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Emergent long-range synchronization of oscillating
ecological populations without external forcing
described by Ising universality
Andrew E. Noble1,2, Jonathan Machta2,3 & Alan Hastings1

Understanding the synchronization of oscillations across space is fundamentally important to

many scientific disciplines. In ecology, long-range synchronization of oscillations in spatial

populations may elevate extinction risk and signal an impending catastrophe. The prevailing

assumption is that synchronization on distances longer than the dispersal scale can only be

due to environmental correlation (the Moran effect). In contrast, we show how long-range

synchronization can emerge over distances much longer than the length scales of either

dispersal or environmental correlation. In particular, we demonstrate that the transition

from incoherence to long-range synchronization of two-cycle oscillations in noisy spatial

population models is described by the Ising universality class of statistical physics. This result

shows, in contrast to all previous work, how the Ising critical transition can emerge directly

from the dynamics of ecological populations.
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S
ynchrony of dynamics across space has been a subject
of intense study across a diverse array of scientific
disciplines1–5. The study of synchrony of oscillations in

population numbers across space and time has a long history in
ecology6 and has provided great insights into fundamental issues
of population dynamics3,5. The absence of spatial synchrony is
generally considered to be the key to persistence in exploiter–
victim systems5,7–9, and may be vitally important in the
conservation of species3,5,7 and disease eradication10. There is
long-standing recognition of the need for new models and
measures of spatial synchrony relevant to ecology3,5,10,11 that do
not depend upon the simplifying assumptions of the
Kuramoto1,12 and related models2,4.

Three well-known causes of spatial synchrony are the long-
range correlation of environmental variation (known as the
Moran effect6), entrainment to neighbouring populations via
trophic interactions and dispersal of individuals among habitat
patches3,5,13. In the absence of environmental noise, short-range
dispersal is sufficient to phase-lock spatial populations over
arbitrarily large distance scales7. In the more realistic case of
environmental variation, short-range dispersal has been shown to
synchronize population oscillations only over distance scales
comparable to the correlation length of the environmental
noise5,14–16. The remaining question is whether and how
synchrony over distances much longer than the scale of
environmental correlations can arise from short-range dispersal
in the presence of strong noise. This paper is the first to
demonstrate the emergence of long-range synchronization and
model-independent power-law scalings in noisy cyclic
populations. Note that our results apply to the onset of spatial
synchrony of oscillations in population numbers far from the
extinction threshold, and our work is distinct from previous
investigations of model independent power laws near the
extinction threshold17–19.

Many of the most prominent studies of spatial synchrony have
focused on examples where the underlying dynamics are two
cycles, including the dynamics of childhood diseases10 and small
mammals13. Because both of these examples have been argued to
arise in part from the seasonal forces that impact the vast
majority of ecological populations, two-cycle behaviour is truly a
ubiquitous phenomenon. That two cycles are so common is
expected from the structure of overcompensatory models in
population biology, such as the logistic map, because of the large
range of growth rates for which the asymptotic dynamics lie in an
exact two-cycle. With the addition of noise, approximate two-
cycle behaviour can be found over an even larger range of growth
rates20 along the entire period-doubling sequence and through
the two-banded chaotic region, as can be seen in the bifurcation
diagram for any quadratic map21.

In statistical physics, the canonical model for the emergence
of long-range order from the collective behaviour of local
interactions is the Ising model22–25. The Ising model describes
emergent phenomena at a phase transition where a simple
twofold symmetry is broken. Physical systems with unrelated
microscopic dynamics, such as magnetic, liquid–vapour and
binary alloy systems, exhibit the power-law scaling behaviour of
the Ising model at a critical phase transition. The Ising model
thus defines a ‘universality class’—a set of many disparate systems
that are all characterized by identical power-law scaling behaviour
over large distances despite wide differences in local interactions
and short-range behaviour. Here, for a suite of ecological models,
we will show that the power-laws describing asymptotic
behaviour at the emergence of long-range synchronization are
in the two-dimensional (2D) Ising universality class, providing a
powerful tool for understanding the emergence of collective
synchronization in spatial populations with local dispersal.

This quantitative correspondence between ecological popula-
tion models and the Ising model is quite surprising and novel.
The Ising universality class describes phase transitions for
systems in thermal equilibrium, that is, systems with a well-
defined energy and temperature22–25. On the other hand,
ecological population models are dynamical, dissipative systems
lying far from thermal equilibrium. Previous attempts to apply
the Ising model to population ecology simply assume thermal
equilibrium and lack any clear ecological motivation. In this
paper, we show how a quantitative correspondence to the
Ising model emerges naturally in spatially extended dynamical
models of ecological populations, providing new insights for both
fields.

Here, we first introduce a suite of discrete-time spatial
population models and define a statistic for discriminating
between incoherent and synchronous behaviour. Next, we
demonstrate that the asymptotic behaviour of ecological popula-
tion dynamics at the emergence of long-range synchronization is
described by the Ising universality class. Finally, we define
new statistics of spatial synchrony, each corresponding to a
statistic of the Ising model, that can rapidly detect sudden
changes in the spatial synchrony of ecological populations. We
anticipate that our methods will be broadly applicable to the
study of transitions in the spatial synchrony of cyclic populations,
and we underscore the importance of universality for ecological
modelling.

