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Multivariate discovery and replication of five
novel loci associated with Immunoglobulin G
N-glycosylation
Xia Shen 1,2,3, Lucija Klarić 1,3,4, Sodbo Sharapov5,6, Massimo Mangino 7,8, Zheng Ning2, Di Wu9,

Irena Trbojević-Akmačić4, Maja Pučić-Baković4, Igor Rudan1,3, Ozren Polašek10, Caroline Hayward 3,

Timothy D. Spector7, James F. Wilson 1,3, Gordan Lauc4,11 & Yurii S. Aulchenko 5,6,12

Joint modeling of a number of phenotypes using multivariate methods has often been

neglected in genome-wide association studies and if used, replication has not been sought.

Modern omics technologies allow characterization of functional phenomena using a large

number of related phenotype measures, which can benefit from such joint analysis. Here,

we report a multivariate genome-wide association studies of 23 immunoglobulin G (IgG)

N-glycosylation phenotypes. In the discovery cohort, our multi-phenotype method

uncovers ten genome-wide significant loci, of which five are novel (IGH, ELL2, HLA-B-C, AZI1,

FUT6-FUT3). We convincingly replicate all novel loci via multivariate tests. We show that IgG

N-glycosylation loci are strongly enriched for genes expressed in the immune system, in

particular antibody-producing cells and B lymphocytes. We empirically demonstrate the

efficacy of multivariate methods to discover novel, reproducible pleiotropic effects.
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A large number of genetic loci have been mapped for
complex traits of clinical relevance via genome-wide
association studies (GWAS). However, our understanding

of the biology behind the association is rather limited for most of
these loci. In order to move further towards the goal of unraveling
the biological mechanisms underpinning complex disease, large-
scale omics data have been generated as intermediate phenotypes
to help fill in the gap between the genome and organismal level
traits. Nonetheless, in contrast to the complex traits that are
commonly analyzed, the large number of omics variables often
have a strong correlation structure that cannot be neglected1.
Therefore, instead of conventional univariate GWAS, multivariate
analysis approaches are needed in GWA analyses to incorporate
the ubiquitous, partly genetically regulated, correlation among
omics variables.

Many multivariate methods have been developed for genetic
analyses2, 3 (see Supplementary Note 1 for details, also review
by ref. 4). In GWAS context, multivariate omics analysis with
explicit modelling of phenotypic covariance faces several
challenges. In genetically structured samples, this structure needs
to be taken into account. The multivariate methods allowing for
covariates can handle population stratification by including
principle components of the genomic kinship matrix in the
model. However, the effects of small groups of close relatives—if
present—are usually not reflected in the leading principal
components because such kinship generates weaker LD than
large-scale population structure does5. In such situations, the
method of choice is mixed effect models; however, a fast mixed
model analysis for multiple (more than tens of) phenotypes is still
difficult. GEMMA6 and Limix7 were designed to overcome such
difficulty, although the computational cost can be high for a large
number of phenotypes such as that encountered in omics data.
Another difficulty faced in multivariate analysis of omics
phenotypes is finding a method for replication, which would
allow for both tests of significance and consistency of the model
being replicated.

Despite the number of methodological studies, few empirical
multivariate GWAS have been published for humans. This may
be largely attributed to the statistical complexity and computa-
tional difficulty of such analyses as well as outlined above issues
addressing population stratification, replication, and interpreta-
tion. Among multivariate GWAS conducted to date, most are
dealing with very complex phenotypes (e.g., refs 8, 9). These
studies usually propose a new method, and investigate real data to
demonstrate that one may expect increased mapping power when
using these. However, few new loci have been convincingly
identified using such methods for complex phenotypes, and no
replication was attempted. Therefore—at least for the moment—
the practical gain from multivariate GWAS of complex traits
seems to be rather limited. The situation appears to be somewhat
different for traits more proximal to the genotype. Stephens10

applied multivariate GWAS to summary level data from the
Global Lipids Genetics Consortium (GLGC-201011, N up to
100,184) and identified 18 new loci on the top of 95 loci identified
in single trait analyses. While no replication was provided in this
work, importantly, we observe that 11 of the loci identified by
multivariate analyses were later confirmed with genome-wide
significance in the next, bigger, univariate meta-analysis by GLGC
in 201312 (N up to 188,577). It appears the yield of new loci is
even bigger for metabolomics traits. Inouye et al.13 performed
multivariate GWAS of 130 NMR metabolites (grouped in 11 sets)
in 6600 individuals. The study demonstrated that multivariate
analysis doubles the number of loci detected in this sample.
Again, no replication was performed, however, among seven
novel loci discovered by Inouye et al. via multivariate analysis,
three demonstrate genome-wide significant (P< 5×10−11)

association with at least one NMR metabolite investigated
recently in a sample of up to 24,925 individuals14.

