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Abstract

Macrophages are the first immune cells in the developing embryo
and have a central role in organ development, homeostasis,
immunity and repair. Over the last century, our understanding of
these cells has evolved from being thought of as simple
phagocytic cells to master regulators involved in governing a
myriad of cellular processes. A better appreciation of macrophage
biology has been matched with a clearer understanding of their
diverse origins and the flexibility of their metabolic and
transcriptional machinery. The understanding of the classical
mononuclear phagocyte system in its original form has now been
expanded to include the embryonic origin of tissue-resident
macrophages. A better knowledge of the intrinsic similarities and
differences between macrophages of embryonic or monocyte
origin has highlighted the importance of ontogeny in macrophage
dysfunction in disease. In this review, we provide an update on
origin and classification of tissue macrophages, the mechanisms of
macrophage specialisation and their role in health and disease.
The importance of the macrophage niche in providing trophic
factors and a specialised environment for macrophage
differentiation and specialisation is also discussed.
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INTRODUCTION

Macrophages were first identified by Metchnikoff
in 1882 when he observed phagocytes
surrounding and trying to devour a rose thorn
introduced into the transparent body of a starfish
larva.1,2 Metchnikoff also identified major roles
for these phagocytes in host resistance against
infections, phagocytosis of unwanted cells during
development, injury and repair. Macrophages
have subsequently been shown to initiate and
shape the adaptive immune system and in general
acting as an inflammation rheostat. Macrophages

achieve this by processing and presenting
antigens to T cells3 and by integrating multiple
signals from a repertoire of cell surface and
cytoplasmic pattern recognition receptors.4

Macrophages are the first immune cells to
appear in an organism’s development and are
essential during the early stages of development.5

Tissue macrophages also play a crucial role in
homeostasis,6,7 wound healing8 and tissue
regeneration.9,10 The wide variety of macrophage
functions partly arise because of their ability to
sense and sample the local tissue environment
and via expression of specific transcription factors
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and enhancer-associated histone modifications
unique to a local microenvironment.11,12

Macrophages are also able to make extensive
changes to their intracellular metabolism in
response to environmental and inflammatory
cues.13 Unfortunately, aberrant macrophage
function is strongly associated in the pathogenesis
of disease states such as fibrosis, obesity and
cancer.14 In this review, we discuss our current
understanding of the ontogeny of tissue-resident
macrophages, the interaction of macrophages
with components of the tissue niche and how
these interactions shape macrophage function.
We also discuss the links between cellular
metabolism and macrophage phenotype, the
contribution of monocytes to the maintenance of
tissue macrophage populations and how
monocyte-derived macrophages differ from
embryo-derived macrophages.

MACROPHAGE ONTOGENY AND THE
MONONUCLEAR PHAGOCYTE SYSTEM

Macrophages were classified as part of
mononuclear phagocyte system (MPS) along with
monocytes and dendritic cells (DCs) in the mid-
1970s.15 According to the description of the MPS,
tissue macrophages were considered fully
differentiated cells that were constantly being
replenished by circulating monocytes.16 The
concept of MPS is supported by in vitro studies
showing monocyte differentiation into
macrophages and in vivo adoptive transfer of
monocytes under inflammatory conditions
showing recruitment and conversion to
macrophages in the peritoneal cavity.17 However,
several studies in humans and mice have
contradicted the non-dividing, terminally
differentiated, circulation-dependent ontogeny of
tissue macrophages. In congenic parabiotic mice,
which share the same circulation and have a
mixed population of lymphocytes and monocytes
in the blood, the macrophage populations in the
brain18,19 and epidermis20 do not mix even after a
year of parabiosis. Moreover, histological
approaches have demonstrated the presence of
macrophages before the establishment of
definitive haematopoiesis that gives rise to
monocytes.21–23 Several human studies have
further supported the circulation-independent
origin of tissue macrophages. For example,
patients with severe monocytopenia have normal
numbers of macrophages in the epidermis

(Langerhans cell, LC)24,25 and host LCs remained in
patients who received sex-mismatched allogeneic
bone marrow transplants.26,27 Donor LCs can also
be detected for years in recipients of human limb
graft.28 Donor macrophages also self-maintain for
years in the transplanted heart,29 liver30 and
lungs.31–33 Despite these findings, more work is
needed to understand the origin of tissue
macrophages in humans. Much of our current
knowledge of tissue macrophage ontogeny comes
from mouse models. It should be noted that
whilst these models are extremely useful, they
have inherent limitations around life span and
environmental exposure that may not reflect the
situation in humans.