Results
Definition of the synchronization order parameter. We inves-
tigate the long-range synchronization of two-cycle oscillations in
several discrete-time spatial population models with local dis-
persal and uncorrelated environmental noise: a single-species
Ricker model (Methods equations (4) and (5))26,27 with two
different dispersal kernels, a single-species Logistic model
(Methods equations (4) and (6))28–31 and a version of the
Nicholson–Bailey Host–Parasitoid model (Methods equations (7)
and (8))32. The analogue of the local ‘spin’ variable at a lattice site
in the Ising model is a local two-cycle amplitude, mj,t (Methods
equation (9)), defined at each habitat patch j and generation t in
the spatial population models. A spatiotemporal average
of the mj,t is the synchronization order parameter, m
(Methods equation (11)), which discriminates between phases
of incoherence and long-range synchronization: an order
parameter value of zero signals complete incoherence (the
disordered phase), while nonzero values measure the degree of
long-range synchronization (the ordered phase). On a landscape
with one or two spatial dimensions (one-dimensional (1D) or 2D)
and L habitat patches along each side (such that the total number
of habitat patches is N¼ L or N¼ L2, respectively), finite-size
estimates of the synchronization order parameter, mL (Methods
equation (13)), can be obtained from numerical simulations.

Ising universality at the critical transition. We present results
for 1D and 2D ecological models with various numbers of habitat
patches. The synchronization order parameter as a function of
uncorrelated environmental noise level is plotted in Fig. 1a,b,d,e
and Supplementary Figs 1a,b and 2a,b. On 1D landscapes, for
sufficiently large N, the order parameter approaches zero in all the
population models, and we find no evidence of long-range syn-
chronization at nonzero noise levels. The same behaviour occurs
in the 1D Ising model22–25. The behaviour on 2D landscapes is
quite different. A continuous transition in the synchronization
order parameter sharpens with increasing landscape size. Near
this ‘critical point’, synchronized habitat clusters appear on the
landscape and form fluctuating fractal patterns (Fig. 1c,f;
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Supplementary Figs 1c and 2c) associated with the emergence of
long-range order and critical slowing down (Supplementary
Fig. 3). These results demonstrate both that long-range
synchronization can be an emergent phenomenon on 2D
landscapes even in the presence of noise, and also that the
existence of a critical transition from incoherence to synchrony is
independent of the details of the local ecological dynamics.

We now quantify the strong correspondence between the
critical behaviour of the Ising model and the emergence of
long-range synchronization on 2D landscapes. In addition to
finite-size estimates of the order parameter, mL (Methods
equation (13)), we define two statistics of the local two-cycle
amplitudes motivated by the Ising correspondence: the suscept-
ibility, wL (Methods equation (14)), measures the variance
of two-cycle amplitudes, and the fluctuation correlation length,
xL (Methods equation (16)), measures the length scale of long-
range spatial correlations among two-cycle amplitudes. We find
‘finite-size scaling collapses’ in which measurements of mL, wL

and xL on landscapes of different sizes and noise levels, when
multiplied by appropriate powers of L given by the Ising ‘critical
exponents’, lie on universal curves (Methods equation (24);
Fig. 2a–c; Supplementary Figs 4–7). We also identify a scaling
collapse across models: statistics of the different ecological
population models, multiplied by model-dependent pre-factors,
collapse onto corresponding Ising statistics near the critical
transition (Methods equation (24); Fig. 2d–f; Supplementary
Figs 8 and 9).

While it is not the main focus of our work, the slow dynamics
near the Ising critical point is also ecologically interesting. The
Ising model equipped with the relevant non-conservative
dynamics is referred to as ‘model A’33–35. Critical dynamics
described by model A are universal and known to hold across a

wide spectrum of physical systems near and far from thermal
equilibrium36–46. We expect that the critical dynamics of all of the
spatial population models studied here fall into the model-A
dynamic universality class.

Ising universality explains the robustness and broad
applicability of our results and provides a quantitative
description of scaling behaviour at the onset of long-range
synchronization that is independent of the details of local
population dynamics. In particular, universality allows us to
conclude that long-range synchronization among ecological
oscillators can emerge from short-range dispersal even when a
detailed description of the local dispersal behaviour and dynamics
is unknown. We have explicitly demonstrated identical scaling
behaviour in the spatial Ricker model with either the nearest-
neighbour or Moore neighbourhood dispersal kernel (Fig. 2;
Supplementary Figs 4,7 and 9), and universality ensures that the
same scaling behaviour would be found for any localized dispersal
kernel. Ecological populations exhibit even greater variability in
their local connectivity but are nonetheless expected to be in the
(random) Ising universality class23 as long as dispersal remains
short-ranged.

We can determine the conditions for long-range synchroniza-
tion as a function of the parameters in each ecological model. For
the spatial Ricker model, this information is summarized in Fig. 3
as a ‘phase diagram’ for incoherence and synchrony (see also
Supplementary Fig. 10). We find that long-range synchronization
emerging from local dispersal can persist in the presence of strong
uncorrelated environmental noise. We conjecture that all critical
points on the phase boundary lie in the 2D Ising universality
class. The shape of the phase boundary as a function of growth
rate, dispersal fraction and noise level will be qualitatively similar
in the other population models.
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Figure 1 | Critical transitions at the onset of collective synchronization in spatial Ricker and host–parasitoid models on 2D landscapes. (a,d) On large

