
diseases

Review

The Microbiome as a Therapeutic Target for Multiple
Sclerosis: Can Genetically Engineered Probiotics
Treat the Disease?

Hannah M. Kohl , Andrea R. Castillo and Javier Ochoa-Repáraz *

Department of Biology, Eastern Washington University, Cheney, WA 99004, USA;
hkohl@eagles.ewu.edu (H.M.K.); acastillo@ewu.edu (A.R.C.)
* Correspondence: jochoareparaz@ewu.edu

Received: 31 July 2020; Accepted: 25 August 2020; Published: 30 August 2020
����������
�������

Abstract: There is an increasing interest in the intestinal microbiota as a critical regulator of the
development and function of the immune, nervous, and endocrine systems. Experimental work in
animal models has provided the foundation for clinical studies to investigate associations between
microbiota composition and function and human disease, including multiple sclerosis (MS). Initial
work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis
(EAE), suggests the existence of a microbiota–gut–brain axis connection in the context of MS, and
microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines.
In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of
the microbiome–gut–brain axis in the neuroinflammatory disease MS. We also discuss experimental
evidence supporting the hypothesis that modulating the intestinal microbiota through genetically
modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic
approach to treat this devastating disease.
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1. Introduction

Multiple sclerosis (MS) is a debilitating autoimmune disease of the central nervous system
(CNS) that constitutes a devastating medical and economic burden for patients. In MS, immune cells
enter the CNS and mistakenly attack and degrade the myelin sheath, which forms the protective
covering for neurons, causing the formation of sclerosed plaques from which the disease gets its
name [1]. MS lesions are observed by magnetic resonance imaging (MRI) [2], and although natural
remyelination can occur, the process becomes less efficient as the disease progresses [3]. As the
disease develops, axonal damage occurs causing a broad array of symptoms that include muscle
weakness, loss of coordination, numbness, and double or blurring vision. At later stages MS patients
may suffer from severe paralysis and pain, depression, and disturbances in urinary, sexual, and
gastrointestinal functions [4]. Relapsing-remitting MS (RRMS) is the most common form of the
disease [5]. Approximately, half of RRMS patients develop secondary progressive MS (SPMS) as a later
stage of the disease, characterized by a gradual neurologic decline and reduced numbers of remissions
and relapses [5]. The demyelination observed during MS may be the result of proinflammatory
responses triggered by CNS-resident immune cells and by peripheral cells that cross the blood–brain
barrier (BBB) and infiltrate into the parenchyma. T cells are the primary immunopathogenic cells in
MS [6]. Both CD8+ and CD4+ T cells release proinflammatory cytokines that recruit additional T cells.
Interleukin-17 (IL-17) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are two of
the most prominent proinflammatory cytokines associated with MS disease pathology [7]. Studies
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in mice lacking these cytokines are resistant to the induction of MS model disease [8]. IL-17 and
GM-CSF promote the recruitment of additional immune cells into the CNS, leading to myelin sheath
degradation and damage of the neuronal axons [9].

Despite efforts in the recent decades, the etiology of MS remains poorly understood. From 1990 to
2015, there has been a 59% increase in the global incidence of MS [10]. Both genetic and environmental
factors have been linked to the onset of MS. Females are affected at a rate three times that of males [11].
Inherited genetic susceptibility is a contributing risk factor for MS. Studies examining MS incidence
among twins indicate greater disease concordance rates among dizygotic twins (~30%) as compared to
monozygotic twins (~5%) [12]. Ethnicity also appears to contribute to disease severity, as discussed
later in this review [13–15]. Several genetic polymorphisms have been identified in human leukocyte
antigen (HLA) genes [16] associated with increased risk for the development of MS [12]. A recent
genome-wide association study (GWAS) of MS and healthy individuals revealed more than 200 GWAS
associations independent of the major histocompatibility complex (MHC) molecules encoded by HLA
genes in T cells, B cells, and monocytes, all of which play an important role in the immunopathology of
the disease [17]. Additional polymorphisms have been identified in immune system genes, including
the interleukin 7 receptor (IL7R) [18] and the vitamin D receptor (VDR) [19].

Environmental factors, including diet, exercise, pathogens, microbiota, vitamin D levels, and stress,
are also associated with MS [20]. Many of these factors are known to affect the intestinal microbiota
(also referred to as gut microbiota). Among the environmental factors linked to MS, the microbiome has
attracted extensive interest over the last decade. The term microbiome is used widely in the literature,
particularly in the most recent years. As reviewed by Berg and colleagues, the definition of microbiome
might require standardization [21]. One of the most commonly cited definitions for the microbiome
was provided by Lederberg and McCray, naming it as the “community of commensal, symbiotic, and
pathogenic microorganisms within a body space or other environment” [22]. While the microbiota is
the combination of all microorganisms living in a particular environment or habitat, the microbiome
is summarized as the complete habitat, microbes, and “theatre of activity [23]”, including genomes,
environmental factors, metabolic activity, and ecological function [21]. Despite the overwhelming
interest in the biological and clinical repercussions of microbiome alterations, the complexity of the
microbial community and multifactorial and bidirectional interactions with the host present significant
technical challenges for this area of research, and additional tools and research are needed for a more
complete understanding of how the host microbiome impacts disease. Over the last decades, the
Food & Drugs Administration (FDA) and other worldwide agencies approved several compounds
with anti-inflammatory effects for MS treatment. Most approved disease-modifying therapies (DMTs)
are being used to treat RRMS. In general, DMTs target neuroinflammation but are limiting in terms
of efficacy and affordability and are associated with a wide range of adverse effects (Table 1). In
this review, we discuss how the host microbiome influences neuroinflammation and immunity and
theorize that genetically engineered probiotics designed to enhance or provide protection against
neuroinflammation might be used as immunomodulatory therapeutics for the treatment of MS.
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Table 1. United States (US) Food & Drug Administration (FDA)-approved treatments for multiple sclerosis.

Injectable Medications

Therapeutic Target Most Common Side Effects * Proposed Mechanism of Action

Interferon beta-1a Inflammation Headache, flu-like symptoms, injection site pain, inflammation. Anti-inflammatory effects

Interferon beta-1b Inflammation Flu-like symptoms, headache, injection site reactions, injection site
skin breakdown, low white blood cell count.

Glatiramer acetate Inflammation Injection site reactions, flushing, shortness of breath, rash, chest
pain. Immunomodulation

Oral Treatments

Teriflunomide Inflammation Headache, hair thinning, diarrhea, nausea, abnormal liver tests. Controls proliferation of auto-reactive cells.

