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ABSTRACT: The stress response of polymer double networks depends not only on the properties of the constituent networks but
also on the interactions arising between them. Here, we demonstrate, via coarse-grained simulations, that both their global stress
response and their microscopic fracture mechanics are governed by load sharing through these internetwork interactions. By
comparing our results with affine predictions, where stress redistribution is by definition homogeneous, we show that stress
redistribution is highly inhomogeneous. In particular, the affine prediction overestimates the fraction of broken chains by almost an
order of magnitude. Furthermore, homogeneous stress distribution predicts a single fracture process, while in our simulations,
fracture of sacrificial chains takes place in two steps governed by load sharing within a network and between networks, respectively.
Our results thus provide a detailed microscopic picture of how inhomogeneous stress redistribution after rupture of chains governs
the fracture of polymer double networks.

■ INTRODUCTION

By consecutively cross-linking two interpenetrating polymer
networks, a composite material is created, which is commonly
referred to as a (polymer) double network (DN).1,2 In many
DNs, the two underlying networks do not share any
internetwork cross-linkers and are only topologically con-
strained at the chain level.1,3 For this reason, DNs can be
considered as a molecular composite.4 DNs have attracted
considerable interest due to the significant enhancement in
their (linear) stiffness, strength, and fracture toughness
compared to single networks (SNs).1,4−8 For example, through
this procedure, hydrogels can be constructed that have a
mechanical response similar to that of an elastomer.9

Experiments reveal that stiff, strong, and tough DNs are
created when the first network, or sacrificial network, is stiff
and weak, while the second network, or matrix network, is soft
and stretchable.9 To make networks with these properties, one
can vary the type and concentration of monomers and cross-
linkers in both networks.8 Additionally, these properties can be
controlled by swelling the sacrificial network either by
introducing a molecular stent3,10 or by using the monomer
of the second network.2 Experiments on a range of systems,
varying from elastomers2,4 to macroscopic networks,11 suggest
that the mechanism through which the enhancement occurs is

surprisingly general: sharing of load between the two networks
via their topological constraints.12

The corresponding microscopic picture is that, due to the
presence of the matrix chains, the expansion of a (microscopic)
crack in a DN requires considerably more energy than in an
SN.2,5−7,13 As a consequence, fracture of sacrificial chains in
DNs is less likely to lead to the formation of macroscopic
cracks and thus global failure.14 Instead, the load is transferred
(partially) from the sacrificial network to the matrix network
surrounding the broken sacrificial polymer chain.4 Thus, in a
DN, more sacrificial chains can break prior to global failure
compared to an SN. As the intact sacrificial chains in these
DNs can still resist deformation, the work required for global
failure of the material is increased significantly compared to the
individual networks. This concept has been termed the
sacrificial bond principle12 and is widely accepted as the
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main microscopic cause for the enhanced mechanical proper-
ties in the fracture regime. This microscopic picture for
accumulation of damage is confirmed by experiments2,13,15,16

and simulations.17 However, despite state-of-the-art exper-
imental techniques enabling the visualization of stress,18

strain,19−21 and the accumulation of damage at the local
level,2,4,22 a thorough understanding of how the microscopic
processes affect the global material response is still lacking.
Several constitutive models have been put forward that

provide a connection between the evolution of damage and the
global stress response of a DN.23−27 These models can be
fitted to experimental data and are also used in the
interpretation of the output of mechanophores, i.e., molecular
probes that report on the rupture of bonds locally.18 Some of
these models,25−27 referred to as statistical damage mechanics
models, predict the global response from the evolution of
chain-stretch with respect to an initial stretch distribution,
assuming affine deformation and breaking of overstretched
chains. As a result, the global mechanical response of a DN
predicted by these models is the sum of the responses of two
(or more) independent and affinely deforming networks.
Effectively, these models assume that (statistically or on
average) the intranetwork load distribution follows the global
deformation and that internetwork load redistribution is
negligible at the global level. However, in the case of DN
mechanics, these assumptions deserve some scrutiny because,
at first glance, they seem to be incompatible with the proposed
DN toughening mechanism where internetwork load sharing
plays an essential role. In this work, we investigate to what
extent the microscopic process of redistribution of load, both

within and between networks, affects the global mechanical
response.
To this end, we perform coarse-grained simulations of

polymer networks, where load redistribution is intrinsically
captured. To generate the DNs, we replicate a swelling
procedure in silico, which is commonly used to make both
hydrogel and elastomer DNs in the experiment.2,3,10 By
deforming the networks, we obtain information on both the
global stress response and the local stress, the local strain and
the accumulation of damage. We show that the in silico
networks behave in accordance with their experimental
counterparts. Subsequently, we compare these simulation
results with the affine predictions for the global stress and
local damage response. From this comparison, we find that in
our simulations the microscopic mechanism for damage
accumulation differs significantly from the affine approxima-
tion, with the affine prediction overestimating the fraction of
broken chains by almost an order of magnitude. Furthermore,
we show that the accumulation of damage occurs in two steps,
one controlled by load sharing within the sacrificial network
and one by load sharing between the two networks. Finally, we
show that in our simulations load sharing causes an enhanced
global mechanical response, in contrast to the affine prediction.
We conclude with a discussion of the implications of our
findings for the microscopic picture of fracture in DNs and
polymer networks in general.

