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Abstract Objective: To demonstrate the feasibility of algorithmic prediction using a model of
baseline arm movement, genetic factors, demographic characteristics, and multimodal assess-
ment of the structure and function of motor pathways. To identify prognostic factors and the
biological substrate for reductions in arm impairment in response to repetitive task practice.
Design: This prospective single-group interventional study seeks to predict response to a
repetitive task practice program using an intent-to-treat paradigm. Response is measured as
a change of �5 points on the Upper Extremity Fugl-Meyer from baseline to final evaluation
(at the end of training).
Setting: General community.
Participants: Anticipated enrollment of community-dwelling adults with chronic stroke
(NZ96; onset�6mo) and moderate to severe residual hemiparesis of the upper limb as defined
by a score of 10-45 points on the Upper Extremity Fugl-Meyer.
Intervention: The intervention is a form of repetitive task practice using a combination of
robot-assisted therapy coupled with functional arm use in real-world tasks administered over
12 weeks.
Main Outcome Measures: Upper Extremity Fugl-Meyer Assessment (primary outcome), Wolf
Motor Function Test, Action Research Arm Test, Stroke Impact Scale, questionnaires on pain
and expectancy, magnetic resonance imaging, transcranial magnetic stimulation, arm kine-
matics, accelerometry, and a saliva sample for genetic testing.
Results: Methods for this trial are outlined, and an illustration of interindividual variability is
provided by example of 2 participants who present similarly at baseline but achieve markedly
different outcomes.
Conclusion: This article presents the design, methodology, and rationale of an ongoing study to
develop a predictive model of response to a standardized therapy for stroke survivors with
chronic hemiparesis. Applying concepts from precision medicine to neurorehabilitation is prac-
ticable and needed to establish realistic rehabilitation goals and to effectively allocate
resources.
ª 2019 The Authors. Published by Elsevier Inc. on behalf of the American Congress of Rehabil-
itation Medicine. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Stroke is a leading cause of long-term disability1 with total
annual direct and indirect costs in the United States pro-
jected to increase from $105.2 billion in 2008 to over $240
billion by 2030.2 Recent global trends toward stroke onset
earlier in the lifespan3,4 and increased survival result in
more individuals living longer with chronic stroke-related
disability,5 highlighting the need for effective long-term
rehabilitation strategies. Although decision trees have
been developed and validated to predict spontaneous
recovery during the acute phase,6 prediction of therapy-
induced changes during the chronic phase is a poorly
developed area and is complicated by factors related to
deconditioning, compensatory movements, and rehabili-
tation intensity.7,8 Chronic stage improvements are
generally reliant on intense task repetition as seen in large
multisite trials of constraint-induced movement therapy
(EXCITE)9 and robot-assisted training (VA ROBOTICS),10

and differences in outcomes may not be associated with
baseline scores11 because they are in the acute phase.
Understanding the potential for rehabilitation and
prediction of recovery beyond the subacute period,
particularly in response to specific therapeutic in-
terventions, is critical to maximizing care use and deliv-
ering personalized therapy.
Systematic reviews suggest that high-dose repetitive
task practice, such as robot-assisted therapy, is beneficial
for arm function12 as well as associated activity-
dependent neuroplasticity after stroke.13 However,
several repetitive task trials have demonstrated modest
and/or equivocal results,10,13-16 indicating that response
in chronic stroke may be highly variable. In our prior work,
rather than a universally modest effect across partici-
pants, we see a group with little to no change and another
group with a significant response, even when accounting
for apparent baseline differences.14 Differentiating
between these groups by identifying biomarkers
that predict response to a well-regimented therapy
method could allow for more targeted, effective
neurorehabilitation.

The examination of surrogate indicators of the post-
stroke state provide a window into recovery potential,15

and use of predictive variables for recovery or treatment
response is growing.17 Recent advances in neuroimaging
and neurophysiology provide new methods for examining
brain structure and connectivity for possible biomarkers.
Prior work has correlated changes in resting state connec-
tivity on functional magnetic resonance imaging with motor
recovery during robot-assisted therapy,18 and diffusion
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tensor imaging has been used to demonstrate a relationship
between degree of damage in the corticospinal tract and
impairment.19 Transcranial magnetic stimulation (TMS)
has been used to investigate the structural integrity of
corticospinal pathways, with better upper limb recovery
prognosis when motor-evoked potentials (MEPs) are elicited
within days after stroke.20-22 In the chronic phase, MEP
presence is not as reliable a predictor but has been asso-
ciated with better response to an intervention as measured
by the Fugl-Meyer Assessment (FMA) and Wolf Motor Func-
tion Test (WMFT).23