Fingolimod Inflammation
Headache, flu-like symptoms, diarrhea, back pain, abnormal liver
tests, sinusitis, abdominal pain, pain in extremities, cough. It can
slow heart down.

Sphingosine 1-phosphate receptor modulator:
Blocks lymphocyte egress from lymph nodes.

Cladribine Inflammation Upper respiratory infection, headache, low white blood cell counts. Immunosuppressive effects on lymphocytes (T
and B cells).

Dimethyl fumarate Inflammation Flushing, gastrointestinal issues. Immunomodulatory and antioxidative effects.

Intravenous Infusion Treatments

Alemtuzumab Inflammation

Rash, headache, fever, nasal congestion, nausea, urinary tract
infection, fatigue, insomnia, upper respiratory tract infection,
herpes viral infections, hives, itching, thyroid gland disorders,
fungal infection, pain in joints, extremities and back, diarrhea,
vomiting, flushing. Infusion reactions common.

Humanized anti-CD52 monoclonal
antibody—depletes CD52 + lymphocytes.

Ocrelizumab Inflammation Infusion reactions; increased risk of infections; possible increase in
malignancies, including breast cancer.

Humanized anti-CD20 monoclonal antibody:
Targets CD20 + B cells

Natalizumab Inflammation

Headache, fatigue, joint pain, chest discomfort, urinary tract
infection, lower respiratory tract infection, gastroenteritis, vaginitis,
depression, pain in extremity, abdominal discomfort, diarrhea, and
rash. It increases Risk of progressive multifocal
leukoencephalopathy (PML), a deadly opportunistic viral infection
of the brain.

Anti-α4β1-integrin monoclonal antibody. Blocks T
cell migration to CNS

* Source: National MS Society.
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2. The Crosstalk between the Intestinal Microbiome and the Host

2.1. The Intestinal Microbiome

The microbiota refers to the microorganisms within a defined environment while the microbiome
refers to the entire habitat, including their genomes, the host, and the environmental conditions that
define them [24]. The human intestinal microbiota is composed of up to 100 trillion microorganisms.
Of the vast diversity of the microbial world so far identified, only a small percentage are represented in
the human intestinal microbiota. The two main phyla are Bacteroidetes and Firmicutes [25], followed
by Proteobacteria and Actinobacteria [26]. In addition, there is significant intestinal microbiome
variability between healthy individuals, as well as within an individual over their lifespan. These
differences may reflect host genetics and environmental factors, including diet, living conditions, and
smoking, among other variables. In a study of 37 individuals whose microbiomes were sampled
regularly, it was found that of the 200 bacterial strains compared, 60% were unchanged within a
period of five years. Yet, when diet was modified to a liquid-based low-caloric diet, the subjects’
microbiome changed markedly [27], revealing that diet is a major contributor to intestinal microbial
composition. Furthermore, these diet-dependent changes in microbiota composition were observed
within a few days [28,29]. Additionally, age [30], sex [31], host immune system and genetics [32],
infectious disease [33], and antibiotic use [34] can all impact intestinal microbiome composition in a
given individual [35]. Therefore, although the human microbiota can be remarkably stable over time,
studies have shown it is also malleable, suggesting it could be a target for therapeutic manipulation.

2.2. Impact of the Intestinal Microbiome on the Immune System

The role of the intestinal microbiota in regulating the immune system and inflammation levels has
been extensively explored over the last several decades. Intestinal microbes are required for the proper
development of a balanced immune system [36], and are believed to train the immune system in both
an effective immune response against pathogens and immunological tolerance. This is evidenced in
studies using germ-free (GF) mice lacking intestinal microbiota-derived signals [32], whereby tolerance
or the active suppression of inflammatory responses to food and other orally ingested antigens is
significantly ablated [37–39]. Pivotal relevance is assigned to intestinal macrophages that develop
a unique phenotype called “inflammation anergy”, defined by a lack of an inflammatory response
when encountering immunostimulatory microbes in the gastrointestinal tract [40]. Plasmacytoid and
monocyte-derived dendritic cells (DCs) respond effectively to the microbiota and promote tolerogenic
responses that result in anti-inflammatory mechanisms of immunoregulation [41,42]. More recently,
a regulatory role for intraepithelial lymphocytes (IELs) responding to intestinal microbes has been
described [43]. Microbe-derived ATP in concert with special lamina propria cells has been shown
to activate the differentiation of CD4+ T helper cells to T helper 17 (Th17) cells, which function as
inflammatory cell subsets essential for the recruitment of neutrophils to the site of infection [44].
The induction of Th17 cells at the intestinal level is a necessary mechanism of interphase between
the adaptive and innate immune systems pivotal for the protection against pathogens. Certain
bacteria, such as segmented filamentous bacterium (SFB), promote T cell differentiation into a Th17
phenotype in the small intestine [45–47]. Bacterial components, such as fragylysin, are proinflammatory
factors [48,49]. Other bacterial components, such as lipid A, have been linked to neuroinflammatory
processes and are associated with CNS diseases [50–52], including MS [53–55]. In consequence, the
immune system requires counterbalance responses in order to control the potency of the necessary
inflammatory processes triggered in response to infectious agents.

It is now widely accepted that intestinal bacteria are key regulators of the immune system
by promoting peripherally induced regulatory T cells (Tregs). Tregs cells are characterized by the
expression of the transcription factor forkhead box P3 (Foxp3) and promote an immunosuppressive
microenvironment through cell-to-cell contact-dependent and -independent mechanisms. Tregs
produce anti-inflammatory cytokines (IL-10 and/or transforming growth factor-beta, TGF-β) and
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regulate the proliferation of inflammatory cells. Certain clusters of Clostridia [56], polysaccharide
A (PSA)-producing B. fragilis [57], Lactobacilli [58], or Prevotella histolytica [59] are examples of
intestinal bacteria that promote the expansion of Tregs, and, as it will be summarized later, promote
neuroprotection in experimental models of disease [59–62].

Fermenting symbiotic bacteria, including members of the family Lachnospiraceae [63], certain
clusters of Clostridia [64], Bacteroides or Bifidobacteria [65], and others [66], digest complex
polysaccharides, such as glycans, from fiber that are not digestible by human enzymes, producing
short-chain fatty acids (SCFAs) as metabolites important for immunomodulation [67]. Acetate,
propionate, and butyrate are the three most common SCFAs produced. SCFAs increase the amount of
regulatory T cells by acting on the regulatory T cells through the GPCR43 receptor [64], decreasing
inflammation. Together, microbial metabolites, such as SCFA, or microbial products, such as
PSA, modulate the immune system’s anti-inflammatory pathways and function synergistically to
decrease inflammation.