■ RESULTS AND DISCUSSION

In Silico Preparation of DNs. We prepared our networks
following the procedure of refs 28−30. In particular, the first
network, or sacrificial network, is generated from 10 000

Figure 1. In silico double network generation. The sacrificial network is swollen from (a) λ0 = 1.00 to (b) λ = λ0. In this example, λ0 = 2.00. (c)
Monomers for the matrix are added at random positions in the swollen sacrificial network such that the number density of the entire system equals
ρ. (d) The matrix is formed within the sacrificial network with the same cross-linking procedure used for the sacrificial network but with a lower
cross-linker concentration.
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particles of diameter σ′ with a number density of ρ = 0.15
(Figure 1a). The majority of these particles are bifunctional
and can only form linear chains. A fraction c1 = 5% of the
particles are tetrafunctional and can cross-link polymer chains.
After network generation, we swell the sacrificial network
isotropically up to a swelling ratio λ0 = Lbox/L0,box (Figure 1b)
and add particles for the second network or matrix (Figure 1c).
The matrix is formed with a cross-linker fraction c2 = 1%
(Figure 1d). Because c2 < c1, the sacrificial polymer chains are
shorter (⟨L⟩ = 10.9σ′) than the matrix chains (⟨L⟩ = 47.3σ′) in
line with the empirical design rules for creating tough DNs.9

The distribution in chain lengths is exponential, as expected for
a random polymerization process (see the Supporting
Information for details). A detailed description of the
procedure can be found in the Methods section. We have
chosen the parameters based on a trade-off between
experimental reality and feasibility of the simulations (see the
Supporting Information for details).
Note that our protocol for creating DNs differs from other

simulation works in several ways. Typically, polymer networks
are formed by cross-linking preformed chains of given
length,17,31−33 rather than using a random polymerization-
like procedure as we do. Furthermore, we prepare DNs via
sequential polymerizations that conceptually resemble the
experimental protocols,2,3 instead of the simultaneous
assembly of both networks as previously done.17,31,32 There
are other examples of in silico DNs generated by swelling.
However, differently from our procedure, either internetwork
cross-linking is allowed34 or only the bonds of cross-linkers are
allowed to break.33

Mechanical Response of In Silico DNs. To obtain the
mechanical response of our networks, we perform a uniaxial
extension at a constant strain-rate and a constant volume, i.e.,
we impose a Poisson ratio ν = 0.5. We do this for both the
DNs and the stand-alone networks. To facilitate comparison
with the experimental work, we plot the engineering stress σ,
which is calculated by dividing the deviatoric (true) stress by
the global stretch λ (see the Methods section for details). All
results are reported in reduced (Lennard-Jones) units.
Following one of the curves in Figure 2a (e.g., λ0 = 1.00), we

can identify four mechanical regimes. After a short linear
response at low strain (the linear elastic regime), the network
becomes strain stiffening, as is expected for entropic springs,
around λ = 1.50 (the nonlinear elastic regime). Subsequently,

strain-softening starts from λ = 2.25, induced by breaking of
chains, until the maximum strength σmax of the sacrificial SN is
reached at λ = 3.35 (the strain-softening regime). After this
point, the stress drops rapidly, indicating that significant
damage is done to the network, cracks start to propagate, and
the capability to carry load is lost (the crack propagation
regime). Swelling the networks (without adding the matrix)
increases the linear modulus (see the Supporting Information)
and decreases the onset of strain stiffening, the stretch at the
maximum strength and the maximum strength. All of these
effects can be explained by the fact that network swelling leads
to prestretching of the polymer chains, so that polymers are
tensed already before applying uniaxial deformation, and less
additional stress is needed to induce strain stiffening and
rupture. This has been observed also in experiments.4,10 Note
that at the largest swelling ratio λ0 = 2.00, a few sacrificial
chains break already during the swelling procedure (∼0.5% of
all chains).
For the stand-alone matrix networks (matrix SN), obtained

by removing the sacrificial network, we find the same
mechanical regimes as for the sacrificial SN (Figure 2b).
However, as on average the matrix chains are longer than the
sacrificial chains, the onset of strain stiffening and the
maximum stress is found at higher strains. Because the matrix
networks are formed after the swelling procedure (and thus
carry no significant prestretch), we do not find a significant
shift in the onset of strain stiffening or the strain at maximum
strength with λ0. We do find a dependency of σmax on λ0, which
is caused by the increase in the matrix monomer density ρ2
with the swelling ratio: ρ2 = ρ − ρ1 = ρ(1 − 1/λ0

3). In other
words, the polymer chain density in the matrix increases with
λ0, providing more chains to resist elongation.
The mechanical response of the DNs (Figure 2c) is clearly

influenced by both the sacrificial network, which dominates at
low strain, and the matrix network, which dominates at high
strain. The loop in stress at intermediate strains marks the
transition between these two regimes. A similar transition is
observed for some hydrogels and elastomers in experiments in
the form of a plateau with a constant stress after a certain
“yield” point.4,10 Such an extended fracture response is atypical
for hydrogels and elastomers, which normally fracture in an
abrupt manner after reaching their maximum strength, i.e.,
brittle fracture. In analogy to the fracture response of various
metals, this extended fracture response is referred to as ductile.