These observations strongly suggest that at least some of the
novel loci discovered via multivariate GWAS are true positives.
The fact that “univariate” replication of novel loci from the lipid
and metabolomic studies is not perfect (around 50%), even after
substantially increased sample size, suggests that either multi-
variate analyses are more prone to the appearance of statistical
artifacts and/or are subject to different genome-wide significance
thresholds, or that the underlying pleiotropic effects captured in
multivariate models are hard to capture using standard univariate
analyses (see ref. 10 for examples of such scenarios), and require
different approach to replication.

Here, we explore the potential of multivariate methods for
studying genetic regulation of glycan variation. Glycans are
complex carbohydrates bound to the surface of proteins, whose
structure and function they consequently substantially influence.
Glycosylation is one of the most abundant post-translational
protein modifications15, 16, but knowledge about its biological
function was long hindered by glycans’ structural complexity.
Unraveling the complex network of genes involved in protein
glycosylation can provide not only a better understanding of this
fundamental biological process, but might also provide insights
into how these molecules could be involved in complex human
diseases, and potentially used as biomarkers in prediction of
disease susceptibility17–20.

Previous GWAS have analyzed either the N-glycans released
from all plasma proteins21, 22 or focused on N-glycosylation of a
single protein—Immunoglobulin G (IgG), which is first isolated
from other plasma proteins, followed by quantification of
enzymatically-released glycans23. These studies uncovered six loci
for total plasma and nine loci for IgG glycosylation21–23; with
only one locus (FUT8) overlapping between the two. The
majority of plasma proteins are synthesized in the liver and
pancreas24 while immunoglobulins are synthesized specifically in
cells of the immune system25. The lack of overlap between results
of these genetic studies suggests different mechanisms of
biological control of glycosylation in these two tissues.

Here, we apply multivariate methods to the IgG N-glycosyla-
tion traits and empirically test whether novel loci can be
convincingly replicated. To utilize data from populations with
high kinship, we formulate and implement a multivariate GWAS
workflow based on combination of a linear-mixed-model-based
phenotypic transformation, MANOVA, and multiple regression.

Results
Joint analysis of IgG glycans identifies five novel loci. A single
protein (IgG) was isolated from the plasma of 1960 individuals
from the population of the Orkney Islands in Northern Scotland
(the ORCADES cohort26). The N-linked glycans were assayed
using ultra performance liquid chromatography (UPLC), result-
ing in 23 quantitative measurements.

The heart of our analysis procedure is, essentially, MANOVA
statistics (see Methods for details). However, in order to avoid the
effect of confounding by population genetic structure and
kinship, prior to MANOVA analysis each phenotype undergoes
linear-mixed-model-based GRAMMAR+ transformation we have
previously developed27 as an improvement of GRAMMAR
procedure28 for rapid association analysis in pedigrees and
samples form genetically isolated populations.

We performed multivariate GWAS combining all the 23 IgG
N-glycosylation phenotypes using MANOVA. The same proce-
dure was also applied to eight subsets of the traits based
on different chemical and structural properties of glycans,
namely galactosylation, monogalactosylation, digalactosylation,
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Fig. 1 Manhattan plots of multivariate GWAS for IgG N-glycosylation phenotypes in the ORCADES discovery population. The known and novel loci are
labeled in black and red, respectively. 23 IgG N-glycosylation phenotypes were analyzed together and also in eight different functional subgroups, including
sialylation and galactosylation. a Analysis of 23 N-glycosylation traits; b Analysis of eight sialylation phenotypes; c Analysis of 17 galactosylation
phenotypes. The horizontal dashed lines represent the genome-wide significant P-value threshold of 5×10−8/9= 5.6×10−9 and the genome-wide suggestive
significant threshold of 5×10−8

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00453-3 ARTICLE

NATURE COMMUNICATIONS |8:  447 |DOI: 10.1038/s41467-017-00453-3 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


sialylation, monosialylation, disialylation, fucosylation and bisect-
ing GlcNAc (N-acetyl glucosamine). The definition of subgroups
is given in Supplementary Table 2. The distribution of the
observed test statistic was contrasted to that expected under the
null hypothesis, similar to the genomic control29 (Supplementary
Fig. 1). Given that we have analyzed nine groups of traits,
although they are strongly overlapping, we decided to take a
conservative approach and have considered nominal MANOVA
P-values< (5×10−8)/9= 5.6×10−9, as genome-wide significant.