2.3. Impact of the Intestinal Microbiome beyond the Immune System

Studies done in GF animals support the hypothesis that the colonization of the intestine by
microbes affect neurodevelopmental processes and behavior [68]. The presence or absence of intestinal
microbiota regulate stress and anxiety responses and control processes of learning and memory [69].
Remarkably, GF mice receiving fecal content transplanted from severely depressed human patients
acquire a phenotype with a behavior indicative of depression [70].

Different routes of interaction between the intestine and the brain could be responsible for the
bidirectional effects observed in what it is now known as the microbiota–gut–brain axis [71]. The
enteric nervous system (ENS) is known as the second brain. The ENS regulates the autonomous
functions of the gastrointestinal tract, including peristaltic movements, enzyme synthesis, and
neurotransmitter production, and serves as a modulator of the intestinal microbiota through the control
of nutrient flow and oxygen availability [71]. The ENS communicates with the CNS through the
parasympathetic and sympathetic nervous systems. The vagus nerve (VN) is the main nerve of the
parasympathetic branch of the autonomic nervous system. The VN regulates metabolic homeostasis
and is instrumental in immune system regulation [72]. The VN also regulates inflammatory processes
through the hypothalamus–pituitary–adrenal (HPA) axis, the activation of the splenic sympathetic
anti-inflammatory pathway, and the cholinergic anti-inflammatory pathway (CAP) (for a review,
see [73]). The interaction between the VN and intestinal immune system is reciprocal. The stimulation
of the VN alters cytokine levels [74–76], while inflammatory mediators, such as tumor necrosis factor
alpha (TNF-α [77] and IL-1β [78], produced by innate immune cells in response to the microbiota
activate the VN. The inflammatory activation of the VN triggers counterbalanced responses by the
activation of CAP, which results in the control of inflammation by reduced cytokine production [79].
The selective activation of the efferent (brain to body) VN has been shown to suppress obesity-associated
inflammation [80]. The HPA-dependent anti-inflammatory effects of acetylcholine produced as a result
of VN activation results in reduced production of TNF-α IL-1β, IL-6, and IL-18 by macrophages, while
the levels of anti-inflammatory IL-10 remain unchanged [81].

CNS disorders are often associated with gastrointestinal tract dysfunction, including constipation,
inflammatory bowel disease, and inflammatory irritable syndrome [82]. Another possible consequence
of an altered microbiota–gut–brain axis is intestinal barrier disruption, also known as leaky gut
syndrome, a condition currently under extensive debate by the scientific community due to the
potential involvement in autoimmune and inflammatory diseases [83]. Inflammation and the induction
of disease increases intestinal permeability and exacerbates the proinflammatory responses observed
at the intestinal level. The increase in the intestinal permeability observed in GF rats was reversed
with probiotic treatments [84], and fecal transplantation restored the effects on the intestinal barrier
induced by burn injury in mice [85]. The factors associated with leaky gut syndrome remain to
be characterized. Nevertheless, it is now understood that intestinal dysbiosis results in intestinal
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epithelium disruption [86]. TNF-α is produced in response to intestinal microbes and is a key
regulator of intestinal barrier permeability by controlling the expression of tight junction proteins [87].
In homeostatic situations, intestinal microbes may play a significant role in preventing leaky gut
syndrome through the regulation of inflammatory processes occurring systemically and in other
anatomical locations, such as the CNS. For instance, Treg induction by PSA-producing B. fragilis
downregulates the production of TNF-α by human neutrophils in vitro [88]. The anti-TNF-α effects of
PSA produced by B. fragilis are protective against experimental colitis [89], asthma [90], and EAE [60,61],
and could be responsible for the prevention of leaky gut and increased inflammation at the intestinal
level. Furthermore, SCFA produced as a result of bacterial fermentation of complex polysaccharides
provides beneficial effects on intestinal barrier integrity [91]. The control of inflammation at the
intestinal level can ultimately result in reduced neuroinflammation [92]. The intraperitoneal injection
of LPS, as a surrogate for leaky gut and the presence of endotoxin outside the intestinal lumen, induces
a systemic increase of TNF-α levels, including in the liver and brain. Even 10 months after injection
the levels of TNF-α in the brain were still elevated in comparison to control mice [93]. Due to the
association between the microbiota and leaky gut and the mechanistic effects of TNF-α in controlling
intestinal barrier integrity, dysbiosis or treatment with intestinal microbes capable of controlling the
levels of TNF-α could result in the exacerbation or reduction of neuroinflammation. As it is discussed
in the next section, increased levels of TNF-α are observed in the brains of EAE mice [94] and MS
patients [95].

The beneficial effects of the intestinal microbes and metabolites on the integrity of the epithelia
by modulating the expression of tight junctions have also been observed at the blood–brain barrier
(BBB), and are disrupted during EAE and MS. GF mice exhibit a disrupted BBB, including reduced
epithelial expression of occludin and claudin and tight junction formation, whereas SCFA produced by
intestinal fermenting bacteria can restore the integrity of the BBB in GF mice [96]. The disruption of
the BBB could allow peripheral inflammatory cells to cross into the CNS and increase the potential
for neurological inflammation [96]. Among SCFA, butyrate is critical in maintaining the integrity of
epithelial barriers [97]. SCFA produced in the intestine could have profound effects on the parenchyma
of the CNS in patients. In the brain, the maturation of the microglia is affected by SCFA [98]. In addition,
there are other mechanisms by which SCFA could protect against neuroinflammation, including the
differentiation of Tregs [64,99,100].