1D landscapes (large N¼ L) with short-range dispersal and nonzero uncorrelated environmental noise levels (l), collective synchronization of spatial

populations cannot emerge from local dispersal alone. (b,e) On 2D landscapes (where N¼ L2), collective synchronization can emerge from local dispersal

at a noise-induced transition. A continuous change in numerical estimates of the synchronization order parameter, mL, from near zero (the disordered,

incoherent phase) to larger values (the ordered, synchronous phase), sharpens as the size of the landscape increases. (c,f) Near the transition, on 2D

landscapes ranging in size from N¼ 64 (upper-left) to 4,096 (lower-right), density plots of local two-cycle amplitudes, the mj,t, show emergent long-range

order in the fractal coexistence of synchronized habitat patches. In statistical physics, a continuous transition from a disordered phase to a phase ordered

by emergent long-range correlations defines a ‘critical transition’. Critical transitions at the onset of collective synchronization also occur in the 2D Logistic

and Ricker–Moore models. Note that symbols are displayed with s.e.m. error bars, but actual error bars are often much smaller than the symbol size.
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Rapid detection of sudden changes in spatial synchrony. Given
that large-scale disturbances are not uncommon, the study of
transient dynamics is especially important in ecology47. The rapid
formation of complex patterns of spatial synchrony can be
difficult to infer on timescales short enough to allow for an
effective response. Using the relatively short time-series data
typically available, new measures are needed to rapidly detect
sudden changes in spatial synchrony. We introduce three such
measures, each corresponding to a statistic of the Ising model: the
synchronization index, St (Methods equation (17)), measures
instantaneous synchronization as a non-spatial, two-generation,
simple moving average; the susceptibility index, Vt (Methods
equation (19)), measures the magnitude of fluctuations in
synchronization windowed in both space and time; the
correlation length index, CLt (Methods equation (23)),
measures a distance scale proportional to the size of
synchronized clusters and is also windowed in both space and
time. The spatial windowing of Vt and CLt allows statistical power
to be gathered across space in the absence of a long time series48.

We demonstrate the application of these new measures to the
rapid detection of sudden changes in spatial synchrony from
incoherence to synchronized cluster formation and growth. In
Fig. 4, starting with an ensemble of incoherent population
configurations at generation zero (t¼ 0), we calculate trajectories
of St, Vt and CLt emerging from the dynamics of a Ricker model
where the growth rate, dispersal fraction and noise level
correspond to either the synchronous phase (the signal, red
trajectories) or the incoherent phase (the baseline, blue
trajectories). The non-spatial index, St (Fig. 4a), is outperformed
by the spatially windowed indices, Vt and CLt (Fig. 4b,c), each of
which allows for detection of a sudden change in spatial
synchrony within two or three generations.

Synchronized cluster formation and growth in ecological
models is analogous to a ‘quench’ in the Ising model with ‘non-
conserved’ dynamics, where the size of clusters increases
according to a power-law in time22–25. This power-law is
universal22–25, and therefore, independent of the details of local
dynamics. The same power-law behaviour can be found in the
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Figure 2 | Ising universality near the onset of collective synchronization in ecological populations on 2D landscapes. Scaled measurements of the order

parameter (mL), susceptibility (wL) and fluctuation correlation length (xL) for diverse ecological models and 2D landscape sizes (where N¼ L2) coincide

with Ising model results, showing the existence of universal behaviour. (a–c) Finite-size scaling collapse (as a function of L and the Ising critical exponents,

n¼ 1, b¼ 1/8, g¼ 7/4) demonstrates universal Ising behaviour of the Ricker model over a range of ecologically relevant landscape sizes. The same finite-

size scaling behaviour is found in all the ecological models that we analyse. (d–f) Scaled collapse of ecological statistics onto the corresponding Ising

statistics for N¼4,096. Scaling parameters, amodel and bmodel, are chosen separately for each model; without loss of generality, aIsing¼ bIsing¼ 1. These

results present strong evidence that the onset of collective synchronization is a critical transition in the Ising universality class. Universality explains the

robustness and broad applicability of our results: long-range synchronization and power-law scalings emerge from local dispersal independent of the details

of local dynamics, including population regulation, dispersal and landscape connectivity. Note that symbols are displayed with s.e.m. error bars, but actual

error bars are often much smaller than the symbol size.
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Ricker model (Fig. 4c) and in the host–parasitoid model of Rost
et al.32 These observations suggest that the sudden, spontaneous
emergence of sharp ecological boundaries between clusters of
habitat patches with opposite-sign synchronization, as seen in
Fig. 4d, might occur in many types of ecological systems with
local dispersal and uncorrelated environmental noise.

Discussion
By demonstrating the existence of Ising critical transitions in the
spatial synchrony of noisy spatial populations, our work shows,
for the first time, how long-range synchronization in ecological
systems can emerge in the absence of external forcing (the
Moran effect6). Beyond the important case of transitions
between incoherence and two-cycle synchrony, our results
suggest a general correspondence between emergent long-range
synchronization in ecology and the universality classes of
critical transitions in statistical physics. The methods developed
here can be readily generalized and applied to establish
those correspondences. This high degree of model inde-
pendence implies that the possibility of emergent long-range

synchronization must be carefully considered when seeking
to understand the causes and consequences of spatial
synchrony3,5–16,27,32,49–56, including in the dynamics of
childhood diseases, such as measles and pertussis10, in the
biological control of outbreaks of insects, such as bark beetles and
gypsy moths5 and in the mitigation of synchronous masting,
which threatens food security in agro-ecosystems56.

Finding appropriate measures of spatial synchrony in 2D
ecological systems has been a serious challenge5. We have shown
how the Ising correspondence introduces new statistics, both
asymptotic measures and transient indices, to the study of spatial
synchrony. In contrast to the Kuramoto model1 and other
spatially implicit approaches to quantifying spatial synchrony,
these new statistics of spatial synchrony depend on the full
spatiotemporal dynamics of a noisy population. Ising-like
transient indices should be especially useful in quantifying
spatial synchrony over timescales relevant to ecology and in the
rapid detection of sudden transitions57.