In total, nine GWA scans were performed. Our multivariate
analysis replicated five out of nine previously established23 IgG N-
glycosylation loci (ST6GAL1, B4GALT1, FUT8, SMARCB1-
DERL3 and SYNGR1-TAB1-MGAT3; Fig. 1, Supplementary
Table 3) and detected five new loci (IGH, ELL2, HLA-B-C,
AZI1, FUT6-FUT3, named by genes according to functional
candidacy; Table 1, Supplementary Table 6, Supplementary
Data 1). Among the five novel loci, four were not detectable
using the conventional univariate analysis. The IGH locus could
be identified using univariate GWAS on GP9, however, it was
not mapped in the previous univariate GWAS with even larger
discovery sample23 (N= 2247).

Genetic effects on phenotype scores are strongly replicated. To
replicate and interpret the genetic effect of each newly identified
locus (Table 1, Supplementary Table 6), one could perform a
multivariate test, resulting in a P-value, which, when significant,
might be interpreted as replication. However, in regular single-
trait GWAS, a stronger replication criterion is used. This criterion

asks for both significance and consistency in the direction of
effect, i.e., that the same allele should be associated with
increased/decreased risk or trait value in both discovery and
replication samples. To implement such a ‘significant and con-
sistent’ replication criterion, we first suggest estimating a linear
combination of the phenotypes, i.e., constructing a phenotypic
score, S, that best fits the associated genotype in the discovery
cohort, and then computing the score and testing its association
with the genotype in a replication cohort. If the same allele is used
as reference in both discovery and replication cohorts, this con-
sistency criterion translates into finding a positive association
between the phenotypic score and the genotype in the replication
cohort. In Table 1, βS and PS represent the estimation and
replication of the genotypic effects on such phenotype scores. The
coefficients to construct the scores were estimated using a linear
regression of the SNP dosage on the phenotypes (Supplementary
Table 4). For each locus, the same score, with coefficients esti-
mated only in the discovery cohort, was tested against the
same variant in two independent Croatian cohorts, KORCULA
(n= 850) and VIS (n= 840), and meta-analyzed for replication.
Following the same protocol, we performed a second replication
in a much larger cohort TWINSUK (n= 4479), which confirmed
all novel loci at a high significance level (Table 1; regression t-test
P< 0.05/5/9= 1.1×10−3, are considered significant in replication).
Such estimates also allow us to perform meta-analysis of esti-
mates from individual cohorts, resulting in high significance for
all the five newly discovered loci (Supplementary Table 6).

To be confident about our replication results and to verify the
suggested replication procedure, we also considered “univariate”

Table 1 Novel loci detected via multivariate GWAS for IgG N-glycosylation phenotypes

Candidate
genes

Phenotypes
grouping

Top variant EA Discovery:
ORCADES

Replication I: KORCULA + VIS Replication II: TWINSUK

βS (s.e.) P PMANOVA βS (s.e.) PS rρ PMANOVA βS (s.e.) PS rρ
ELL2 digalactosylation rs11135441 T 0.0336

(0.0056)
1.6E
−09

4.5E−04 0.0276
(0.0058)

2.1E
−06

0.60 6.9E−09 0.0183
(0.0027)

5.5E
−12

0.86

sialylation rs11135441 T 0.0313
(0.0050)

5.0E
−10

1.1E−04 0.0234
(0.0056)

2.7E
−05

0.76 3.6E−09 0.0091
(0.0014)

2.7E
−10

0.96

HLA-B-C galactosylation rs116108880 G 0.0408
(0.0066)

8.3E
−10

6.2E−01 0.0188
(0.0053)

4.0E
−04

0.39 3.8E−08 0.0160
(0.0031)

2.2E
−07

0.74

IGH N-glycosylation rs35590487 T 0.0671
(0.0080)

6.3E
−17

2.3E−02 0.0218
(0.0074)

3.1E
−03

0.10 1.0E−31 0.0534
(0.0040)

5.2E
−41

0.76

monogalactosylation rs35590487 T 0.0465
(0.0055)

3.6E
−17

7.1E−02 0.0178
(0.0040)

9.5E
−06

0.90 6.3E−25 0.0358
(0.0032)

1.2E
−28

0.86

galactosylation rs35590487 T 0.0637
(0.0073)

3.4E
−18

8.8E−02 0.0212
(0.0059)

3.3E
−04

0.02 4.7E−30 0.0501
(0.0039)

4.1E
−38

0.85

monosialylation rs35590487 T 0.0325
(0.0046)