Figure 2. Mechanical response of SNs and DNs for a range of swelling ratios (see the legends). We plot the engineering stress σ versus the global
stretch λ for (a) sacrificial SNs (c1 = 5%), (b) matrix SNs (c2 = 1%), and (c) DNs (c1 = 5%, c2 = 1%). Note that the matrix SNs are generated by
removing the sacrificial chains from the DNs.
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In polymer double networks, this plateau is caused by the
separation of the material into a soft and highly stretched
region, in which many sacrificial bonds are broken, and a stiff
and weakly stretched region, in which the sacrificial network is
still intact, also referred to as necking. A force balance between
these two regions causes the stress to be constant. We do not
observe a plateau in our simulations because our networks are
too small to get a separation into a soft (weakly stretched) and
a stiff (highly stretched) region. In our simulations, the
maximum strength of the material σmax is determined by the
stress peak either before or after the loop, depending on λ0. We
think this is indicative of the transition from brittle to ductile
fracture, which is observed in the experiment as a function of
λ0.

4 For small λ0, the first peak is highest, so that in an
experimental setting the material will fracture abruptly once
the local strain in any part of the network exceeds the strain at
σmax. However, for higher λ0, when the second peak becomes
higher than the first, a coexistence between regions of different
(local) λ becomes possible at stress equal to the peak stress of
the first network, resulting in a ductile fracture response. The
brittle-to-ductile transition would then occur at the point
where both peaks are of the same height.
We already mentioned that the initial mechanical response

of our DNs is dominated by the sacrificial network.
Experimental work on hydrogels and swollen elastomers
shows similar results4,35 and reveals that the experimental
data can be rescaled onto a single master curve based on the
areal strand density of the sacrificial network.4,10 Figure 3
reveals that also our simulation data can be collapsed on a
master curve for both sacrificial SNs and DNs, confirming that
at least up to the first peak in stress the response is dominated

by the sacrificial network. The rescaling corrects for the
increase in prestretch (λcor = λλ0) and the reduction in areal
strand density in the sacrificial network (σcor = σλ0

2). The onset
of strain stiffening in our rescaled curves occurs around λcor ≈
1.5, and the peak stress falls around λcor ≈ 3.0. The latter value
is close to the maximum extension limit of our chains under
ideal conditions (λlimit = √N = 3.37 with ⟨N⟩ = 11.35).
The collapse for both DNs and sacrificial SNs shows that the

maximum stress at the first peak is determined by the strength
of the sacrificial network, resulting in the linear scaling between
σmax and λ0

−2 shown in Figure 3b. In the experiment, a similar
scaling was found for the yield stress in ductile DNs,4 implying
that in the experiment the yield stress is determined by the
strength of the sacrificial network. However, unlike our
simulations, this linear scaling is only found at high λ0. At
low λ0, the experimentally measured yield (or breaking) stress
increases with λ0.

4 Our explanation for this experimental
observation is that the fracture strength of polymer networks is
not only determined by the areal strand density but also by the
presence of defects. Because stress concentrates around
defects, their presence can drastically reduce the global stress
at which macroscopic cracks are formed and global failure is
induced. In DNs, the effect of these defects in the sacrificial
network is mitigated because the expansion of the defects into
macroscopic cracks is hampered by the matrix chains. An
increase in λ0 increases the volume fraction of matrix chains
and thus increases the screening effect. As a result, the yield (or
breaking) stress will increase with λ0 as long as global failure is
induced by defects in the sacrificial network. Only at high λ0,
when most defects are screened by the matrix chains, the areal
strand density will dominate the fracture response, leading to

Figure 3. Initial stress response is controlled by the sacrificial network. (a) Rescaled stress−strain curves of sacrificial SNs (c1 = 5%), with σcor = σλ0
2

and λcor = λλ0. (b) Maximum stress of sacrificial SN versus 1/λ0
2, a proxy for a real strand density. (c) Rescaled stress−strain curves of DNs (c1 = 5%,

c2 = 1%). (d) Rescaled stress−strain curves of the matrix SNs (c2 = 1%).
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the expected decrease in the yield stress with increasing λ0. In
our simulations, we do not observe this sensitivity to defects
because our networks are too small to contain defects that can
dominate the fracture response.
On passing, we note that the postpeak response of the

simulated networks is more ductile than for experimental ones.
This is a finite-size effect, also observed in elastic spring
networks.36 In the remainder, we therefore focus on the
prepeak behavior, which we have shown to be consistent with
the experimental observations. Furthermore, we note that
networks formed at a higher number density of ρ = 0.34
behave in a similar way to networks formed at ρ = 0.15 (see
the Supporting Information for details).
Deviations from Affine Deformation. The goal of this

work is to assess whether the process of inhomogeneous load
redistribution affects the global response and the process of
damage accumulation at the local level. To quantify this effect,
we compare the results of our simulations, where load sharing
is intrinsically captured, with an affine prediction for the
response, which by definition does not take into account the
interaction between the networks. The simulations more
closely resemble the experimental reality, where the local load
distribution is a result of internetwork rearrangements and
excluded volume interactions between networks, while the

affine prediction assumes that the local deformation exactly
follows the globally applied deformation, implying that
interactions within and between networks have a negligible
effect on the global response. We make these affine predictions
based on the evolution of the distribution in end-to-end
distances under affine deformation, similar to the statistical
damage mechanics models discussed earlier. For easy
comparison between chains of different lengths, we introduce
the dimensionless chain-stretch r/L with r being the end-to-
end distance and L being the total chain length. We assume
that the polymers break at an average chain-stretch of r/L =
1.129, which corresponds to the stretch where the activation
barrier for bond rupture is equal to the thermal energy37 (see
the Supporting Information for details). Note that in our
simulations for sacrificial SNs, chains break around r/L = 1.08.
We attribute this lower value to the presence of topological
constraints, which can lead to an underestimation of the chain
tension based on the end-to-end distance. Since the
contribution of each polymer to the affine stress−strain
response is independent, crack nucleation or propagation
cannot be captured in the affine prediction. Our comparison,
therefore, focuses on the damage accumulation regime prior to
σmax.