This work and others underscore the vital importance of
universality for making robust, quantitative predictions about
transitions to long-range order in ecological populations
where the full complexity of local dynamics could never be
modelled explicitly. Connections between spatial population
models and the universality classes of statistical physics have
previously been demonstrated in phase transitions to flocking58,
to extinction17,19 and to other ordered phases relevant to
ecological systems25,59. Universality of transitions in the spatial
synchrony of noisy populations promises to remain a fruitful area
of investigation.

Methods
Ising model and Ising universality. In ecology, the modelling of spatial popu-
lations begins with a dynamical systems approach, while in statistical physics, the
modelling of a spin system in thermal equilibrium begins with a probability dis-
tribution called the Gibbs distribution22–25

P stateð Þ / exp �E stateð Þ=Tð Þ; ð1Þ

where the spin system is in thermal contact with a thermal reservoir that maintains
a fixed temperature, T, and the energy of the state is E(state). (Boltzmann’s
constant is set to one in equation (1).) The energy function typically models local
interactions among nearest-neighbour spins. In the Ising model22–25, lattice sites
are indexed by an integer, i, and the local spin, the si, is either up (þ 1) or down
(� 1). The Ising energy function can be written as a sum over products of
neighbouring spins

E ¼ � J
X
all i

si

X
j2N i

sj

0
@

1
A; ð2Þ

where N i is the set of indices for the neighbouring spins of lattice site i and
J is a coupling constant. The overall negative sign means that the energy is
lower (higher) when neighbouring spins are more (less) aligned. Because the
probability of any given configuration of local spin states over the lattice is
given by the Gibbs distribution, configurations with a high level of local
alignment are the most probable at low temperatures. The expected sum of
all the spins

m � 1
N

XN

j¼1

sj

* +
; ð3Þ

defines the order parameter, m. Nonzero values signal an ordered phase in which
spins are globally aligned; a zero value signals a disordered phase.

A 1D chain of spins will only order at zero temperature22–25. For 2D lattices, a
phase transition from disorder to order occurs at a nonzero critical temperature,
where the order parameter goes continuously to zero. Near the critical point, the
fluctuation correlation length diverges: clusters of aligned spins form on all length
scales, and clusters of opposite-sign spins coexist in a fluctuating fractal pattern.
These emergent, long-range correlations render many details of the local
interactions unimportant to emergent behaviour near the critical point. Indeed, the
critical point of the Ising model is universal: the same power-law scaling
relationships are common to critical points observed in seemingly unrelated
magnetic, liquid–gas and binary alloy systems22–25, as well as systems far from
thermal equilibrium36–46. The numerical values of the exponents in those power-
laws quantitatively define the Ising universality class22–25.

0.20

0.15

0.10

0.05

2.6

2.5

2.4

2.3G
ro

w
th

 r
at

e 
(r

)

2.2

0.12 0.13 0.14 0.15

Incoherence

Incoherence

Synchrony

Synchrony

Noise level (�)

D
is

pe
rs

al
 fr

ac
tio

n 
( 

)

Figure 3 | Phase diagram for incoherence and collective synchronization

in the Ricker model on 2D landscapes. The parameters of the Ricker model

are dispersal fraction ðEÞ, growth rate (r) and noise level (l). For any given

choice of parameters, there is a single asymptotic phase: either incoherence

(with synchronization order parameter zero) or synchrony (with

synchronization order parameter nonzero). These two phases are separated

by a boundary of Ising critical transitions. For (a) fixed growth rate and (b)

fixed dispersal fraction, we plot cross-sections of the critical boundary. Note

that long-range synchronization can emerge from local dispersal despite

strong uncorrelated environmental noise. A ‘reentrant transition’ from

synchrony to incoherence at high growth rate, as seen in b, is associated

with the disapperance of two-banded behaviour in the bifurcation diagram

of the underlying Ricker map.
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Ecological population models. We start by investigating long-range synchroni-
zation in three models of single-species populations with local dispersal and
uncorrelated environmental noise. The population density of habitat patch j at
generation t is a continuous random variable, Xj,t. The geometry of N habitat
patches on a spatial landscape is given by a linear or square lattice with periodic
boundary conditions and one or two spatial dimensions. (If the linear dimension is
L, then the landscape size is N¼ Ld where d¼ 1, 2.) The spatial dynamics are given
by noisy coupled maps

Xj;tþ 1 ¼ 1� Eð ÞXj;t f Xj;t
� �

þ E
z

X
k2N j

Xk;t f Xk;t
� �

: ð4Þ

In each generation, local populations are regulated by the per capita density
dependence of a noisy quadratic map, f(Xj,t), in which random environmental
variation in population regulation, uncorrelated in both space and time, is mod-
elled as multiplicative white noise. Afterwards, a fraction of each local population,
E, disperses evenly among z neighbouring habitat patches, as indexed by the ele-
ments of N j, the set of indices for the neighbouring spins of lattice site j. Note that
changing the number of spatial dimensions does not change the fraction of a local
population that disperses.

For any finite-sized landscape and nonzero noise levels, the asymptotic (t-N)
phase of the system is extinction (Xj¼ 0 for all j). Nonetheless, typical extinction
times rapidly increase with the number of habitat patches. In numerical
simulations for finite N, we gather statistics on the single, long-lived, metastable
state that is conjectured to be fully stable in the N-N (or ‘thermodynamic’) limit.
In the following, ‘asymptotic’ will refer to times much larger than one generation
but much less than the extinction time.