9.9E
−13

3.5E−01 0.0114
(0.0044)

9.9E
−03

0.99 6.3E−24 0.0287
(0.0026)

1.2E
−27

0.97

sialylation rs35590487 T 0.0379
(0.0054)

1.5E
−12

3.5E−01 0.0113
(0.0050)

2.3E
−02

0.36 5.9E−23 0.0287
(0.0026)

1.2E
−27

0.94

fucosylation rs58087925 T 0.0625
(0.0070)

3.8E
−19

7.2E−02 0.0242
(0.0059)

4.5E
−05

0.18 3.7E−34 0.0523
(0.0038)

8.3E
−43

0.93

bisecting GlcNAc rs8013055 A 0.0370
(0.0052)

1.0E
−12

3.0E−01 0.0077
(0.0058)

1.8E
−01

0.70 1.1E−15 0.0261
(0.0029)

1.9E
−19

0.96

AZI1 N-glycosylation rs9319617 C 0.0453
(0.0076)

2.5E
−09

9.7E−03 0.0204
(0.0064)

1.4E
−03

0.69 7.6E−07 0.0199
(0.0033)

2.2E
−09

0.75

galactosylation rs9319617 C 0.0422
(0.0073)

2.7E
−09

2.6E−03 0.0189
(0.0047)

6.2E
−-05

0.79 1.2E−06 0.0176
(0.0029)

8.5E
−10

0.78

fucosylation rs2659009 A 0.0414
(0.0063)

3.9E
−11

5.1E−04 0.0168
(0.0049)

5.8E
−04

0.85 6.0E−05 0.0159
(0.0027)

4.0E
−09

0.89

FUT6-3 N-glycosylation rs12019136 A 0.0574
(0.0078)

1.9E
−13

3.3E−01 0.0022
(0.0070)

7.5E
−01

0.01 3.3E−15 0.0251
(0.0031)

6.3E
−16

0.82

Nine multivariate GWA scans were performed, including one using all the 23 phenotypes, as well as eight different subgroupings according to type of glycosylation. Replication was performed by (i)
MANOVA test in the replication cohorts (PMANOVA); and (ii) testing the association between the phenotypic score (constructed based on the coefficients estimated in the discovery cohort) and the
corresponding genotype dosages (PS, reported only for replication cohorts). βS denotes the coefficient of regression of genotype dosage onto the phenotypic score. Consistency of effects was performed
by testing the correlation of partial genotype-phenotype correlations (rρ) in the discovery and replication cohorts. EA, effect allele. Extended details are given in Supplementary Table 6.
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replication, in which for novel loci that were not detectable by
univariate GWAS (ELL2, HLA-B-C, AZI1, FUT6-3), we tested
association between the top SNP and all 23 traits using conventional
univariate model. We considered the results to be replicated by this
approach if we observed an association, which was consistent
between replication and discovery and with P-value passing
Bonferroni correction for the number of SNPs and traits tested
(5 SNPs and 23 traits). The results are presented in Supplementary
Data 1. On the top of significant and consistent replication for all
four loci considered, one can see that for ELL2 and FUT6 we can
achieve replication of association between SNP and the “top”
associated trait from univariate analysis and for HLA-B-C and AZI1
we achieve replication at the second-best trait. This provides
additional and convincing evidence that the reported associations
are true, and suggests the score replication procedure is valid.

Locus-specific pleiotropic model can vary across cohorts.
Geometrically, the procedure for estimating the phenotype score
projects the SNP dosage vector onto the hyperplane defined by
the phenotype vectors in the discovery cohort (Supplementary
Fig. 10). Based on the same hyperplane of phenotypes, an exact
replication would yield a projected SNP dosage vector in the
replication cohort which has a correlation of 1 with that of the
discovery cohort, i.e., in Supplementary Fig. 10, θ should be
nearly zero. Having a significant positive genetic effect on the
phenotype score in the replication cohort only replicates the fact
that |θ| < 90°. Namely, the “score replication” above replicates the
genetic effect on the same phenotype score but does not guar-
antee that all the partial correlations between the SNP dosage and
the phenotypes are consistent. Therefore, for each newly dis-
covered locus, we tested the correlation between the set of these

partial correlations (ρ) in the discovery cohort to that in each
replication cohort. In Table 1 and Supplementary Table 6, rρ and
Pρ represent the estimates and significance of such correlations.