In concertwith neurophysiology, genetic factors are likely
to influence central nervous system responses to motor
experience24 and have been suggested to affect stroke re-
covery.25 Among the potential candidate genes is brain-
derived neurotrophic factor (BDNF),26 which has a common
polymorphism known to affect motor function and plas-
ticity.24,27 Recently, BDNF genotype was shown to be asso-
ciated with motor outcomes for the arm and was a predictor
for patients with severe baseline motor deficits in the sub-
acute phase of recovery.28 Other polymorphisms that affect
function of biogenic amines, including catechol-O-
methyltransferase (COMT) and dopamine transporter,29 are
known to influence mediation of dopaminergic systems.
Dopamine activity levels in the brain are documented both to
be affected by stroke and to influence poststroke motor re-
covery.30 Klotho, a gene with a polymorphism related to
lifespan, has been associated with cognition and neuro-
plasticity.31 We are interested in assessing the beneficial or
deleterious role of each of these genetic factors in predicting
motor neurorehabilitation and treatment response.

While severity of motor deficits has long been used as a
primary predictor of functional outcome, new tools and
applications provide fresh potential and nuance. Robot-
derived kinematic evaluation allows for more precise
measurement and characterization of motor deficits and
has been modeled as a predictor of early stroke recovery.32

Pain is an underrecognized consequence of stroke,33 and
pain behaviors may limit participation in rehabilitative
therapies, suggesting pain’s potential predictive role in
outcome and participation. The expectancy theory of
motivation to predict outcomes in stroke rehabilitation is
an additional area of increasing interest.34

The purpose of this study is to identify baseline prog-
nostic factors in chronic stroke that influence motor
recovery in response to repetitive task practice and to
develop a predictive model of response to a standardized
intervention for the upper limb. In this manner, we propose
to contribute to understanding the mechanisms of recovery
and develop an algorithm to better match patients in the
chronic phase to effective therapy based on their individual
behavioral, neurophysiological, and genetic composition.

Methods

Study design

Basis
The present single-group predictive study is based on
a previous 12-week randomized controlled trial comparing
2 robot-assisted therapy paradigms in stroke survivors
with chronic hemiparesis.14 In that prior study,
behavioral,demographic, and electrophysiological baseline
variables correlated with changes in FMA and WMFT. Those
correlations along with larger trends toward precision
medicine in other practice areas contributed to the
conceptualization of our predictive model of response. To
be included participants must be 18 years or older with
stroke onset �6 months, have mild or moderate to severe
arm impairment (FMA score, 10-45), be free of serious
medical complications, and be free of upper extremity
botulinum toxin for �4 months prior to enrollment. All
participants provided written informed consent, and the
study was approved by the local institutional review board.

Treatment regimen
All eligible participants are assigned to the same repetitive
task practice regimen consisting of 1-hour sessions with 45
minutes of robot-assisted therapy followed by 15 minutes of
transition-to-task functional arm use activities (fig 1). This
intervention is performed approximately 3 times per week
for 12-18 weeks for a target maximum of 36 sessions. The
training progression is sequential with the first 12 sessions
focused on distal movements, followed by 12 sessions of
proximal movements, and concluding with 12 sessions
alternating between the 2. This progression is achieved using
either a combination of the InMotion2 wrist robot and
InMotion2 shoulder/elbow robota or appropriate games on
the ArmeoPower robot.b

One quarter of each intervention session is composed of
transition-to-task training, which involves repetitive func-
tional arm use in domains such as homemaking, hygiene,
feeding, and dressing. This sequence is consistent with
Brokaw et al who demonstrated distinct robot-mediated
improvements and greater gains when robotic therapy
preceded conventional.35 These seated tabletop activities
are selected by a therapist and performed under supervi-
sion to discourage compensatory movements and maximize
use of available motor control.

Intent to treat and retention
Following an intent-to-treat paradigm, participants are
encouraged to attend all evaluations even if they do not
complete the full 36 intervention sessions in the allotted
time. Number of sessions completed and reasons for with-
drawal are documented.
Tests and procedures

Overview
Participants are evaluated at 5 time points during the study
(fig 2): baseline, post 1 (after 12 sessions), post 2 (after 24
sessions), final (after 36 sessions or 18wk), and follow-up
(3mo after final). Assessments can be grouped into 3
domains: basic and self-report, motor, and neurophysio-
logical. Participants’ baseline measures serve as potential
inputs for prediction of the primary outcome: change in
FMA score from baseline to final assessment.