The Ricker model is equation (4) with a nearest-neighbour dispersal kernel on a
linear or square lattice of habitat patches (z¼ 2d) and local populations regulated
by a noisy Ricker map20,26

f Xj;t
� �

¼ er 1�Xj;tð Þ 1þ lxj;t

� �
; ð5Þ

where r is the growth rate, xj,t are standard normal deviates, uncorrelated in both
space and time, and l is the noise level, that is, the s.d. of the environmental noise
distribution. Equation (5) is a well-known extension of the per capita density
dependence of the Ricker map26 to include the effects of multiplicative
uncorrelated environmental noise20. A similar coupled map has previously been
used to understand the causes of intraspecific spatial synchrony in large-scale moth
and aphid populations27.

The Logistic model is equation (4) with a nearest-neighbour dispersal kernel on
a linear or square lattice of habitat patches (z¼ 2d) and local populations regulated
by a noisy logistic map30

f Xj;t
� �

¼ r 1�Xj;t
� �

1þ lxj;t

� �
: ð6Þ

The study of noisy logistic maps has a long history30. Pattern formation in coupled
logistic maps with local two-cycle oscillations has been investigated previously31.

The Ricker–Moore model is the same as the Ricker model but with a broader
dispersal kernel. On 1D landscapes, the dispersal fraction is evenly distributed
among the nearest and next-to-nearest neighbours (z¼ 4). On 2D landscapes, the
dispersal fraction is evenly distributed among the habitat patches of the Moore
neighbourhood (the z¼ 8 nearest and next-to-nearest neighbours on a square
lattice).

The host–parasitoid model is a mechanistic two-species model in which the
population dynamics of two non-interbreeding cohorts of hosts are coupled
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Figure 4 | Rapid detection of sudden changes in spatial synchrony from incoherence to synchronized cluster formation and growth. Synchronized

cluster formation and growth in ecological models is analogous to a ‘quench’ in the dynamical Ising model. Starting with an ensemble of 1,000 incoherent

population configurations at generation zero (t¼0), we calculate trajectories of the (a) synchronization index (St), (b) susceptibility index (Vt) and (c)

correlation length index (CLt) emerging from the dynamics of a Ricker model on a 2D landscape of N¼ L2¼4,096 habitat patches. The growth rate,

dispersal fraction and noise level correspond to either the synchronous phase (the signal, red trajectories) or the incoherent phase (the baseline, blue

trajectories). Each index is averaged over two generations and can be calculated starting at t¼ 2. The spatially windowed indices, Vt and CLt, outperform

the non-spatial index, St, and allow for rapid detection of a sudden change in spatial synchrony within two or three generations. (d) Snapshots at t¼ 2, 5

and 10 of local two-cycle amplitudes, the mj,t, are shown along a representative trajectory of the Ricker model with parameters corresponding to the

synchronous phase. Sharp ecological boundaries between clusters of habitat patches with opposite-sign synchronization can emerge spontaneously on 2D

landscapes with local dispersal and uncorrelated environmental noise.
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together by a shared parasitoid. The spatial dynamics of the host (H) and parasitoid
(P) is taken from equation (8) of Rost et al.32

Nj;tþ 2 ¼ 1� Eð ÞNj;t fN Nj;t ; Pj;t
� �

þ E
z

X
k2N j

Nk;t fN Nk;t ; Pk;t
� �

;

Pj;tþ 1 ¼ 1� Eð ÞNj;t fP Pj;t
� �

þ E
z

X
k2N j

Nk;t fP Pk;t
� �

:
ð7Þ

with local populations regulated by a noisy Nicholson–Bailey coupled map

fN Nj;t ; Pj;t
� �

¼er 1�Nj;tð Þ 1� e� aPj;t

aPj;t
1þ lxN

j;t

� �
;

fP Pj;t
� �

¼ 1� e� aPj;t

aPj;t
1þ lxP

j;t

� �
;

ð8Þ

where r is the growth rate of the host, a is the searching efficiency of the parasitoid,
the xN

j;t and the xP
j;t are two sets of standard normal deviates, uncorrelated in space

and time and with each other, and l is the noise level. A nearest-neighbour
dispersal kernel is assumed, where E is the dispersal fraction for both host and
parasitoid. Rost et al.32 demonstrated the existence of coarsening behaviour and an
asymptotic phase of spatial synchrony. Phase separation and coarsening in two-
variable, discrete-time systems with local interactions have also been studied in the
physics literature60,61. Our work focuses on the emergence of long-range
synchronization from incoherence at a critical transition and the Ising universality
of that transition.

Synchronization order parameter. In the Ricker, Logistic and Ricker–Moore
models, we define a two-cycle amplitude for each local population given by

mj;t �
1
2
� 1ð Þtþ 1 Xj;tþ 1 �Xj;t

� �
: ð9Þ

The spatial average of the mj,t defines the instantaneous synchronization

mt �
1
N

XN

j¼1

mj;t : ð10Þ

In the physics literature, order parameters are defined by an ensemble average
denoted by angle brackets. Here, the expectation value of mt taken over the
probability distribution of the Xj,t at long times defines the synchronization order
parameter, m

m � mth i for t large: ð11Þ
An order parameter value of zero signals complete incoherence (the disordered
phase); nonzero values measure the degree of partial synchronization (the ordered
phase). The synchronization order parameter of the host–parasitoid model is the
same as in equations (9)–(11) but with Nj,t substituted for Xj,t in the definition of
the two-cycle amplitude. In our numerical estimates, we obtain the same results if
Pj,t is substituted instead. The onset of long-range synchrony in both the host and
parasitoid populations is conjectured to occur at the same critical point.