Figure 4. Fraction of broken chains ϕbroken as a function of global stretch. The affine prediction for ϕbroken is indicated with the dashed lines. (a)
ϕbroken for sacrificial chains in the sacrificial SN (c1 = 5%) for a range of λ0 as indicated in the legend. To illustrate the large difference between the
affine prediction and the simulation results, we plot the curves for the entire range of ϕbroken in the lower panel and for a smaller range in the upper
panel. (b) ϕbroken for sacrificial chains in DNs (c1 = 5%, c2 = 1%) for the same swelling ratios as panel (a). (c) ϕbroken for matrix chains in matrix SNs
(c2 = 1%) for a range of λ0 as indicated in the legend. (d) ϕbroken of matrix chains in DNs (c1 = 5%, c2 = 1%) for the same swelling ratios as panel
(c).
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Damage Accumulation. From the microscopic point of
view, the main characteristic of the double network response is
the enhanced fracture of sacrificial chains. Indeed, we observe a
significant increase in the fraction of broken sacrificial chains
ϕbroken in the DN (Figure 4b) compared to that in the SN
(Figure 4a). The enhancement increases with λ0, reaching up
to a 100% increase for λ0 = 2.00. This observed enhancement
is a clear indication that in our simulations on DNs the
sacrificial network interacts with the matrix network.
Comparing the simulation data (solid lines) with the affine

predictions (dashed lines), we find that the affine prediction
overestimates ϕbroken by almost an order of magnitude for both
the sacrificial SN and sacrificial DN (see the bottom panels in
Figure 4a,b). In the affine prediction, the behavior of all chains
in a single network is considered to be independent, i.e., if a
chain breaks, this has no effect on the stress carried by the
neighboring chains. The significant overestimation of ϕbroken by
the affine models implies that in our simulation interactions at
the network level play an important role in the failure response.
The simplest way to introduce network structure into the affine
model would be to consider global failure when percolation is
lost. However, in such a simple model, the fraction of broken
chains is still too high with respect to our simulations (ϕbroken
≈ 0.99).38 In fact, the fraction of broken chains observed in
our simulations is closer to the fractions observed for the
failure of athermal elastic networks,36,39 where the fracture
response is controlled by network rigidity.36,40−42

Going back to our simulation data, we also find that the rate
of chain failure (the slope of the curves) drops significantly at
the start of the transition regime in the stress−strain curve for
DNs (Figure 3c), implying that in a DN the fracture of
sacrificial chains takes place in two steps. This is in sharp
contrast to the affine prediction where the development of
ϕbroken is the same for both the sacrificial SN and the sacrificial
DN due to the absence of interactions between the two
networks.
Combining these insights, we hypothesize that the two-step

fracture mechanism in our simulations is controlled by network
interactions. The first step is controlled by interaction within
the sacrificial network, while the second step is controlled by

the topological constraints between the sacrificial network and
the matrix. A drop in the fracture rate has been observed
experimentally for elastomers,4 and also experiments on
hydrogels identified more than one fracture regime.13 Finally,
we note that in our simulations the rupture of matrix chains
does not take place in two steps; however, the fracture of
matrix chains occurs earlier in DN networks than in the matrix
SN (Figure 4c,d).

Which Chains Are Likely to Break? The next step in
studying the microscopic fracture response is to ask whether
we can predict which chains will break. A good first guess
would be that shorter chains are likely to break at a lower
global strain than longer ones because for an ideal chain, the
average stretch at break scales as Nb/(√Nb) = √N. However,
we do not find this trend for the sacrificial network in either
the simulation results or the affine prediction (see the
Supporting Information). This is because in a network the
average end-to-end distance of a polymer is constrained by the
connections with other chains in the network. This results in a
distribution in the average chain-stretch, or prestretch,
especially in disordered networks with a distribution in chain
length and local connectivity. In Figure 5a, we show the
distribution in prestretch as the distribution in ri/L, which is
the end-to-end distance along one axis, divided by the contour
length L of the polymer.
Considering this distribution in average prestretch, we could

hypothesize that instead of the chain length the chain-stretch at
0% strain determines when a chain will break, so that the
sequence in which bonds break can be predicted from the
initial chain-stretch distribution. This is also assumed in the
statistical damage mechanics approach.25 In Figure 5b,c, we
plot the average prestretch at 0% strain ⟨r∥,0%/L⟩ of broken
chains as a function of the global stretch λ at which the chains
break including both the simulation results (solid lines) and
the affine prediction (dashed lines). For the sacrificial network,
we indeed find that at low strains, the initial chain-stretch does
scale with the global strain at break, just as for the affine
prediction. For SNs, this is true for almost all broken chains
(see the Supporting Information). However, in DNs, this
correlation becomes weaker with an increasing λ0 and for high