In addition to SCFA, other bacterial metabolites could regulate the extent of CNS inflammation
and function. Many neurotransmitters and neuromodulators are expressed at the intestinal level.
Serotonin levels, as well as tryptophan, are reduced in GF mice [101]. Intestinal spore-forming
bacteria are critical in the production of serotonin [102]. Gamma amino butyric acid (GABA) is
the principal inhibitory neurotransmitter in the CNS [103]. Certain intestinal lactic acid bacteria
(LAB) of the Lactococcus, Lactobacillus, and Streptococcus genera produce varying levels of GABA by
decarboxylating glutamate, through the enzyme glutamic acid decarboxylase (GAD) [104]. Many of
these bacteria are naturally found in fermented dairy or other foods and GABA has been found to
accumulate in some of these foods [104,105]. Both specific LABs and combinations of them have been
investigated for their ability to alter GABA levels in treated mice. Mice who received a daily oral dose
of Lactobacillus rhamnosus (JB-1) for 4 weeks had an increase in brain GABA levels [106], showing that
GABA produced in the intestine can impact the brain. Furthermore, daily oral treatment for 28 days
with the GABA producer L. rhamnosus (JB-1) resulted in increased GABA production in the mice’s
brain, and when the VN was severed this effect was lost [107]. Other neurotransmitters produced in
the intestine are norepinephrine by Escherichia, Bacillus, and Saccharomyces spp.; dopamine by Bacillus
spp.; and acetylcholine by Lactobacillus spp. [108]. Additionally, the SCFAs produced by intestinal
bacteria can cause the release of serotonin [109]. In patients suffering from MS, the levels of GABA
are reduced [110,111], while the increase of GABAergic activity in EAE mice reduced the severity
of the disease [112]. Antigen presenting cells expressing GABA A receptors (GABAAR) responded
to the GABAergic compounds topiramate and vigabatrin in vitro by reducing the production of



Diseases 2020, 8, 33 7 of 26

inflammatory cytokines IL-1β and IL-6 [112]. In this same study, the effects of GABAergic compounds
did not affect the production of inflammatory cytokines by splenic T cells. However, another study
showed that encephalitogenic T cells express GABA receptors and respond to physiological levels
of GABA by reducing their proliferation and the production of cytokines, which may constitute a
protective mechanism against neuroinflammation [113]. Thus, the interface between the immune
system, neuroendocrine system, and the intestinal microbiota may constitute a novel avenue for the
treatment of neuroinflammatory diseases.

3. The Intestinal Microbiome and MS

3.1. Experimental Evidence That Associates the Microbiome with MS

One of the most common animal models for MS is experimental autoimmune encephalomyelitis
(EAE). This model has been used to study MS for over 100 years, and its origins are linked to the
encephalomyelitis originally observed in Louis Pasteur’s rabies vaccine in the 19th century [114]. In
this model, the animal is injected with antigens to the CNS as well as toxins to induce an immune
response, which causes pathology as the immune system begins to attack the CNS [115]. Active EAE
based on the immunization with self-antigens emulsified in complete or incomplete adjuvants and in
the mouse models the use of pertussis toxin, and passive EAE dependent on the adoptive transfer of
autoreactive T cells are both widely used in academic and pharmaceutical laboratories [116]. Although
EAE should not be considered a surrogate for all complex aspects of MS disease in humans, some
features of pathogenesis, including demyelination, neuroinflammation, axonal damage and loss, and
symptoms, such as paralysis, closely resemble those of MS [114]. Nevertheless, EAE experiments have
provided sufficient preclinical evidence for the development of currently approved MS drugs [116].
Moreover, experiments done using the EAE model were fundamental in establishing a link between
the intestinal microbiota and CNS inflammatory diseases [117].

Initial studies done in EAE mice have shown that oral treatment with broad-spectrum antibiotics
reduces and alters their intestinal microbiota, rendering animals more resistant in the development of
EAE compared to mice treated with antibiotics intraperitoneally or untreated controls [118,119]. In both
studies, the EAE severity was reduced in mice treated with antibiotics when compared with control
mice, and the mechanism by which neuroinflammation was reduced was dependent on Tregs [118]
or invariant natural killer (NK) cells [119]. The impact of the microbiota on the severity of EAE was
later confirmed using GF mice. GF mice, born and raised under a complete absence of microbes or
microbial products, show reduced severity of EAE when they are compared with mice that are raised
under conventional experimental conditions, in the presence of environmental microbes [120,121]. The
effects were shown to be based on reduced peripheral inflammatory responses. The monocolonization
of GF mice with SFB, a known Th17 cell-inducing bacterium, restored the susceptibility to the disease
through a mechanism dependent on the induction of Th17 cells at the intestinal level [120]. EAE
mice treated with antibiotics and reconstituted PSA-producing B. fragilis were protected against the
disease in a PSA-dependent mechanism, since their reconstitution of EAE with PSA-deficient B. fragilis
did not confer protection against the disease [122]. Later studies showed that oral treatment with a
purified form of PSA induced protection against EAE dependent on the induction of IL-10-producing
regulatory T cell subsets, with a Foxp3-positive and -negative phenotype [60,61]. The induction of IL-10
production by the immune cells appears to be a pivotal mechanism of protection induced by intestinal
microbes against neuroinflammatory EAE. Anti-inflammatory IL-10 is produced by monocytes, B
cells, and activated T cells, including Tregs (Foxp3 positive) and Tr-1 cells (IL-10-producing activated
CD4+ T cells that do not express Foxp3). During CNS inflammatory demyelination, IL-10 produced
in response to intestinal bacteria might constitute a mechanism of protection. Recent studies of fecal
microbiota transplantation (FMT) in GF mice appear to support the hypothesis that IL-10 produced in
response to changes on the microbiota might protect against disease. Two independent studies showed
that when the fecal content of MS patients is transferred to GF mice with reduced EAE susceptibility,
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the disease is exacerbated by a mechanism associated with an impaired function of IL-10-producing
T cells [123,124]. Intestinal bacteria capable of inducing IL-10 production have also been shown
to promote protection against EAE, such as combined formulations of Lactobacilli [62] or Prevotella
histolytica [59]. Interestingly, the relative abundance of P. histolytica was found to be reduced in stool
samples collected from MS patients when compared to healthy donors [59]. The oral treatment of EAE
mice with the bacterium protected against disease by inducing IL-10-producing Tregs that were able
to reduce the proinflammatory responses that characterize neuroinflammation in the model [59]. A
recent study has shown that treatment with P. histicola is as effective as Copaxone®, an approved drug
indicated for the treatment of MS for over two decades [125]. While Tregs play a protective role against
experimental EAE, they also appear to be dysfunctional in those with MS, with reduced suppressive
potency [126] and reduced frequencies in circulation [127]. Therapeutic approaches that target the
intestinal immune responses that trigger enhanced frequencies and function of IL-10-producing
regulatory T cells could constitute an effective and safer alternative to immunosuppressive drugs,
many of which are associated with unwanted side effects [128].