To gather some intuition for the emergence of an Ising critical transition in the
synchronization order parameter, we first consider a population in which density,
xt, is regulated by the deterministic Ricker map. This is a limiting case of the Ricker
model. The limiting value of the two-cycle amplitude, as defined in equation (9), is

mt ¼
1
2
� 1ð Þtþ 1 xtþ 1 � xtð Þ; ð12Þ

and the limiting value of the synchronization order parameter, as defined in
equation (11), is the average value of mt in the asymptotic regime. For growth rates
in the steady-state range, the asymptotic population density is a constant, xt¼ x*,
and the order parameter vanishes, m¼ 0. The asymptotic system is clearly
invariant under time translations, that is, t-tþ n for any integer n. For growth
rates in the two-cycle range, the asymptotic population density oscillates between
two distinct values, x�1 and x�2 . The order parameter takes on one of two possible
nonzero values, m ¼ � x�1 � x�2

� �
6¼ 0, depending on the temporal phase of the

two-cycle oscillation. The asymptotic system remains invariant to even-period, but
not odd-period, time translations. Therefore, in the deterministic limit, increasing
the growth rate from the steady state to the two-cycle range breaks a twofold, or
Z2, symmetry of the asymptotic steady-state system. In the full Ricker model, high
noise levels wash out any cycling in the underlying density dependence, and the
asymptotic spatially averaged population density tends to a constant value as the
size of the landscape becomes very large. In this phase, the synchronization order
parameter vanishes. Only at sufficiently low noise levels can cycling emerge in
asymptotic spatially averaged population density. In this phase, the asymptotic
system is no longer invariant to odd-period time translations. A discrete twofold
symmetry is broken in the transition from incoherence to synchrony, and this is
the symmetry breaking pattern of the Ising universality class22–25.

Asymptotic measures of spatial synchrony. We define new measures of spatial
synchrony that complement existing approaches3,5–16,27,32,49–56. Each asymptotic
measure is identical to a statistic in the Ising model if the mj,t are the Monte Carlo
trajectories of a local spin rather than a time series of local two-cycle amplitudes.

Each transient measure corresponds to an asymptotic measure but can be
estimated at a single generation of the population model and does not require the
existence of a long nor stationary time series.

Integrated autocorrelation time. This statistic measures the characteristic
timescale over which correlations in trajectories of the instantaneous
synchronization decay. Our estimates and error bars, as plotted in Supplementary
Fig. 3, are based on p. 433 of Janke62.

Synchronization order parameter (mL). Because critical transitions occur only in
the limit of infinite system size, numerical estimates of the synchronization order
parameter on finite-sized L� L landscapes are denoted with a subscript, mL, and
are based on a spatial average of the |mj,t,L| (see, for example, equation (3) of
Janke62). The estimate of the synchronization order parameter, as plotted in Fig. 1
and elsewhere, is

mL �
1

MN

XM

t¼1

XN

j¼1

mj;t;L

�� ��; ð13Þ

where N is the number of samples in the spatial averaging (the number of habitat
patches on the landscape) and M is the number of samples in the time averaging
(the length of the time series). Error bars are estimated based on the integrated
autocorrelation time63.

Susceptibility (wL). Defined as

wL �
1
M

XM

t¼1

XN

j¼1

m2
j;t;L �Nm2

L; ð14Þ

the susceptibility measures the strength of fluctuations in the synchronization order
parameter. Error bars are estimated in a block bootstrap63 with 100 blocks.

Fluctuation correlation length (xL). This statistic measures the characteristic
length scale over which correlations in local two-cycle amplitudes decay. On a
landscape of infinite size, let the displacement between habitat patches i and j be ri,j.
The strength of correlations in the mj,t, as a function of ri,j, is given by the spatially
averaged connected correlation function63

G rð Þ � 1
MN

XM

t¼1

X
i;js:t:r¼ri;j

mi;tmj;t �m2
� �

: ð15Þ

Over large distances, we assume that G(r) decays exponentially. The fluctuation
correlation length is the characteristic length scale of that exponential decay62

x � � lim
j r j!1

rj j
ln G rð Þ : ð16Þ

Our estimates of mean values and error bars for the fluctuation correlation length
on finite-sized landscapes, xL, are based on p. 23 of Janke64.

Critical noise levels (lc). Our estimates of critical noise levels, lc, at the onset of
long-range synchronization are based on crossings of Binder’s cumulant, U65. In
the 2D Ising model, the critical value, U*, is universal and lies between � 1.830 and
� 1.835 (ref. 39). We estimate U* in each of the four population models and find a
value consistent with the Ising result.

Transient measures of spatial synchrony. Each transient measure of spatial
synchrony corresponds to an asymptotic measure but can be estimated at a single
generation of the population model and does not require the existence of a long nor
stationary time series. Transient measures are defined on a 2D landscape of N¼ L2

habitat patches. We omit an explicit subscript ‘L’ on the symbols below to simplify
notation.

Synchronization index (St). This statistic is an estimate of the synchronization
order parameter windowed in time. We define the index as the absolute value of a
two-generation simple moving average of the instantaneous synchronization
(equation (10))

St �
1
2

Xt

t0¼t� 1

mt0

�����
�����: ð17Þ

Susceptibility index (Vt). This statistic is an estimate of susceptibility windowed
in both space and time. We define a square spatial window covering N0 ¼ L/2� L/2
habitat patches of the L� L landscape. With periodic boundary conditions, that
window can be placed on the landscape in N possible ways. Let the kth placement
of the spatial window cover N0 habitat patches with their locations indexed by the
elements of Mk . For each placement in each generation, we calculate the average
value of the two-cycle amplitudes (equation (10)) that fall within the spatial
window

mk;t �
1

N 0
X
j2Mk

mj;t : ð18Þ

Over two generations, we obtain 2N estimates of mk,t. The absolute value
of the mean of the estimates is simply the synchronization index defined above.
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The susceptibility index is given by