Basic and self-report
At the outset of study participation, demographic data are
collected, stroke history is confirmed via medical records,



Fig 1 Study flow (Consolidated Standards of Reporting Trials diagram).
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and a medical evaluation is completed by a neurologist.
Self-reported questionnaires are administered during
baseline testing. Specifically, the Stroke Impact Scale is a
structured interview designed to assess physical, cognitive,
and emotional changes contributing to poststroke quality of
life. Higher scores indicate greater function and life satis-
faction.36 The Brief Pain Inventory37 is collected to measure
both pain severity and interference in activities. We mea-
sure expectancy using the brief 3-item Adapted Credibility/
Expectancy Questionnaire.38

Motor
The upper extremity portion of the FMA39 is a stroke-
specific measure of impairment and is the primary



Fig 2 Tests and procedures. Abbreviations: ACEQ, Adapted Credibility/Expectancy Questionnaire; BPI, Brief Pain Inventory; ROM,
range of motion; SIS, Stroke Impact Scale.
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outcome variable for the planned predictive model. The
assessment has demonstrated high interrater and test-
retest reliability and construct validity.40 It was chosen
because of its responsiveness to change in moderately to
severely impaired stroke survivors40 and because its wide-
spread use allows for comparison with other rehabilitation
studies.

The Action Research Arm Test (ARAT)41 evaluates grasp,
grip, pinch, and gross movement of the upper extremity
by observation during a set of graded functional or
quasi-functional tasks. The 6-item WFMT was chosen for
comparability with other rehabilitation studies and good
sensitivity in the population with chronic stroke.42 Addi-
tional upper extremity measures include active and passive
range of motion measurements, manual muscle tests of
shoulder abduction and finger extension,6 and grip strength
dynamometry.

Kinematic assessments are completed using the InMo-
tion2 robot evaluation, described in the literature,43 and
involve unassisted reaching for a series of point-to-point
targets, reaching against resistance, response to pertur-
bation, and circle drawing. Variables assessed include
initiation time, distance from target, movement time, peak
velocity, mean velocity, number of targets hit, and path
ratio. These assessments provide a quantitative charac-
terization of motor function44 and track with clinical arm
assessments.45

Accelerometers are used to quantify duration and
intensity of daily arm activity in stroke survivors and to
measure the ratio of use of the affected vs unaffected
arm.46,47 At the beginning and end of the intervention
period, participants wear 3-axis accelerometersc on both
wrists with a nonremovable wrist band to record 3 full days
of data.48
Neurophysiological
Magnetic resonance imaging (MRI) was obtained using a 3T
Siemens Tim-Triod scanner for the initial 13 participants
and then upgraded to a 3T Siemens Prismad for subsequent
participants. The MRI protocol consists of the following:
high-resolution anatomic imaging (ie, MPRAGE, FLAIR, T2)
to identify regions affected by stroke and determine re-
gions of brain activation in functional imaging protocols,
arterial spin labeling scans (pseudocontinuous sequence) to
account for vascularization differences across participants,
resting state functional magnetic resonance imaging (two
10-min scans) to assess functional connectivity, and finally,
diffusion tensor imaging to assess integrity of white matter
tracts using fractional anisotropy analysis. These measures
of structural integrity, functional connectivity, and neuro-
physiology will serve as potential variables in the predictive
model.

TMS is performed using a MagStim 200 magnetic stim-
ulatore to assess neurophysiological corticospinal integrity.
Surface electromyographyf is used to record muscle activity
from 3 muscles (first dorsal interosseous, extensor carpi
radialis [ECR], and anterior deltoid [AD]) for both paretic
and nonparetic arms. Signalg scripts are used to drive
single-pulse TMS and collect simultaneous electromyog-
raphy data through a Power 1401 (CED) system. Neuro-
navigation software (Brainsight)h records 3-dimensional
coordinates of each TMS stimulation site, measured using
an optical digitizing device and matched to the individual’s
MRI, ensuring reproducible locations.