Studies done in other models of CNS inflammatory demyelination have also provided evidence
that the intestinal microbiota is an essential regulator of neuroinflammation. In a study by Mestre
et al. [129], antibiotic treatment decreased the severity of neuroinflammation in the MS mice model
Theiler’s murine encephalomyelitis virus (TMEV). In the marmoset model, a non-human primate
model of MS, changes in the microbiota induced by dietary interventions also resulted in protection
against the disease [130]. In conclusion, the evidence gathered in murine and non-human primate
models of EAE suggest that the presence, alterations, and interventions of the intestinal microbiota
modify the susceptibility of animals to CNS inflammatory demyelination or its severity. Moreover, EAE
studies done in non-obese diabetic (NOD) mice that suffer from a biphasic form of the disease showed
that the induction of neuroinflammation triggered significant changes in the intestinal microbiota [131].
These findings suggest that the interactions of the microbiota–gut–brain axis in the context of CNS are
bidirectional and that undetermined factors triggered during disease are sufficient to promote dysbiosis.

3.2. Clinical and Epidemiological Evidence That Associate the Microbiome with MS

The etiological mechanisms of MS are not well understood. Results from experiments with the
EAE model suggests that intestinal microbiota is an associated risk factor for disease [132]. Clinical
studies of 16S ribosomal DNA of stool samples obtained from MS patients and healthy donors show
differences in intestinal microbiota composition between cohorts. Interestingly, while the overall
diversity of the microbiota is maintained in MS patients, statistically significant changes in the relative
abundance of specific taxa are observed. Potential mechanisms regulating the microbiota–gut–brain
axis were evaluated in FMT studies with stool isolated from MS patients and transplanted into GF
mice [123,124]. Berer et. al. [118] found that microbiota from an MS-suffering monozygotic twin,
when transplanted into the GF transgenic mouse model of spontaneous brain autoimmunity, resulted
in a significantly higher incidence of autoimmunity compared to microbiota from the healthy twin.
Similar results were obtained with microbiotas from three MS patients transferred into GF C57BL/6
EAE mice [124]. In both studies, amplicon sequencing analysis of 16S rDNA showed significant
increases in the relative abundance of Akkermansia muciniphila and Acinetobacter calcoaceticus from
MS patients, which are known to induce proinflammatory responses in human peripheral blood
mononuclear cells [124]. In contrast, the relative abundance of Parabacteroides distasonis, known to
stimulate anti-inflammatory Tregs in mice, were reduced in MS patients [124]. These studies support
FMT as a potential therapeutic approach in the treatment of neuroinflammation. Indeed, clinical case
reports of MS patients receiving FMT from healthy donors have been published [133]. In a single
patient study, FMT from a healthy microbiota donor given to an MS patient resulted in disease stability
for 10 years following transfer [133].

While the causative association between disease and microbiota remains to be elucidated, research
suggests a clear association with disease and changes in the relative abundance of specific bacterial
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and archaea species [130]. A study published by Miyake et al. from 20 MS patients and 40 healthy
individuals showed significant differences in the relative abundance of 21 microbial species in MS
patients’ samples. Specifically, species belonging to Clostridia clusters XIVa and IV, and Bacteroidetes
were decreased [134]. Although protective effects of PSA-producing B. fragilis have been documented
and previously described, the protection appeared to be PSA dependent [122]. Moreover, Bacteroidetes
and more specifically the genus Bacteroides comprise other species associated with human disease,
including colorectal cancer [135]. Other studies have shown a general increase in the relative abundance
of Clostridia [13,124]. This may be due to the fact that the Clostridia genera are highly diverse [136]
and contain species known to induce both anti-inflammatory [56] and inflammatory responses [137].
Beneficial or detrimental effects due to increased or decreased relative abundance of Clostridia may be
dependent on the high diversity of species within these genera. In other studies, fecal microbiome
analyses of 31 MS patients and 36 age- and gender-matched controls showed an increase in Pseudomonas,
Mycoplana, Haemophilus, Blautia, and Dorea genera in MS patients; the control group had an increase of
the abundance of Parabacteroides, Adlercreutzia, and Prevotella genera [138]. In another study with 60 MS
patients and 43 healthy controls, increases in the abundance of Methanobrevibacter and Akkermansia, as
well as decreases in Butyricimonas genera in MS patients were found [139]. As discussed in the previous
section, a significant reduction in the relative abundance of P. histicola was observed in stool samples
of MS patients when compared to healthy donors. Reconstitution of EAE mice with the bacterium
protected against the disease in an IL-10-producing Treg-dependent mechanism [59,125]. Some of
these changes in bacterial composition and levels may also be in response to the disease, as it is known
that MS progression increases fecal transit time [140]. Increased fecal transit time has been shown to
lead to changes in the intestinal microbiome of specific taxa, such as the archaeal methane producer
Methanobrevibacter [141].

Ethnic variability appears to also be a contributing factor to microbiome variability and disease
severity. In a study looking at the differences in the microbiome of MS patients between different
ethnicities, the microbiota composition of Caucasian, Hispanic, and African American individuals with
MS varied compared to ethnicity-matched healthy controls [13]. In addition, differences in the disease
patterns and severity have also been observed between ethnicities [14]. In general, Hispanics and
African Americans suffer from a more severe form of MS than Caucasians [142], while the intestinal
microbiota might also differ among ethnic groups regardless of geographical location [15]. A significant
increase was observed in the relative abundance of the genus Clostridium in the stool samples from
MS patients of the three ethnicities tested when compared to ethnicity-matched controls. However,
larger data sets are needed in order to more definitively establish a link between microbiota differences
among ethnic groups and their disease profiles.

Disease-modifying treatments (DMTs) also are known to impact the intestinal microbiome
composition [143]. The microbiota of patients undergoing disease-modifying therapies had an increase
of Prevotella and Sutterella genera and a decrease of Sarcina genera compared to untreated patients [139].
Many common MS treatments have been documented to inhibit the growth of certain microbes, such
as Clostridium perfringens [144]. Interestingly, the relative abundance of C. perfringens in the intestinal
microbiota of patients suffering from neuromyelitis optica (NMO) is increased when compared to
healthy individuals [145]. NMO is another autoimmune disease of the CNS, closely related to MS, and
characterized by the autoreactivity of Th17 cells against aquaporin-4. More recently, the presence of
epsilon toxin from C. perfringens was found in a significantly higher percentage of MS patients than in
healthy controls in a study including MS patients, clinical isolated syndrome (CIS) patients, and optic
neuritis patients [146]. However, the functional relevance of the changes that DMT promote in the
intestinal microbiota remain to be elucidated. Whether these effects are the direct result of DMT drugs
on microbes or indirect interactions with immune cells and soluble factors released by immune cells in
response to treatment needs further analysis.
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4. Interventions of the Intestinal Microbiota as a Treatment of MS

There are many MS therapies currently approved by the US Food and Drug Administration (FDA)
(Table 1). Most treatments focus on suppressing the immune system, which can lead to increased
risk of infection. MS therapies are not universally effective, and responses among individuals can be
highly variable.