Vt � N 0
1

2N

Xt

t0¼t� 1

XN

k¼1

m2
k;t � S2

t

 !
; ð19Þ

and provides a measure of variability in local synchronization.
Correlation length index (CLt). This statistic defines a characteristic length scale

for the size of synchronized clusters using the same approach to spatial and
temporal windowing as in the definition of the susceptibility index. In the absence
of long-range correlations and a long time series, we cannot obtain a good estimate
of the long-distance exponential decay of the connected correlation function
(equation (15)) that defines the finite-sized fluctuation correlation length, xL

(equation (16)). Instead, we define CLt to be a length scale determined by the short-
distance exponential decay of a spatially windowed correlation function. On the kth
spatial window covering N0 ¼ L/2� L/2 habitat patches at generation t (see the
discussion of spatial windowing in the definition of Vt above), we define the
correlation function, Gk,t(r), as

Gk;t rð Þ � 1
N 0

X
i;j s:t:r¼ri;j

mi;t mj;t �m2
� �

: ð20Þ

This function can be averaged over N possible placements of the spatial window in
each of two generations, defining Gt(r) as

Gt rð Þ � 1
2N

Xt

t0¼t� 1

XN

k¼1

Gk;t rð Þ: ð21Þ

We hypothesize that Gt(r) decays exponentially even over short distances such that

Gt rð Þ / e� 4 j r j =CLt ; ð22Þ
and that CLt can be estimated simply as

CLt ¼
4

log Gt r ¼ 0; 0ð Þð Þ� log Gt r ¼ 0; 1ð Þð Þ : ð23Þ

The overall scale factor of 4 is chosen such that CLt is roughly equal to the typical
diameter of a synchronized cluster. In a sudden transition from incoherence to
cluster formation and growth, a typical trajectory of CLt lies on the curve CLtpt1/2,
as shown in Fig. 4c. This is the expected power-law scaling for coarsening
behaviour in the Ising model with non-conserved dynamics22–25.

Finite-size scaling and evidence of Ising universality. Strictly speaking, the Ising
critical transition occurs only on an infinite lattice of spins. Nonetheless, critical
behaviour can be studied in numerical Monte Carlo simulations of finite-sized
lattices22–25. Finite-size scaling theory has previously been used to provide
strong numerical evidence of Ising (or in some cases, ‘Ising-like’) universality
in the critical transitions of probabilistic cellular automata36 and chaotic map
lattices37–39,43. Here, we apply similar methods to study critical transitions in
coupled maps of non-chaotic, noisy two-cycles with applications to ecology. We
first define the analogue of reduced temperature in our noisy population models
and then introduce our finite-size scaling hypothesis.

Reduced control parameters. In studies of the Ising model, the reduced
temperature (tT) is defined as (T–Tc)/T, where T is the temperature and Tc is the
critical temperature. To investigate the Ising universality of noise-induced critical
transitions in ecological models, we define the reduced noise level (tl) as (l–lc)/l,
where l is the noise level and lc is the critical noise level. If we want to refer to
either tT or tl, we will simply use the symbol t and call this the reduced control
parameter.

Data collapse for ecological statistics. Near a critical transition in the Ising model
and the ecological models, we gather finite-size measurements of the
synchronization order parameter, mL, susceptibility, wL, and fluctuation correlation
length, xL, for various landscape sizes, L, and reduced control parameter values, t.
For each model, we find that these measurements can be scaled to lie on a function,
Fm, Fw or Fx, that is independent of both the model and the landscape size22–25

mL ¼b� 1
modelL

� b=nFm amodelL
1=nt

� �
;

wL ¼b� 2
modelL

g=nFw amodelL
1=nt

� �
;

xL ¼LFx amodelL
1=nt

� �
:

ð24Þ

The powers of L are determined by the 2D Ising critical exponents (n¼ 1, b¼ 1/8,
g¼ 7/4) and are model independent. The model-dependent scale factors are amodel

and bmodel, where amodel is a scaling of the reduced noise level and bmodel is a scaling
of local two-cycle amplitudes

mj;t;L ! bmodelmj;t;L: ð25Þ
The asymptotic measures of spatial synchrony, mL, wL and xL, defined above in
terms of the mj,t,L, scale with bmodel as

mL !bmodelmL;

wL !b2
modelwL;

xL !xL:

We choose aIsing¼ bIsing¼ 1 without loss of generality. For the ecological models,
corrections to scaling and quantitative estimates of critical exponents will be
published elsewhere.

Monte Carlo simulations. Our numerical methods for estimating asymptotic
statistics characterizing noisy ecological populations are based on well-established
methods in the statistical physics literature on Monte Carlo simulations62–65. In
each Monte Carlo simulation, we iterate equation (4) or (7) for a burn-in period of
Tburnin generations before running for Tsteps generations and gathering M samples
of each statistic at regular intervals. In all simulations, initial population densities
are drawn from a normal distribution with mean m0 and s.d. s0 (negative numbers,
if drawn, are thrown out), but results are independent of initial conditions, so long
as local population densities are nonzero. Details follow on the Monte Carlo
simulations used to estimate the statistics plotted in the main text and
Supplementary Information.

Fig. 1: (a,b) On the basis of Monte Carlo simulations, with Tburnin¼ 2� 106,
Tsteps¼ 2� 107 and M¼ 1� 105, of the Ricker model, with r¼ 2.3, E ¼ 0:1 and l
one of 64 evenly spaced values on the interval [0.12,0.18]. Snapshots are shown in c
for l¼ 0.145. Initial population densities are drawn from a normal distribution
with m0¼ 0.50 and s0¼ 0.1. (d,e) On the basis of Monte Carlo simulations, with
Tburnin¼ 2� 106, Tsteps¼ 2� 107 and M¼ 1� 105, of the host–parasitoid model,
with r¼ 1.5, E ¼ 0:1, a¼ 20 and l one of 64 evenly spaced values on the interval
[0.3,0.5]. Snapshots are shown in f for l¼ 0.376. Initial population densities are
drawn from a normal distribution with m0¼ 0.50 and s0¼ 0.1.