TMS at 100% maximum stimulator output is used to
identify the hotspot for each muscle from a 3�3 grid
centered on the hand knob for both paretic and nonparetic
sides. At the identified hotspot for each muscle, if the
mean MEP>0.05 mV, the resting motor threshold (RMT) is



Fig 3 Neurophysiological corticospinal integrity score.
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determined. The RMT is defined as the minimal amount of
stimulation needed to evoke MEPs�0.05 mV on at least 5 of
10 trials.49 If an RMT could be identified, then a recruitment
curve of corticospinal excitability is established50; the
range of stimulation intensities is anatomically defined
from the RMT of the muscle of interest to the RMT of the
nearest muscle (ie, ECR for first dorsal interosseous, AD for
ECR, ECR for AD). A recruitment curve is then collected
from 3 trials at each of 8 stimulation intensities within this
range. For each muscle, a score is calculated assigning 1
point each for presence of MEPs, establishment of an RMT,
and presence of a recruitment curve with positive
slope�0.025. The slope value is derived based on the 95th
percentile in a sample of healthy adults (M.A. Dimyan,
unpublished data, 2019). Thus, scores for each muscle can
range from 0-3, and total neurophysiological corticospinal
integrity scores on each side can range from 0-9 (fig 3).

Genetic polymorphisms in 4 genes related to brain
plasticity are analyzed by polymerase chain reaction and
targeted sequencing for each participant. They are BDNF,
COMT, dopamine transporter, and Klotho, which are related
to growth, dopamine (COMT and dopamine transporter),
and aging, respectively. A saliva collection kit (Oragene
OGR-500)i is being used during baseline evaluations. An
alternative pediatric collection kit (Oragene OC-175)i with
sponge tips is used for participants who have difficulty
providing a sample.
Data management
All data are collected according to written instructions for
each study procedure. Evaluations are conducted by ex-
aminers trained and assessed for reliability. To establish
interrater reliability, 3 examiners viewed videotapes of
FMA, WMFT, and ARAT administration. All discrepancies
were discussed and the written instructions clarified until
agreement reached 100%. Completed assessment forms are
stored under a study identifier, entered into our research
database by a study staff member, and then verified with
the source document by a second staff member to ensure
accuracy.
Analytical plans

Prediction model
Logistic regression models will be developed on the primary
binary outcome of increase in FMA score>4 points at final
evaluation, which is considered the minimal clinically
important difference.51 A variety of techniques for model
development are available based on final sample size and
number of predictors selected. One traditional technique
for variable selection is stepwise regression, which does not
impose any penalty for including too many variables.
Alternatively, ridge regression, least absolute shrinkage and
selection operator (LASSO), and elastic net fall into a class



Table 1 Current enrollment demographics

Characteristic (NZ28)

Age, mean (range) (y) 62 (38-87)
Sex, n female (%) 9 (32.1)
Race, n (%)

African American/black 16 (57.1)
White 12 (42.9)

Oxfordshire classification, n (%)
Not applicable, primary hemorrhage 4 (14.3)
Lacunar 11 (39.3)
Partial anterior circulation 8 (28.6)
Total anterior circulation 2 (7.1)
Posterior circulation 3 (10.7)

Time since stroke, mean (range) (mo) 63.7 (9-264.3)
Handedness-affected

upper extremity, n (%)
Right-right 11 (39.3)
Right-left 12 (42.9)
Left-left 4 (14.3)
Ambidextrous-right 1 (3.6)

Baseline Outcome Measures, mean � SD
Fugl-Meyer Upper Extremity Score 20.1�10.0
Wolf Motor Function Test (s) 84.7�40.8
Action Research Arm Test 15.4�15
Stroke Impact Scale-Hand Subscale 22.9�30.3
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of regularization methods developed to improve variable
selection with a penalty imposed for overfitting. Ridge
regression imposes a penalty on the absolute size of the
regression coefficients. LASSO regularization in logistic
regression penalizes the absolute size of the regression
coefficients such that some are shrunk to 0.52 Elastic net
regularization, which penalizes both the absolute size and
the squared regression coefficients, incorporates both ridge
regression and LASSO. Elastic nets work well even for highly
correlated predictors.53,54 We will develop several predic-
tion models: (1) demographic variables only, (2) 1 plus
measures of motor ability, (3) 2 plus neurophysiological
data, and (4) 3 plus genomics data. The summary statistics
of the area under the receiver operating characteristic
curve (AUROC) will be used to measure prediction perfor-
mance. Sensitivity and specificity, positive predictive
value, and negative predictive value55 will be calculated
from the optimal threshold determined by Youden index.55