4.1. Experimental Interventions of the Microbiota

4.1.1. Antibiotics

Antibiotics may be used to kill off inflammatory microbes. The oral MS therapeutics Fingolimod,
Teriflunomide, and dimethyl fumarate (DMF) are known to inhibit C. perfringens growth [144]. While
mice treated with antibiotics and GF mice are more resistant to developing EAE [119], a healthy
microbiome is important in the protection against inflammation. Antibiotics may further be explored as
a therapeutic option, but this will require the identification and characterization of antibiotics targeting
only inflammation-inducing bacterial species.

4.1.2. Bacteriophage Therapy

Bacteriophage may provide the specificity required to manipulate the microbiota. Bacteriophages
(phages) are viruses that target and infect specific species of bacteria and therefore may be a useful
approach to reduce or eliminate inflammatory bacterial species from an MS patient [147]. Specific
targeting of inflammatory bacterial will require a deeper understanding as to which specific species are
contributing to inflammation and disease. One of the disadvantages of this approach is the limitations
of our knowledge as to the complex interspecies interactions present in the intestinal microbiota.
Disrupting microbial interaction networks that promote the generation of beneficial metabolites could
result in deleterious consequences to the host immune system [148].

4.1.3. Fecal Microbiota Transplantation (FMT)

FMT from a healthy donor has been explored as a potential treatment aimed to re-establish a
healthy microbiota in the recipient. This approach could be considered microbiota agnostic, as the
entire network of microbial species are simultaneously transplanted from a healthy donor. While the
health of the donor must be established prior to transplantation, there remains the risk of transplanting
microbes that may not be well tolerated by the recipient. As discussed in the previous section, FMT
from a healthy donor to an MS patient induced compositional changes in the recipient’s microbiota and
reduced the severity of neurological symptoms [133]. However, larger studies are needed to determine
the feasibility and efficacy of FMT as a therapeutic approach to treat MS.

4.1.4. Microbial-Derived Products

The purification of microbial products capable of inducing immunomodulation could be a safe
mechanism to induce protection or as a therapeutic intervention for the treatment of MS. EAE studies
done with purified PSA produced by B. fragilis suggest that oral treatment with microbial products
could be beneficial in the protection against neuroinflammation without the potential challenges of
autoreactive antigens [60,61]. Furthermore, PSA modulates the phenotype of human T cell subsets,
inducing anti-inflammatory phenotypes dependent on IL-10 production in healthy donors [88] and
MS patients [149].

4.1.5. Probiotics

Probiotics are also being explored for the treatment of neuroinflammation. Probiotics are
commercially available formulations of living organisms that when consumed orally have been
shown to confer numerous health benefits [147]. Probiotics are most commonly LABs belonging
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to the Lactobacillus or Lactococcus genera or Bifidobacterium and are generally recognized as safe
(GRAS) by the FDA [147]. Studies using single species/strains have also shown promising results
against neuroinflammation. Oral treatment with Lactobacillus reuteri protects against murine EAE by
modulating the intestinal microbiota [150]. During EAE, the relative abundance of genera considered
beneficial, such as Bifidobacterium, Prevotella, and Lactobacillus, were reduced when compared to healthy
controls. Treatment with L. reuteri reduced Th1 and Th17 proinflammatory responses in mice, restored
healthy intestinal microbiota, and induced protection against disease [150]. Lactobacillus helveticus
SBT2171 also protects against EAE in mice by reducing the differentiation of Th17 cells [151]. The
protective effects of probiotic mixes have also been tested in EAE models. Individual treatment
with Lactobacillus strains Lactobacillus paracasei DSM 13434, Lactobacillus plantarum DSM 15312, or
Lactobacillus plantarum DSM 15313 is associated with decreased levels of myelin oligodendrocyte
glycoprotein (MOG)-reactive T cells and reduced EAE severity but did not suppress established
EAE symptoms [62]. However, treatment with a mixture containing all three strains successfully
reversed established EAE and was associated with systemic IL-10 release and induction of Tregs
in lymph nodes, periphery, and CNS [62]. A more recent study compared the protective effects of
two commercially available probiotic mixes against EAE induced in C57BL/6 mice: Lactibiane Iki,
composed of Bifidobacterium lactis LA 304, Lactobacillus acidophilus LA 201, and Lactobacillus salivarius
LA 302; and Vivomix, composed of Lactobacilli, Bifidobacteria, and Streptococcus thermophilus [152].
Both probiotics reduced the extent of demyelination and T cell levels in the spinal cords of EAE mice,
modified the intestinal microbiota, and affected the levels of antigen presenting cell (APC) immune cells.
Lactibiane Iki treatment additionally resulted in increased expression of programmed death-ligand 1
(PD-L1) and reduced expression of major histocompatibility complex (MHC) class II and CD80 in APCs,
suggesting that this probiotic treatment promoted an immune-suppressive tolerogenic phenotype in
APCs. Similarly, treatment with Lactibiane Iki increased the populations of Tregs in the periphery
while reducing the percentages of plasma cells in circulation. Lactibiane Iki furthermore was able to
reduce the severity of EAE [152]. As we continue to learn how probiotics intersect with the immune
system, targeted probiotic treatment will allow us to modify the intestinal microbiota to decrease
inflammation, promote immune health, and to prevent or ameliorate symptoms associated with MS
and other inflammatory diseases.