The partial correlations between each genotype dosage and the
phenotypes can be viewed—up to a constant—as the partial
coefficients from multiple regression of the dosage on the
phenotypes (shown in Supplementary Data 1). The rρ values are
rather high (all> 0.74) when comparing ORCADES and TWIN-
SUK, whereas when contrasting ORCADES and the Croatians, for
HLA, FUT6 and some phenotype groups of IGH, such correlation
estimates appear to be close to zero. As an example, for the IgG
galactosylation phenotypes, we visualize the partial correlation
contrast for the IGH and AZI1 loci (Fig. 2). As we standardized
the partial correlations in each cohort to z-scores, the regression
slope in each panel represents rρ. We can see that the effects of the
AZI1 locus correlate well across replication cohorts, whereas for
the IGH locus, the correlation is low for ORCADES vs. Croatian
cohorts. From Table 1 and Supplementary Table 6, one can see
this is not an exclusive feature of the galactosylation group, but
can be observed for other trait groups as well. Because differences
in experimental/sample collection procedures between the cohorts
would not be locus-specific, they are unlikely to be the cause. We
may speculate that the observation of different multivariate
association patterns across populations has a genetic explanation,
such as different LD structures between British and Croatian
populations and/or presence of specific environmental factors
modulating the action of the loci in question.

Connection to immune-related tissues and disease. We used
DEPICT software30 to perform gene prioritization, gene set and
tissue enrichment analyses. Eighteen analyses (GWAS of 9 trait
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sets, using either genome-wide significant SNPs or SNPs with
MANOVA P< 1×10−5) were run. Results are reported in Sup-
plementary Data 2. The gene sets demonstrating most significant
enrichment included regulation of protein kinase activity and
Endoplasmic Reticulum-nucleus signaling pathway. The top
enriched tissues/cell types included B-lymphocytes, plasma cells,
antibody-producing cells, plasma (see Fig. 3 and Supplemetary
Fig. 11–12 for trait group-specific results).

To link to established knowledge and to provide insights
regarding potential underlying functions of the IgG glycosylation
loci, we searched association databases using PhenoScanner
(http://www.phenoscanner.medschl.cam.ac.uk/) for our reported
top variants (8 and 6 for the new and known loci, respectively)
and obtained 2011 association records. Filtered based on FDR <
5%, we identified associations between SNPs detected in this
study and 17 complex diseases and disease-related traits (Fig. 4,
Supplementary Table 5).

Discussion
We start with discussion of the methodological implications, and
continue to discuss biological aspects of our findings.

Our analyses are of methodological interest over and above
the new biological insight they have provided.The fact that we
discover and replicate a number of new loci using a multivariate
approach is consistent with results previously demonstrated by
Inouye et al.13 for metabolomics, and, although to a lesser extent,
by Stephens10 for classical lipids. As we have demonstrated, the
P-value adjustment method TATES did not show the same power
as our multivariate analysis. In principle, TATES produces quite
similar results to the univariate GWAS, because it does not jointly
model the correlations among the phenotypes and genotypes, but
instead adjusts the univariate GWAS results accounting for the
correlations of univariate analyses statistics. However, phenotypic
correlation and correlation between statistics are not necessarily
consistent with each other, especially at a single genetic variant.
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As such, TATES is not an ideal method for multivariate analysis,
but rather one for multiple testing correction.

To examine the discovery power of different multi-trait
methods, we contrasted the power of our efficient MANOVA
statistic with GEMMA (as a representitive for mixed model based
methods) and TATES (as a representative for P-value correction
methods) under different scenarios, where we see that, for
unrelated individuals, the MANOVA statistic performs no worse
than the other methods (Supplementary Fig. 7). Although
GEMMA should perform better than our two-step approach, the
difference is only expected to become substantial when the
sample includes a large group of highly related individuals, which
is not the case with our discovery cohort. Because the variance-
covariance structure of the phenotypes is modeled explicitly, we
found that MANOVA and GEMMA methods are no worse than
univariate or TATES in all scenarios investigated, and in some
scenarios they substantially outperform TATES (Supplementary
Fig. 7). This highlights the importance of joint modeling of
multiple omic phenotypes, which is able to identify loci that were
missed in univariate GWAS.

Intuitively, the power of multivariate analysis should depend
on the amount and pattern of correlations among the phenotypes,
and between the phenotypes and genotypes. MANOVA in gen-
eral has good power for intermediately correlated phenotypes, as
it approximates Fisher’s method for independent phenotypes,

while nearly identical phenotypes are not expected to contribute
additional information. Beyond mathematical correlation, biolo-
gical relevance of the phenotypes should be considered in prac-
tice, for example to link genetic variants to (sub)groups of omics
measurements reflecting specific biological processes, such as the
glycosylation groups in this study.