Figure 5. Role of initial chain-stretch, or prestretch, in chain scission. (a) Chain prestretch distribution at 0% strain for swollen sacrificial networks
embedded in a matrix (blue), as well as for matrix networks formed inside swollen sacrificial networks (red). The swelling ratios λ0 are indicated in
the legend. In addition to the data for DNs (solid symbols), the prestretch distribution of the sacrificial network prior to swelling (λ0 = 1.00) is
shown (open symbols). Here, the stretch ri/L is the end-to-end distance in one direction divided by the contour length of the polymer. The
distributions in these plots are based on ri/L in all three dimensions. (b, c) Average initial chain-stretch along the direction of applied strain ⟨r∥,0%/
L⟩ of broken chains as a function of the global strain λ at chain rupture for (b) sacrificial DNs and (c) matrix DNs. The dashed lines represent the
affine prediction. In all plots, the error bars indicate the standard deviation over four configurations.
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λ0 the correlation even seems to be lost after the first peak
stress (this point also corresponds to the minimum in the
chain rupture rate). This observation indicates that up to the
peak stress the breaking of chains is largely defined by the
configuration at 0% strain, i.e., network rearrangements do not
affect the tension on the chains that break before the peak.
However, after this peak stress (the start of the transition
region in the DN), the initial structure no longer controls
which sacrificial chains break. As a consequence, the initial
chain-stretch is not a predictor of failure anymore and the
interactions with the matrix (i.e., topological constraints)
dominate. This interpretation aligns with our hypothesis that
network fracture takes place in two steps.
Note that the initial chain-stretch distribution of the

sacrificial networks is determined by the structure of the
network and the level of swelling λ0. In our simulations, the
evolution of chain-stretch with λ0 is largely affine with respect
to the distribution at λ0 = 1.00 (see the Supporting
Information). We also find that the initial chain-stretch
distribution of both the sacrificial and matrix networks is the
same in the SN and the DN, indicating that prior to
deformation, interactions between the networks are negligible.
Note that for the matrix polymers we do find a correlation
between chain length and breaking strain in both the
simulation results and the affine prediction; this is because
there is a wider distribution in chain lengths in the matrix
networks (see the Supporting Information).
Which Chains Do Break? The observation that the initial

chain-stretch is predictive for when a bond breaks over a large
strain-range (Figure 5), similar to the affine prediction, is
surprising considering the enormous overestimation of broken

chains by the affine approximation (Figure 4). To investigate
what is going on, we plot the distribution of the initial chain-
stretch for all of the intact chains at a particular strain (Figure
6). We find that although the initial chain-stretch is predictive
for when a chain can break, this does not mean that all chains
with that initial chain-stretch will break. Actually, only a few of
those chains break, which is in sharp contrast with the affine
prediction (Figure 6b). Our explanation is that in the first
failure regime the deformation is largely affine in the
undamaged network, but once a polymer breaks, significant
stress relaxation becomes possible via rearrangements at the
local level, alleviating the tension on polymers that surround
the broken chain. In other words, we expect that stress
heterogeneity within the network grows once damage starts to
accumulate. Similar behavior is observed for the rupture of
matrix chains, as shown in Figure 6c,d.

Evolution of the Prestretch Distribution. The data on the
accumulation of damage suggest that in our simulations
inhomogeneous redistribution of stress is taking place both
within single networks during the first failure process and
between networks during the second failure process. As the
stress distribution within a polymer network is strongly related
to the distribution in chain-stretch, we expect that any
inhomogeneous mode of stress redistribution should be
reflected in the evolution of the chain-stretch distribution as
a function of strain. Furthermore, by comparing the evolution
of chain-stretch in our simulations, where intra- and internet-
work interactions are accounted for, with the affine prediction
for the evolution of chain-stretch, where intra- and internet-
work interactions are neglected, we can identify if and when
network level processes affect the mechanical response of

Figure 6. Predictability of chain rupture based on initial average chain-stretch. (a) Distribution in initial chain-stretch for all intact sacrificial chains
in a DN at λ0 = 1.75 at a maximum strain ϵmax. The distributions are scaled by the fraction of intact chains with respect to the initial configuration.
(b) Affine prediction for the sacrificial chains in the DN. (c) Distribution in initial chain-stretch for all intact matrix chains in a DN at a maximum
strain ϵmax. (d) Affine prediction for matrix chains in a DN.
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polymer networks. In particular, we look at the distribution in
end-to-end distances parallel to the axis of deformation r∥/L
(Figure 7), as the chain-stretch along the direction of applied
deformation is primarily responsible for the global mechanical
response.

When the strain is increased from λ = 1.0 to 1.2 for a
network at λ0 = 1.75, we see that the distribution for both the
sacrificial SN and the sacrificial DN flattens, in a similar way as
expected for affine deformation (Figure 7a2). Around the first
peak stress at λ = 1.6 (Figure 7a3), we see an accumulation of
chains that are stretched up to their contour length (r∥/L =
1.0) in both the sacrificial SN and sacrificial DN. This behavior
is very different from the response expected based on affine
deformation, where no peak is visible, and implies that in our
simulations additional load imposed on strongly stretched
chains does not always lead to chain rupture (as in the affine
prediction) but can also lead to redistribution of load to less

stretched polymer chains. This mode of inhomogeneous stress
redistribution might be caused by local stress relaxation after
chain rupture, as discussed in the previous section. As the same
trend is observed in sacrificial SN and sacrificial DN chains this
is a clear sign of inhomogeneous redistribution of load within
the network.
At higher strains (λ = 3.0 and 4.0; Figure 7a4,a5), the