4.2. Genetic Design of Probiotics with Enhanced Protective Phenotype?

Scientists and clinicians alike have a keen interest in designing probiotics to enhance and
expand their therapeutic potential. Engineered probiotics have been developed as potential
therapeutics for a variety of inflammation-associated and human diseases, including MS, irritable
bowel disease (IBD), and diabetes [153–155]. The anti-inflammatory cytokine IL-10 has a central role in
downregulating inflammatory cascades [156] and is a target for engineered probiotics. A Lactococcus
lactis strain expressing murine IL-10 is both preventative and therapeutic in the dextran sodium
sulfate (DSS)-induced mouse colitis model [154]. Expression of IL-10 in combination with the type
1 diabetes autoantigen glutamic acid decarboxylase (GAD65) by L. lactis reversed symptoms in the
non-obese diabetic (NOD) mouse model [157]. Probiotics have also been engineered to address injury
promoting inflammation due to reactive oxygen species (ROS); the induction of expression of the
oxidative stress protective enzyme superoxide dismutase by various Lactococci and Lactobacilli strains
is protective in both mice (DSS induced and IL-10 deficient) and rat (TNBS) colitis models [155,158,159].
Lactococcus lactis expressing IL-35 protects against rheumatoid arthritis (RA) in mice [160]. Human
angiotensin converting enzyme 2 (ACE2), which is associated with reduced inflammation and
oxidative stress in humans, when expressed in Lactobacillus casei effectively reduced retinopathy
symptoms in two diabetic retinopathy mouse models [161]. Heat shock proteins (Mycobacterium
Hsp65) that act as immunomodulatory factors through their role as autoantigens and promotion
of Treg survival, when expressed in L. lactis, are protective against both EAE and DSS-induced
colitis [162,163]. Enzymes detected in low levels or those that are absent in disease states have also
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been targeted through engineered probiotics. Colonic tissue from IBD patients shows decreased
levels of Elafin, an endopeptidase that prevents elastase-mediated tissue proteolysis associated with
IBD [162]. Lactococcus lactis and L. casei expressing human Elafin decrease inflammation in both
acute and chronic IBD mouse models [164]. Engineered probiotics are proving an effective delivery
method for immunomodulatory molecules that prevent or relieve symptoms in additional human
inflammatory animal disease models, including EAE, diabetes, colitis, and arthritis [157,162]. The
results of these studies support the rationale development of novel probiotics for the treatment of MS.
The pivotal importance of immunomodulatory IL-10, IL-35, Tregs, and metabolites, such as SCFA and
neurotransmitters, and other protective factors identified in these animal models and clinical studies
will provide insight into the development of novel therapeutic targets for use in genetically engineered
probiotics [165]. Figure 1 depicts the mechanisms of action proposed for probiotics that could result in
the control of neuroinflammation-mediated demyelination.
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Figure 1. Potential mechanisms of action for neuroinflammation-targeting probiotics. Microbial
factors, such as colonization factor antigen I (CFA/I) fimbriae or polysaccharide A (PSA), promote
the differentiation of immunoregulatory cell subpopulations. Modifications of the balance between
inflammatory and immunoregulatory cells by inhibitory effects on antigen presenting cells (APCs), or
directly targeting proinflammatory cell populations with anti-inflammatory cytokines (1) suppress
experimental inflammatory demyelination. Microbial metabolites, such as SCFA, can also regulate the
integrity of the intestinal barrier as well as the blood–brain barrier (2). Probiotics have also been shown
to restore intestinal homeostasis by balancing the microbiota (3). Furthermore, the design of probiotics
specifically directed to increase the production of other metabolites, such as neurotransmitters, could
affect the neurobiology of CNS inflammatory diseases (4). APC: antigen presenting cell; Breg: regulatory
B cell; CFA/I: colonization factor antigen I of enteroxigenic Escherichia coli; CSFA: short-chain fatty
acids; CNS: central nervous system; 5-HT: 5-hydroxytryptamine (5-HT); IL: interleukin; IFN: interferon;
NKT: natural killer T cell; PSA: polysaccharide A; TGF: transforming growth factor.
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4.2.1. Probiotic Strain Choice for Engineering?

Lactococci and Lactobacilli are particularly well-suited, and therefore most commonly used, for
the development of engineered probiotics. In addition to the GRAS designation that designates them
safe for human consumption (FDA), Lactococci and Lactobacilli are Gram-positive bacteria lacking
endotoxin (lipid A) and with a single membrane for protein display. In addition, there are a suite of
molecular tools available for their genetic manipulation [166–169]. In the studies presented above,
Lactobacillus strains [161,170] or L. lactis [154,157,162,163], and in some cases both [153,155], were
engineered for use in these therapeutic studies. In the experimental colitis and EAE studies testing
both a Lactobacillus strain and L. lactis for recombinant protein delivery, no significant difference in
protection conferred against experimental colitis and EAE, respectively, was observed [155,164]. One
advantage of using Lactobacilli over Lactococci as a therapeutic probiotic is their ability to colonize
the human gastrointestinal (GI) tract [171]; Lactococci survive transit through the human GI but are
unable to colonize it [172,173]. However the molecular tools available for Lactococcus spp., Lactococcus
lactis in particular, far exceed what is available for Lactobacilli and L. lactis remains the primary model
for probiotic engineering [174,175]. Furthermore, if an L. lactis-based probiotic treatment would be no
longer needed, the lack of colonization would facilitate the clearance of the therapeutic from the GI
tract of the patient.

4.2.2. Tools for Probiotic Engineering

Multiple plasmid systems have been developed to allow straightforward gene introduction and
expression in L. lactis. Key differences in these systems include variations in the levels of expression,
regulated or constitutive expression, and target protein destination.

Expression of heterologous proteins is primarily controlled at the level of transcription initiation
by promoters that confer constitutive expression at a fixed level or in response to an exogenously
added inducer or environmental conditions. An advantage in using a regulated expression system
is to allow temporal control of protein expression or the ability to express an otherwise toxic gene
product. The most widely used inducible expression system is the NIsin Controlled Expression (NICE)
system, in which the PnisA promoter is induced by the NisA peptide (nisin) through the two-component
system NikS and NikR. This system can achieve a dynamic range of expression (up to 1000 fold) by
adding increasing concentrations of nisin [176,177]. Additional inducible expression systems include
the agmatine controlled expression (ACE) [178,179], Zirex [180,181], P(Zn)zitR [182], PxylT [183], stress
inducible expression (SICE) [184], and P170 systems [185]. These systems are regulated by a variety of
exogenous molecules (e.g., agmatine, Zn2+ and xylose) or changes in environmental conditions. The
SICE system, for example, is a stress-inducible expression system, where PgroESL-directed expression is
induced by heat shock, low pH, or UV irradiation [184]. Inducible promoter systems offer numerous
expression control options; however, achieving induction or a necessary environmental condition
may prove challenging in the host. Promoters that confer constitutive expression of a target gene are
particularly well suited to in situ purposes as they allow for the steady-state delivery of the desired
product and there are no requirements for induction or cloning of additional regulatory elements. Both
native [186,187] and optimized [188] L. lactis constitutive promoters are available that provide a range
of expression over four orders of magnitude, from low (e.g., P32 and P44) to high (e.g., P21, P23, P59,
P2, P3, P5, and P8) expression.