Certainly, increasing the number of tested phenotype
groups would lead to more multiplicity of the statistical
testing procedure. Here, we focus on nine particular groups
and Bonferroni correct the number of GWA scans, in order
to be conservative in reporting discoveries and follow the
conventional rules in such genetic research. However, we
would also emphasize that multiplicity is not simply a problem
that reduces power, but also offers an opportunity to discover
more.

Another perspective of looking at power increase via multi-
variate analysis is that the power is gained by reducing noise in
the measurements when combining multiple correlated pheno-
types. For example, in our replication procedure, the effect at a
single locus is interpreted by expressing the genotype dosage as a
linear combination of multiple phenotypes, which is similar to
our common knowledge that summing up multiple repeated
measurements of a trait would lead to the reduction of relative
residual variance and therefore improve statistical power31. Given
this, multivariate analysis can be applied, not only to omics data,
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but also to any correlated phenotypes in general, where power
may be gained due to this statistical property.

Methods for meta-analysis are critical in current statistical
genomics: they allow for pooling of results of analyses from dif-
ferent studies thus achieving large sample sizes, statistical power
and replication. As MANOVA was applied for the multivariate
GWA analyses, there was no single effect size estimate for
multiple phenotypes available. Meta-analysis based on the esti-
mated effects size would therefore not be straightforward. In a
large meta-analysis, we can combine the P-values with a weight
for each cohort depending on its sample size. At the same time,
pooled estimates of the coefficients for constructing the pheno-
type score could be obtained, though the meta-analysis based on
such multiple coefficients will be less powerful. Meta-analysis in a
replication procedure can be easily conducted based on the one
degree-of-freedom test on the phenotype score estimated in the
discovery cohort. However, our results suggest that pleiotropic
models may differ between cohorts, which calls for extra caution
(e.g., use of correlation between partial regression coefficients)
when performing multivariate replication.

Our multi-phenotype method identified five novel loci
associated with the human IgG N-glycome; all of them were
convincingly replicated. These loci include such positional
candidates as the immunoglobulin heavy locus (IGH), IgH
transcription elongation factor ELL2, human leukocyte antigen
(HLA-B-C), and a locus including fucosyltransferases 6 and
3 (FUT6-FUT3); additionally, we have identified a locus
on chromosome 17 flanked by AZI1 and TMEM105 (Table 1,
Supplementary Figs. 2–6).

The novel chromosome 19 association includes the FUT3-5-6
gene cluster (Supplementary Fig. 6). This locus was recently
shown to be associated with glycosylation of plasma proteins21;
based on our results, this is the second known locus shared in
common between total plasma protein and IgG glycosylation.
Products of this gene cluster are three fucosyltransferases,
enzymes that catalyze transfer of fucose from the donor
guanosine-diphosphate fucose to the acceptor molecules. The
main products of these genes are the Lewis x and Lewis a
structures that determine Lewis blood groups. However, accord-
ing to current knowledge, these enzymes catalyze fucosylation of
antennary GlcNAc32, resulting in glycan structures that are not
found on IgG, and therefore the mechanism through which this
locus affects IgG glycosylation is not obvious.

The newly established locus on chromosome 6 includes the
human leukocyte antigen class I HLA-C and HLA-B genes. The
HLA super-locus on chromosome 6 is a gene-rich region that has
been associated with more than a hundred, mostly autoimmune,
diseases. There are at least 132 protein-coding genes, as well as
the classical HLA genes. Many products of these genes are
molecules involved in either innate immunity or the adaptive
immune response—such as the classical HLA which encode the
antigen-presentation apparatus33.

Several potential candidates are found at the novel chromo-
some 17 locus. We note that this locus was suggestively associated
in the previous univariate analysis of Lauc et al.23, which included
our discovery cohort ORCADES as one of the five cohorts
analyzed. The peak of association is flanked by the AZI1
and TMEM105 genes, and includes several other genes, among
which SLC38A10 was prioritized by DEPICT. Potentially of
greater interest might be IKZF3, which encodes a transcription
factor that interacts with IKZF1. The IKZF1 locus was associated
with IgG glycosylation in the previous GWAS and suggestively
rediscovered in this study. These two transcription factors
are involved in regulation of differentiation and proliferation
of B lymphocytes34, the cells where immunoglobulins are
synthesized.