behavior of sacrificial chains in the DN diverges from the
behavior in SNs. While the sacrificial chains in the SN relax to
a stretch below the initial chain-stretch and remain there at
higher strains as a result of macroscopic network fracture, a
large part of the sacrificial chains in the DN remain close to
their entropic stretching limit (r∥/L = 1.0). At λ = 4.0 (Figure
7a5), the number of chains at maximum extension increases
again in the DN. The divergence between the SN and DN
chain-stretch demonstrates the effect of adding a matrix on the
microscopic stress distribution within the network, revealing
that due to internetwork interactions, sacrificial chains are still
under significant tension beyond the first peak stress. Only far
beyond the second peak in stress (λ = 10.0), the sacrificial
chains start to relax, as strongly stretched chains rupture (not
shown) due to the macroscopic fracture of the DN.
In the matrix network (Figure 7b), we observe that initially

the SN and DN behave in the same way, but between a stretch
of λ = 3 and 4, we see that there are more stretched chains in
the DN compared to those in the SN, indicating that during
the transition regime, an interaction between the two networks
arises. These data also match the shift in the stress response we
have seen earlier for the matrix DN compared to those in the
matrix SN (Figure 2). Overall, it becomes clear that in our
simulations we find inhomogeneous stress redistribution at the
network level at low strains and inhomogeneous stress
redistribution between networks at high strains. These
different processes for stress management explain the two
distinct failure regimes identified for the sacrificial chains in
Figure 4.

Impact on Global Response. So far, we have shown that the
microscopic response of the networks is dominated by
processes of inhomogeneous stress redistribution both within
single networks and between networks. With increasing strain,
these microscopic processes deviate further from the affine
picture. The question that remains is: do these processes only
matter at the local level or do they also affect the global stress
response? To answer this question, we make a prediction for
the stress response under affine deformation based on the
prestretch distributions shown previously, assuming that the
resistance to deformation of a single chain can be described as
an extensible freely jointed chain (eFJC; see the Methods
section for details). Although our short chains are not expected
to behave exactly as ideal chains, a cross-check of this method
with the simulation result reveals that this assumption still
serves our purpose (see the Supporting Information for
details).
Comparing the affine prediction with the simulation results,

we find that in the linear regime, the affine prediction agrees
quite well with the simulations at low swelling ratios (see the
Supporting Information). For the response at larger strains, we
look at the networks for λ0 = 1.75 in Figure 8a,8b. We
immediately see that in the affine prediction (dotted lines)
strain stiffening sets in earlier than in our simulations (solid
lines) both for the SNs (Figure 8a) and for the DN (Figure
8b). This suggests that in the nonlinear elastic regime network
rearrangements reduce the tension on individual polymers.

Figure 7. Evidence of network−network interaction based on stretch
distribution. Comparison of chain-stretch in a network (SN and DN)
at different strains as indicated in the plot (λ0 = 1.75). (a) Sacrificial
network as a stand-alone network (SN, blue) and as part of a DN
(purple). (b) Matrix network as a stand-alone network (SN, red) and
as part of a DN (purple). For both panels, the affine prediction for the
chain-stretch distribution is indicated in gray. The shading indicates
the standard error computed over the four configurations.
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Even though the impact on the global stress is significant,
calculation of the nonaffine displacement of the cross-links
shows that in most cases these rearrangements are relatively
small in the nonlinear elastic regime (see the Supporting
Information). Because of the nonlinear stress response of
single polymer chains, a small rearrangement can still have a
significant impact on stress, providing a possible explanation
for the strong effect observed here.
We find that the stress of the affine prediction quickly

overshoots the simulation response if bond breaking is not
considered for both SNs and DNs (dotted lines). If instead, we
assume that chains with a stretch larger than 1.129 break, we
find an affine SN response (dashed lines) in Figure 8a that is
qualitatively similar to the simulation results (solid lines).
However, in the affine case, the onset of strain-softening occurs
earlier, the maximum stress is higher, the strain at maximum
stress is lower, and the stress drops after the maximum stress is
smoother. These differences imply that inhomogeneous
redistribution of load within a network upon breaking of
chains has a significant impact on the global stress response.
The picture is the same if we compare the affine prediction for
the behavior of the DN (dashed line) with the simulation
result (solid line) in Figure 8b. We note that the loop observed
in the affine case is less pronounced than in the simulations.
We attribute this to the broad distribution in chain length,
which causes a relatively smooth decay of the affine stress in

the sacrificial network (Figure 8a) and the relatively small
difference in cross-linker density between the sacrificial
network and the matrix.
We have found several indications from the microscopic

response in our simulations that interactions arise between the
two networks if the strain is high enough (Figures 4, 5, and 7).
To check if these network−network interactions affect the
global stress response, we compare the stress of the DN with
the sum of the stresses for the individual SNs via the
enhancement factor σ1+2,DN/(σ1,SN + σ2,SN) (Figure 8c). We
observe that significant enhancement starts after a certain
stretch and that the onset of enhancement decreases as a
function of λ0. The onset of enhancement seems to coincide
with the peak strain of the sacrificial SN (Figure 2). After the
onset of enhancement, the enhancement factor increases up to
a factor of 8.0 at the peak. Also, the location of this peak
decreases as a function of λ0. The enhancement peaks just after
the end of the transition region. If we plot the stress of the
sacrificial network and the matrix network in the DN (σ1,DN
and σ2,DN in Figure 8d) together with the total stress σ1+2,DN,
we see that the enhancement in stress contains contributions of
both the sacrificial network and the matrix, further confirming
that the enhancement is caused by the interaction between the
two networks. The second peak in stress in the sacrificial DN
response suggests that even after the yield stress, sacrificial
chains resist deformation. Indeed, we find that around this