Depending on the therapeutic purpose, expressed heterologous proteins can be directed to different
L. lactis compartments, the cytoplasm, the cell surface for display (membrane or cell wall) [189–191],
or secreted to the extracellular environment [168]. No additional modifications are required for
cytoplasmic localization of heterologous proteins, but N- and sometimes C-terminal signal peptides
are required for localization to other locations. Heterologous proteins’ secretion requires fusion
to L. lactis N-terminal signal peptides (SPs) that direct efficient secretion (Sec) pathway-dependent
transport across the cell membrane. The mostly widely used SP is derived from the major secreted
L. lactis protein LcoB/Usp45 [192], but several other native (SPExpE [193], SP310 [194], AC9, and
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BL1 [195]) and engineered (SP2310mut2 [196] and SPLcoP [197]) L. lactis SPs are available. Secretion of
and stability of heterologous proteins can also be enhanced by targeting SP-dependent secretion Sec
machinery [198,199], L. lactis proteases [200–202], and ybdD [203]. For example, overexpression of the
L. lactis SP signal peptidase, SipL [204], or mutation of the cytoplasmic (ClpP, [200,201]) and major
secreted (HrtA, [202]) proteases, or ybdD [203], also increase overall levels of secreted proteins.

Lactococcus lactis surface display of heterologous proteins can be targeted to the cell membrane
or cell wall. For membrane targeting, proteins can be fused to transmembrane domains but are
more commonly fused to an N-terminal lipobox-containing lipoprotein anchor, such as lipoprotein
BmpA from L. lactis [205]. Cell wall display of heterologous proteins requires both the Sec-dependent
N-terminal SP for transport across the cell membrane and a C-terminal signal peptide (CSP). Fusion
to the sortase system-dependent CSP (LPXTG) [206,207] or the L. lactis AcmA autolysin CSP (LysM
motif) [208] direct protein attachment to the cell wall. There are many options for combination
of the expression features discussed above, to achieve appropriate localization and therapeutic
concentrations of heterologous proteins [209]. For the most widely used NICE systems, there are
engineered L. lactis strains and plasmids commercially available that combine some of the above
discussed features [175,177,210]. The plasmid copy number of exogenously replicating plasmids
containing the target gene (s) to be expressed can be variable between cells and often requires selective
pressure for maintenance, e.g., by culture with antibiotics or in the absence of a carbon source [211,212].
Similarly, plasmid copy number variability could alter the therapeutic concentrations of the desired
target and plasmid selection in situ when considering engineered probiotics for clinical purposes may
be challenging (e.g., additional requirement for a selective agent or diet). Incorporating engineered
constructs through integration into the L. lactis chromosome overcomes these challenges; there is
no longer a requirement for selection and the target gene copy number remains constant [213,214].
Plasmids that allow the integration of engineered constructs into the L. lactis chromosome have
been developed based on site-specific or homologous recombination and selection for a plasmid
marker (e.g., antibiotic resistance). These plasmids are either non-replicative in L. lactis (e.g., ColE1
derivatives) or are conditionally replicative (e.g., thermosensitive [215] and repA deficient [216]).
Incorporation of bacteriophage features within the plasmid, such as attP and integrase, has been used
to facilitate site-specific recombination at corresponding attB chromosomal loci [217,218]. Homologous
recombination requires a small region of the L. lactis chromosomal DNA on the plasmid and usually
occurs by Campbell-like integration [213]. Lactococcus lactis chromosomal loci used for homologous
recombination-based integration include leuA, tel, and llmg_pseudo_10a [219,220]. The resulting
cointegrate between the plasmid and chromosome can be unstable and leaves plasmid DNA, including
the selectable marker (e.g., antibiotic resistance gene), in the chromosome. To address this, integrative
plasmids have been designed with a variety of counterselection or screening strategies that involve
two single recombination events [221,222]. The first recombination event forms the cointegrate, as
described above, and the second recombination event either leaves the unmarked engineered construct
on the chromosome (no plasmid DNA) or restores the original chromosomal locus [219]. Plasmid-based
copies of the L. lactis genes upp, oroP, or pheSA312G provide counterselection for L. lactis in which the
second recombination event has occurred [221,223,224]; cells expressing high levels of pheSA312G,
for example, are sensitive to the phenylalanine analog p-chloro-phenylalanine [224]. Integration
strategies have been combined in a number of ways. For example, culture of the thermosensitive
plasmid pG+-5P-pheS* at 37 ◦C forces integration, and subsequent culturing at 28 ◦C allows plasmid
excision; the genomes of p-chloro-phenylalanine-resistant strains are then analyzed by PCR for the
gene replacement event [224]. While time consuming, these strategies generate an engineered probiotic
with an unmarked stable copy of the engineered construct and no requirement for selection.

Among technologies being implemented and developed to improve efficiency in engineering
probiotics are RNA-guided Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9
genome editing and recombineering [169,225–227]. The CRISPR/Cas9 system has been used as a
mutagenesis screening strategy. Co-expression of Cas9 with the target short guide RNA has been used
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for counterselection against cells lacking the desired chromosomal modification [224,226]. An ssDNA
recombineering method for gene mutation in L. lactis was recently described [169,227]. This method
introduces an ssDNA oligonucleotide with the desired change and incorporates the change into the
chromosome by double-crossover homologous recombination; this inefficient event is enhanced by
the expression of an exogenous Enterococcus faecalis recombinase, RecT [169]. In combination with
CRISPR/Cas9 counterselection, ssDNA recombineering can reduce the L. lactis construction time from
several weeks to 72 h. [169]. Additional development is still needed for recombineering to replace more
time-consuming homologous recombination strategies, as there are size limitations on the deletion
(100 bp) or insertions (34 bp) conferred by this system [169].

5. Conclusions

The intestinal microbiota plays an important role in the training and development of a healthy
immune system, broadly influences inflammatory immune processes, and has significant impact on the
neuroinflammatory disease multiple sclerosis. As we continue to elucidate the role specific microbial
species contribute to the progression of this disease, additional therapeutic opportunities will arise.
With advances in genetic engineering, we now have the capability of designing smart probiotics to
bring the fight against MS to the battlefield of the intestinal microbiome.
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