Fig. 2: (a–c) On the basis of Monte Carlo simulations, with Tburnin¼ 2� 107,
Tsteps¼ 2� 108 and M¼ 1� 105, of the Ricker model, with r¼ 2.3, E ¼ 0:1. We
scanned 72 evenly spaced values of l on the interval [0.135,0.150] but plotted
statistics over a smaller range closer to the critical transition. Initial population
densities are drawn from a normal distribution with m0¼ 0.50 and s0¼ 0.1. The
critical noise level, lc¼ 0.14131(4), is estimated from the critical value of Binder’s
cumulant and used to calculate the reduced noise level as plotted on the horizontal
axis. (d–f) The points and error bars are the N¼ 4,096 series in panels b, d and f of
Supplementary Figs 4–8 (see details below), after a model-dependent scaling of the
horizontal and vertical axes by amodel and bmodel. Without loss of generality, we
define aIsing¼ bIsing¼ 1. Then we estimate aRicker¼ 2.60, ahost–parasitoid¼ 3.15,
aLogistic¼ 2.85, aRicker–Moore¼ 2.65, and bRicker¼ 2.028, bhost–parasitoid¼ 4.382,
bLogistic¼ 7.228, bRicker–Moore¼ 2.179.

Fig. 3: The phase boundary plotted in this figure is an interpolation of the
maximal values of fluctuation correlation length in Supplementary Fig. 10 (see
details below).

Fig. 4: On the basis of Monte Carlo simulations, with Tburnin¼ 0 and Tsteps¼ 10,
of the Ricker model, with E ¼ 0:1 and l¼ 0.12. For the signal (red lines), r¼ 2.3;
for the baseline behaviour (blue lines), r¼ 1.5. In each scenario, trajectories of the
synchronization, susceptibility and correlation length indices are plotted for 1,000
initial population configurations. Initial population densities are drawn from a
normal distribution with m0¼ 1.00 and s0¼ 0.1.

Supplementary Fig. 1: same as Fig. 1a–c but for the Logistic model, with r¼ 3.3,
e¼ 0.1 and l one of 64 evenly spaced values on the interval [0.04,0.07]. Snapshots
are shown in panel (C) for l¼ 0.0519.

Supplementary Fig. 2: (A,B) same as Fig. 1 a,b but for the Ricker–Moore model,
with r¼ 3.3, e¼ 0.1 and l one of 64 evenly spaced values on the interval
[0.13,0.19]. Snapshots are shown in panel (C) for l¼ 0.154.

Supplementary Fig. 3: integrated autocorrelation times of the synchronization
order parameter are estimated from the same Monte Carlo simulations used to
generate Fig. 1.

Supplementary Fig. 4: panels D–F are the same as Fig. 2 a–c. Panels A–C in this
figure plot the same statistics without finite-size scaling.Supplementary Fig. 5: same
as Supplementary Fig. 4 but for the Host–Parasitoid model, with r¼ 1.5, e¼ 0.1,
a¼ 20 and l one of 72 evenly spaced values on [0.347,0.397]. Initial population
densities, for both host and parasitoid, are drawn from a normal distribution with
m0 ¼ 0:50 and s0 ¼ 0:1. The critical noise level is lc ¼ 0:3696ð2Þ.

Supplementary Fig. 6: same as Supplementary Fig. 4 but for the Logistic model,
with with r ¼ 3:3, e ¼ 0:1 and l one of 72 evenly spaced values ½0:0475; 0:0550�.
The critical noise level is lc ¼ 0:05074ð2Þ.

Supplementary Fig. 7: same as Supplementary Fig. 4 but for the Ricker–Moore
model, with r ¼ 2:3, e ¼ 0:1 and l one of 72 evenly spaced values on ½0:144; 0:159�.
The critical noise level is lc ¼ 0:15016ð5Þ.

Supplementary Fig. 8: based on simulations of the 2D Ising model using the
Wolff algorithm[63], with Tburnin ¼ 1�106, Tsteps ¼ 1�107 and M ¼ 1�105, and
1=T (in units where Botzmann’s constant is set to unity) one of 64 evenly spaced
values on the interval ½0:385; 0:526�. Initial spin configurations are fully aligned (all
spin values are þ 1). The critical temperature and theoretical predictions for an
infinite lattice are well known in the physics literature22–25.

Supplementary Fig. 9: same as Fig. 2 d–f but for the A–C N ¼ 256 and D–F
N ¼ 1; 024 series.

Supplementary Fig. 10: based on Monte Carlo simulations, with
Tburnin ¼ 2�106, Tsteps ¼ 2�107 and M ¼ 1�105, of the Ricker model where N ¼
4; 096 and l is one of 26 evenly spaced values on the interval ½0:11; 0:16�. (A)
r ¼ 2:3 and e is one of 30 evenly spaced values on ½0:05; 0:20�. (B) e ¼ 0:1 and r is
one of 30 evenly spaced values on ½2:10; 2:65�.
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59. Solé, R. V. & Bascompte, J. Self-Organization in Complex Ecosystems (Princeton
Univ. Press, 2006).

60. Kapral, R., Oppo, G. L. & Brown, D. B. Phase separation and growth in a two-
variable discrete model. Physica A 147, 77–89 (1987).
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