Figure 8. Effect of load sharing on the global stress response. (a, b) Comparison of the stress response from simulation with the affine prediction
(λ0 = 1.75, c1 = 5%, c2 = 1%). The stress response upon affine deformation is determined from the average cross-linker positions at 0% strain,
assuming that the stress carried by the polymer in between the cross-linkers can be described as a freely jointed chain with extensible quartic bonds
(eFJC; see the Methods section for details). (a) SN response of the sacrificial network (blue) and the matrix network (red) from simulation (solid
line), and the affine prediction for the mechanical response (dotted line) and the affine prediction considering polymers with r/L > 1.129 to be
broken (dashed line). (b) DN response. (c) Enhancement in measured stress in the DN σ1+2,DN/(σ1,SN + σ2,SN) with σ1+2,DN being the measured
stress in the DN, σ1,SN being the measured stress in the sacrificial SN, and σ2,SN being the measured stress in the matrix SN. Swelling ratios are
indicated in the legend. (d) Stress response of the sacrificial network σ1,DN (blue) and the matrix network σ2,DN (red) embedded in the DN at λ0 =
1.75. For reference, we also plot the total stress response of the DN σ1+2,DN (purple).
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second peak in stress, a considerable fraction of the sacrificial
chains is stretched up to their contour length (Figure 7a5).

■ CONCLUSIONS AND OUTLOOK
Our simulations confirm that in a DN, both the local and
global responses are governed by sharing of load at the
network level. Similar to experiments,4 the mechanical
response and accumulation of damage at low strains are
governed by the sacrificial network even in the strain-softening
regime. The behavior at the microscopic level reveals that upon
deformation and damage accumulation stress is redistributed
inhomogeneously within the network via small and local
nonaffine rearrangements.
After the yield stress, the mechanical response is controlled

by both the sacrificial network and the matrix network. The
enhancement in broken chains (Figure 4), the change in failure
mechanism (Figure 5), and the altered stretch distributions
(Figure 7) reveal that both networks interact with each other
through their topological constraints, leading to large nonaffine
rearrangements at the network level. These internetwork
interactions cause an enhancement in the fraction of broken
sacrificial chains, in line with the sacrificial bond principle. At
the global level, these interactions cause a significant
enhancement in the stress response of DNs compared to
those of the SNs (Figure 8).
The comparison of our simulation data with affine

predictions suggests that for any polymer network (SN or
DN) the inhomogeneous redistribution of load through the
network can be an important mechanism in the nonlinear
elastic and fracture response. In the nonlinear elastic regime,
nonaffine rearrangements appear to be small. Therefore, we
expect that in this regime the rearrangements are mainly driven
by the nonlinear stress response of entropic springs in
combination with the disordered structure of the network.
However, in the fracture regime, we find strong deviations
from the affine prediction. In particular, we observe that a
significant fraction of the chains is stretched beyond their
contour length (Figure 7). Experiments on single polymer
chains also reveal that the extension of polymer chains up to
this limit is possible.37 These data suggest that in the fracture
regime enthalpic stretching could play an important role in the
behavior of networks prior to the propagation of a macroscopic
crack.
Our simulations provide predictions for the effect of load

sharing on the microscopic fracture response. Several of these
predictions can be verified in the experiment. For example, the
low fraction of broken chains (Figure 4) could be investigated
by quantification of the fraction of broken chains prior to crack
propagation by incorporating chain scission reporters in the
network such as dioxetane2 or anthracene.43 Our simulations
also suggest that the distribution in chain-stretch provides
information on the (inhomogeneous) redistribution of load
within a network and between networks (Figures 5 and 7).
Although tracking the evolution of the chain-stretch distribu-
tion would be a challenging endeavor, experiments on Förster
resonance energy-transfer (FRET)-based force-sensors show
that this might be possible experimentally.44

■ METHODS
In Silico Synthesis of Double Network. The networks are

formed by the self-assembly of binary mixtures of bifunctional and
tetrafunctional patchy particles, as done in refs 28−30. To build the
first network, we simulate the binary mixture at a number density ρinit

= 0.17. We stop the simulation when most (>99.9%) of the bonds
have formed, after which we remove the few clusters that are not
attached to the largest one. No more than 3% of the particles are
removed at this stage. We take the resulting system, locate all of the
chains, defined as clusters of bifunctional particles connecting the
cross-linkers, and add five monomers to each to make the system
more swellable (resulting in a number density ρinit,add = 0.33).

To swell the network in LAMMPS,45 we convert the network of
patchy particles to a network of harmonic bonds and equilibrate the
network in the NVT ensemble for 10τ. Subsequently, we convert the
harmonic bonds to quartic bonds and equilibrate the network in the
NPT ensemble for 100τ such that the network settles at an
equilibrium box size Lbox,0. The resulting network is the sacrificial
SN at λ0 = 1.00 and number density ρ = 0.15. This network is swollen
isotropically (NVT ensemble) in steps of ∼0.1% strain such that the
new box size is Lbox = Lbox,0λ0, providing the sacrificial SNs at higher
swelling ratios.

