance advantages, of which the EE composed
of the same parameters is higher. As the iteration increases, the differences between EE
performance in different models become more obvious.
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Under the condition of fixed parameters, the power allocation scheme of NOMA
technology has better network EE gain than the frequency division scheme of OMA
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because of its higher spectrum efficiency. When SWIPT is not taken into consideration, the
relay no longer possesses the function of harvesting energy from the BS, which has to use
extra power for signal forwarding, so the energy consumption of the system increases and
the EE performance decreases. The EE performance of the network only using direct-link
or cooperative communication is lower, because these two models do not receive and
harvest as much information and energy as possible. The EE gain statistics obtained by the
GS-DinkelBach algorithm are shown in Table 2.

Table 2. Optimal energy efficiency in different network models.

Network Models Optimal EE (Bits/J) Performance
Improvement

NOMA–SWIPT cooperative network 1.9601
OMA–SWIPT cooperative network 1.7870 0.40 dB

Non-SWIPT–NOMA cooperative network 1.8521 0.25 dB
NOMA–SWIPT direct-link network 1.7295 0.54 dB

NOMA–SWIPT relay network 1.3382 1.66 dB

As shown in Table 2, the optimal EE of the network architecture proposed in this
paper is much better than that of the NOMA–SWIPT relay network. Moreover, compared
with the conventional non-SWIPT–NOMA cooperative network and the OMA–SWIPT
cooperative network, this architecture also has a certain EE gain. Figure 9 confirms the
advantages of the integration of NOMA, SWIPT, and relay technology.

7. Conclusions

In this paper, a cooperative NOMA–SWIPT network is established, and a time-division
resource allocation rule is proposed. Based on the network characteristics, the EE optimiza-
tion problems in direct-link mode and cooperative mode are derived, and a GS-DinkelBach
iterative algorithm is proposed and utilized to achieve the optimal EE. Simulation and
numerical results present the decoding and EE performance of the network and verify that
the algorithm proposed in this paper can obtain accurate and considerable EE gains with
lower computational complexity. In addition, it is noted that the system model has better
EE performance than that of traditional models, which confirms that the integration of
NOMA, SWIPT, and relay technologies has a performance advantage. Therefore, NOMA–
SWIPT cooperative relay networks have great potential for further exploration in future
communications.
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