The prediction models will be cross-validated by training
and testing methodology.56 To investigate if additional data
will improve prediction performance, comparison of
AUROCs between prediction models will be tested by the
DeLong method.55 The significance of the comparison will
Table 2 Participant comparison

Participant
Participants Baselin

Demographics Stroke Type Time Since FMA

A 78-y/o man Lacunar 264 mo 19
B 66-y/o man Lacunar 63 mo 18.5

Abbreviations: SIS, Stroke Impact Scale; y/o, year-old.
* Range of possible scores: FMA (0-66), WMFT (up to 120s, 0-6), AR

dicates improved limb use with the exception of WFMT time.
indicate whether a prediction model with additional data
adds value and improves predictive power.

Sample size and current enrollment
Projected sample size was calculated based on estimating
the AUROC with adequate precision.57 We anticipate
enrollment of 96 individuals with 12% attrition resulting in a
final sample of 85. At the time of writing, we have enrolled
48 participants, 28 of whom have completed the study
through the final evaluation time point (table 1). While we
are not undertaking a preliminary analysis of a predictive
model, we present 2 participants (table 2) who illustrate
the variability in response to repetitive task practice among
individuals with similar arm impairment at baseline.

Discussion

In summary, we are undertaking a single-arm trial of robot-
assisted repetitive task practice to reduce upper extremity
motor impairment in patients with chronic stroke. The goal
of the trial is to discover baseline factors that predict
clinically meaningful improvement. Potential predictors
include measures of motor impairment, demographics,
pain, expectancy, and neurophysiology, including response
to TMS, neuroimaging, and plasticity-related gene
polymorphisms.

For survivors of stroke, particularly those with residual
hemiparesis, there is beginning recognition of the impor-
tance of rehabilitation not simply for a discrete time period
after the event but rather, as a lifelong practice. We now
know that not only maintenance of function but actual
motor recovery is possible long after the initial insult.58

Yet, answering the questions of how much and for whom
remains a challenge, particularly at the individual level.
Participants A and B, presented in table 2, exemplify the
difficulty clinicians face when setting expectations with
patients. On clinical assessment, these participants appear
nearly identical and have matched scores on the FMA and
WMFT. Participant B is younger, his stroke is more recent,
and he scores better on the Stroke Impact Scale Hand
subscale; Participant A scores a few points higher on the
ARAT, but he is a decade older and more than 20 years have
passed since his stroke. We seek to better understand why
participant A responds to repetitive task practice while
participant B does not.

Study limitations

Pursuit of prognostic accuracy in neurorehabilitation is
fraught with challenges: limited reproducibility of many
e Measures* Outcomes

WMFT (time, score) ARAR SIS Hand Final FMA FMAD

103.7s, 1.17 12 40 30 11
103.98s, 1.17 5.5 80 18 �0.5

AT (0-57), SIS Hand (0-100); for all assessments higher score in-
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therapeutic interventions, how to measure improvement,
and the necessary scale of this type of clinical trial. To meet
the challenge of reproducibility, this study has used a form of
repetitive task practice that can be recreated not only on
multiple robotic systems but also via intensive nonrobotic
training. The VA ROBOTICS study demonstrated no differ-
ence in average outcome between robotic rehabilitation and
a closelymatched nonrobotic systemof practice,10 and there
is little reason to believe that predictive factors would vary
widely depending on the specific methodology. In measuring
improvement, each outcome tool imposes its own limita-
tions. The widespread use of the FMA and its position along
the continuum between precision of measurement and
functional relevance made it the most reasonable starting
point for prediction. Future directionsmayexplore the use of
alternative measures. Large-scale neurorehabilitation
studies are exigent but achievable, as demonstrated by the
successful completion of trials such as EXCITE and SCILT, but
should not be undertaken without a firm conceptual basis.59

Priorwork in chronic-phase rehabilitation, neuroimaging and
neurophysiology,motor recovery algorithms, and genetics of
plasticity provided the necessary foundation to take this
next step toward precision medicine in neurorehabilitation
for chronic stroke. Future work should address some limita-
tions discussed here as well as validation of the model
developed, particularly novel components such as the
scoring system for neurophysiological corticospinal integrity.
In summary, the goal of this trial is to identify baseline bio-
markers that predict clinically meaningful reduction in arm
impairment in response to a standardized therapy and to
demonstrate the feasibility of developing a subsequent
predictive model.
Suppliers
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