To form the corresponding DNs, we add matrix monomers and
subsequently perform the same self-assembly procedure described
above, with the difference that this time the bifunctional and
tetrafunctional particles are embedded in the existing polymer
network. After the assembly of the binary mixture completes, we
once again remove the few disconnected clusters but this time we do
not add any additional monomers to the chains. The resulting DNs
are NVT-equilibrated in LAMMPS first using harmonic bonds (for
10τ) and then using quartic bonds (for 10τ). Finally, the matrix SNs
are obtained by removing the sacrificial network from the DNs.

For all LAMMPS simulations, the time step for integration dt =
0.001τ. For simulations performed in the NVT ensemble, the
temperature is controlled via a Nose−́Hoover thermostat and kept
fixed at T = 1.0 (in reduced units) with a damping time tdamp = 0.1τ
(100 time steps). In addition, for simulations performed in the NPT
ensemble, the pressure is fixed at P = 1.0 (in reduced units) and the
corresponding tdamp = 1.0τ (1000 time steps).

The interaction between the particles is described by the Weeks−
Chandler−Andersen (WCA) potential, a truncated version of the
Lennard-Jones potential
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with R the interparticle distance, σ′ = 1.0 is the particle diameter, ϵ =
1.0 is the depth of the potential well, and Rc = 21/6 is the cutoff
distance, unless the particles are connected by a bond; in that case,
the particle−particle interaction is described by a quartic potential (K
= 2351, B1 = −0.7425, B2 = 0.0, Rc = 1.5, U0 = 92.74467)
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These parameters have been used previously to study polymer
rupture.46 The quartic bonds break irreversibly if their extension
exceeds Rc = 1.5. However, the maximum force is already reached
around an extension of 1.133σ′ and the bonds are expected to break
even earlier, around an extension of 1.08σ′, due to thermal
fluctuations (see the Supporting Information for details). In some
equilibration steps, harmonic bonds are used instead of a quartic bond
(K = 1000, R0 = 0.96)

= −U R K R R( ) ( )0
2 (3)

Extension Protocol. The stress response is obtained by
performing a continuous uniaxial extension at a strain-rate ϵ ̇ = 1 ×
10−4 while keeping the volume of the simulation box constant (lateral
dimensions are reduced during extension). A similar procedure has
been followed in the literature.33,34 Decreasing the strain-rate by a
factor of 10 does not significantly alter the mechanical response. The
stress response σ is determined from the virial stress excluding kinetic
contributions, which are nevertheless negligible. First, we calculate the
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deviatoric (true) stress as σT = σii − σhydr. Subsequently, we convert
this to the engineering stress σ = σT/λ. For every configuration, the
deformation protocol is performed in the x, y, and z directions and the
output is averaged. Data presented in the manuscript are averages
over four configurations. If error bars are used, they indicate the
standard deviations in the values between these four configurations.
Analysis of Chains. Polymer chains are defined as the set of

particles in between cross-linkers, the latter having connectivity
different from 2. Some of the Nchains in a network are trivial dangling
ends, i.e., one of the ends of the chain has functionality of 1, and are
indicated as Ndang. We also identified (first-order) loops when both
chain ends share the same cross-linker, and we indicated these as
Nloops. Both loops and dangling ends are expected to not contribute to
the mechanical response; therefore, in a first approximation, we can
define the active chains as Nact = Nchains − Ndang − Nloops. We define
the chain length, L, as b × (Nbeads − 1), where b = 0.96 is the rest
length of the quartic bond and Nbeads is the number of particles in a
polymer chain including the cross-linkers. We define the end-to-end
distance r as the Euclidean distance between cross-linkers. To
calculate r prior to deformation, we use the average cross-linker
positions from a simulation run of 10 000τ, where the cross-linker
locations are saved every 50τ. For the calculation of r during
deformation, the cross-linker positions are based on snapshots, which
are saved every Δλ = 0.01. In both cases, coordinates are unwrapped
to correct for periodic boundary crossings and corrected with respect
to their combined center of mass. We consider a polymer chain to be
broken if one of the bonds inside the chain breaks. Breaking of bonds
is reported via a custom extension of the LAMMPS code.
Affine Predictions. Affine predictions for ri/L distributions and

stress are made based on the time-averaged positions of chain ends of
active chains, i.e., cross-linkers. Based on this configuration, we can
determine the average location of chain ends after affine deformation.
From these positions, we calculate the end-to-end distances of all of
the polymer chains. Chains are considered broken if their chain-
stretch exceeds the maximum stretch of a quartic bond (1.08/b =
1.129). Broken chains are not included in the distributions.
To predict the stress response, we assume that the stress response

of the single polymers can be described as an extensible freely jointed
chain (eFJC),47 which covers both entropic and enthalpic
contributions. In this way, we can obtain the stress contribution of
every polymer based on the location of the chain ends. Combining the
contributions of all active polymers, we get our prediction of the virial
stress tensor and thus the global response based on affine
deformation.
To find the stress contribution of every polymer, we rewrite the

chain-stretch as r/L = ((rL)/(L)) λb, where rL/L is the entropic chain-
stretch and λb = Rb/b is the enthalpic stretch of a quartic bond. λb is
f o u nd b y n ume r i c a l l y s o l v i n g t h e f o r c e b a l a n c e
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the inverse Langevin equation (we use the approximation by Puso48).

Based on this value, we can calculate the force from =
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. Note that kBT = 1.0 in reduced units.
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