For the IGH locus (Supplementary Fig. 4), no gene was
prioritized by DEPICT. The locus contains genes encoding the
heavy chains of immunoglobulins, also including immunoglo-
bulin G (IGHG genes). Immunoglobulin G consists of two
biologically different regions—the antigen binding fragment
(Fab) and crystallizable fragment (Fc). While the Fab region is
responsible for binding with antigens, the Fc region is responsible
for binding with effector molecules and cells35, guiding the
immune response. Both regions can be glycosylated, with the
majority of glycans coming from the Fc region and leading the
immune response36. While a biological relationship between
IGHG and IgG is obvious, it is not immediately clear
what mechanism could link variation in IGHG region and IgG
glycosylation. Similarly, it is interesting that in the novel
associated interval on chromosome 5, the ELL2 gene is prioritized
by DEPICT. ELL2 encodes the RNA polymerase II transcription
elongation factor, which plays a role in immunoglobulin
secretion. ELL2 regulates exon skipping of IGH and is necessary
for processing mRNA transcribed from IGH37.

In a previous GWAS, Lauc et al.23 used single-trait analyses to
detect nine loci, of which four contained genes encoding glyco-
syltransferases with obvious links to IgG N-glycosylation. Here,
we find an additional five loci, of which only one contains a gene
directly involved in protein glycosylation. Our results show that
genetic control of IgG glycosylation is a complex process invol-
ving multiple biological pathways. Another interesting observa-
tion is that we observe clear biological links between some of the
positional candidate genes, for example IGHG and ELL2, IKZF1
and IKZF3. With future larger studies, we should be able to
further illuminate the complexity of the genetic control of
glycosylation.

Methods
The ORCADES discovery cohort. The Orkney Complex Disease Study
(ORCADES) is a family-based study of 2078 individuals aged 16–100 years
recruited between 2005 and 2011 in the isolated Scottish archipelago of Orkney26.
Genetic diversity in this population is decreased compared to Mainland Scotland,
consistent with the high levels of endogamy historically. Fasting blood samples
were collected and over 300 health-related phenotypes and environmental expo-
sures were measured in each individual. Genome-wide genotyping was performed
using Illumina HumanHap300 and OmniExpress arrays.

The KORCULA and VIS replication cohorts. The CROATIA-Vis study includes
1008 Croatians, aged 18–93 years, who were recruited from the villages of Vis and
Komiža on the Dalmatian island of Vis during 2003 and 2004 within a larger
genetic epidemiology program38. The CROATIA-Korcula study includes 969
Croatians between the ages of 18 and 9839. The field work was performed in 2007
and 2008 in the eastern part of the island, targeting healthy volunteers from the
town of Korčula and the villages of Lumbarda, Žrnovo and Račišće. Genome-wide
genotyping was performed using Illumina HumanHap300 and OmniExpress
arrays.

The TWINSUK replication cohort. The TwinsUK cohort (www.twinsuk.ac.uk,
also referred to as the UK Adult Twin Register) is an adult twin British registry
shown to be representative of the United Kingdom female population40, 41. From
this registry, a total of 4479 subjects, had N-linked IgG glycans measurements and
were included in the analysis. Genotyping was performed using the HumanHap300
and the HumanHap610Q array.

Ethics statement. All research in this study that involved human participants has
been approved by Research Ethics Committees—in Orkney and Aberdeen for the
Orkney Complex Disease Study (ORCADES); in Croatia and Edinburgh for the
VIS and KORCULA studies; and by St Thomas’ hospital Research Ethics Com-
mittee for TWINSUK. All ethics approvals were given in compliance with the
Declaration of Helsinki (World Medical Association, 2000). All human subjects
included in this study have signed appropriate written informed consent.

Glycomic and genomic data. Information about IgG glycosylation phenotypes
can be found in Supplementary Table 2, and more details are given in Lauc et al.
(2013)23. All samples were imputed to the 1000 Genomes using the b37 reference
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panel. Variants with minor allele frequencies (MAF) < 0.05, or imputation
R-squared < 0.50, were excluded from the genome scan.

Multi-trait association test statistic. For k phenotypes, where k is often much
less than the sample size n, the association between the group of k phenotypes
Yn× k and a biallelic marker g can be expressed as a multivariate regression

Yn ´ k ¼ 1n ´ 1 μ
′
k ´ 1 þ gn ´ 1 β

′
k ´ 1 þ en ´ k

which can be tested via MANOVA for the null hypothesis

H0 : β ¼ 0

Although MANOVA has been a standard multivariate test method, here, we
show how a Pillai trace statistic can be obtained from the data. Note that different
MANOVA test statistics are equivalent for a single marker test (Supplementary
Fig. 8). Here, each column of the phenotype matrix has been GRAMMAR+
transformed27 so that the population structure is corrected using linear mixed
models (see the next subsection).

We can calculate the residual variance-covariance matrix of the above
multivariate linear regression as

E ¼ Y� 1 μ̂′ � g β̂′
� �0

Y� 1 μ̂′ � g β̂
′� �

The corresponding residual variance-covariance matrix of the null model is

E0 ¼ Y� E Y½ �ð Þ0 Y� E Y½ �ð Þ
The model variance-covariance matrix captured by the genetic variant is then

H ¼ E0 � E

Analog of the univariate ANOVA F-test, let λj (j= 1, …, k) be the eigenvalues
solving

det H� λEð Þ ¼ 0

Pillai's trace can be calculated as

V ¼ tr H Hþ Eð Þ�1� � ¼
Xk
i¼1

λi
1þ λi

and the corresponding F-statistic is

V=k
1� Vð Þ= n� k� 1ð Þ � Fk;n�k�1

When n is large, k times the F-statistic is approximately χ2(k)-distributed.

Genome-wide association analyses. Prior to GWAS, each trait was adjusted for
fixed effects of sex, age, and the other experimental factors. Glycans are quantified
on 96-well plates, where the plate factor represents plate membership for each
sample. The column factor represents the column on the plate (twelve columns per
plate) for each sample and machine the UPLC machine on which the sample was
ran. While the whole plate goes through the same procedure from the first step of
the experiment, the UPLC instrument can quantify only one third of the plate at
time, represented in the part factor. The residuals were inverse-Gaussian-
transformed to standard normal distributions. The residuals expressed as Z-scores
were used for all association analyses. In both the genotypes from SNP array and
1000 Genomes-imputed data, markers with minor allele frequency < 0.05 or
imputation R-square < 0.30 were excluded. GRAMMAR+ transformation27 was
implemented in the GenABEL-package42, part of the GenABEL-suite43. The
genomic relationship matrix used in the analyses was generated by the ibs()
function (with weight= “freq” option), which uses SNP array data to estimate the
realized pairwise kinship coefficient. The polygenic() function was used to obtain
the GRAMMAR+ transformed phenotypes (grresidualY) from linear mixed
models. All univariate GWAS inflation factors (lambda values) were close to 1,
and the multivariate GWAS inflation factor was 1.005, showing that this method
efficiently accounts for family structure.

We implement the above multivariate analysis in the Multivariate() function of
the MultiABEL package. Implemented in this function is the MANOVA of
multiple phenotypes against each single variant genotype dosage, and for the
method option, in our analysis, Pillai’s trace44 was used as the test statistic for the
multivariate association. Univariate analysis of each phenotype at each locus was
performed using linear regression via the lm() function in R, with subsequent
genomic control to correct the inflation factor. The resulted univariate P-values
were passed onto TATES for P-value adjustment analysis.

Phenotype score estimation and replication. In the discovery cohort, the top
variant genotype dosage was regressed on the multiple phenotypes, and the esti-
mated coefficients were used for constructing the compound phenotype which is a
linear combination of the original phenotypes. It should be noted that the F-test
statistic of this regression model is equivalent to the MANOVA test statistic used in
our GWAS. In each replication population, the same compound phenotype was
constructed using the coefficients estimated in the discovery population, and
thereafter, tested against the genotype dosage of the same variant using linear

regression. The effect of the variant on the compound phenotype estimated from
this regression model is denoted as βs. The R-squared from regressing the
phenotype score on the genotype is equivalent to that from regressing the genotype
on multiple phenotypes45 (e.g., in the MultiPhen method, see Supplementary Fig. 8
for equivalence of statistics). Therefore, given that the joint genetic effects are
homogeneous in different cohorts, the replication power using such a phenotype
score is consistent with MANOVA test replication. After applying inverse Gaussian
transformation, the regression coefficients represent genotype-phenotype partial
correlations, which can be compared between discovery and replication cohorts as
a strong replication for homogeneity of genetic effects.

Code availability. The free and open source R package MultiABEL is available at:
https://cran.r-project.org/package=MultiABEL. Its developer version is available at
the GenABEL project repository: https://r-forge.r-project.org/R/?group_id=505.
Tutorial of the multivariate GWA analysis procedure using MultiABEL is available
at: https://github.com/xiashen/MultiABEL/.

Data availability. The results of the nine genome-wide multivariate scans in the
discovery analysis are available in the DataShare repository (http://dx.doi.org/
10.7488/ds/2069) of the University of Edinburgh. The remaining data are
contained within the paper and Supplementary Files or available from the corre-
sponding authors upon request.
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