The embryonic origin of tissue macrophages has
also been confirmed by Cre-LoxP approaches. The
chemokine receptor, CX3CR1, is prominently
expressed in the MPS.34 Using CX3CR1Cre:R26-YFP
reporter mice that display constitutive Cre activity
in CX3CR1+ cells and drug-induced activation of
Cre in CX3CR1CreER:R26-YFP mice, it has been
established that most tissue macrophages are
generated prenatally that self-renew in peripheral
tissues during adulthood at least in the absence
of challenge.17,35 These observations led to the
conclusions that tissue-resident macrophages are
not solely derived from haematopoietic stem cells
(HSCs) or BM-derived progenitors but also derived
from local or embryonic precursors.36 This has led
investigators to more thoroughly explore the
embryonic origin of macrophages.

EMBRYONIC MACROPHAGES

Myeloid cells including macrophages arise from
three successive haematopoietic waves, referred
to as primitive, pro-definitive and definitive
phases, respectively37 (Figure 1). The primitive
programme is independent of the transcription
factor c-Myb and starts at embryonic days 6.5
(E6.5)–E8.5 in the blood islands of the
extraembryonic yolk sac (YS). This phase gives rise
to bipotent progenitors for nucleated erythrocytes
and megakaryocytes and a progenitor restricted
to the macrophage lineage (Mac-CFC).38–42 The c-
Myb-independent, pro-definitive wave occurs in
different sites of the embryo (YS, allantois and
embryo proper) and gives rise to erythroid and
myeloid progenitors (EMPs) between E8.5 and
E10.5.43,44 Unlike long-term haematopoietic stem
cells (LT-HSCs), EMPs do not have long-term
repopulating capacity and develop into
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macrophages through a CX3CR1 expressing
intermediate population called p-Macs.45 EMPs
give rise to p-Macs without passing through the
monocyte stage as evidenced by the lack of
peroxidase activity (a signature feature of
monocytes) and the presence of a core
macrophage transcriptional programme occurring
in p-Macs.45 EMPs and p-Macs expand in the YS
and then traffic towards foetal liver up until
E14.5, where they serve as a reservoir for
macrophages throughout embryogenesis.43,44 EMP
progeny seed different tissues in the embryo and
may become life-long tissue-resident
macrophages.37,46–48 Brain microglia are a
prototypical primitive macrophage generated in
the YS, which are maintained throughout adult
life by virtue of their longevity and limited self-
renewal capability without input from definitive
haematopoiesis.18,19,49 EMP-derived macrophages
contribute to embryonic development and tissue
remodelling through phagocytosis of unwanted
and obsolete cell structures and cells.50,51

Macrophages also act as cellular chaperones
for tissue vascularisation.52 Mouse mutants
lacking macrophages during embryonic
development, because of deficiency of colony-

stimulating factor 1 receptor (CSF-1R also known
as CD115) or the transcription factor PU.1,
display growth retardation and perinatal
mortality.53,54 The transcription factor c-Myb is
not needed for primitive haematopoiesis but is
required for definitive haematopoiesis.55 This was
shown in Myb mutant mouse embryos, where
impairment in definitive haematopoiesis was
seen,56,57 but tissue-resident macrophages in the
brain (microglia), skin (LCs) and liver (Kupffer
cells; KC) were unaffected.58 Similarly, Myb
mutant zebrafish develop tissue macrophage
populations in the absence of definitive
haematopoiesis.55 The third wave of c-Myb-
dependent definitive haematopoiesis starts at
E10.5 from the aorta–gonad–mesonephros region
(AGM) region and gives rise to LT-HSC. They
migrate to the foetal liver and definitive
haematopoiesis shifts to the bone marrow (BM)
at around E17.5.38,59,60 Definitive HSCs arising
from the AGM region at around E10.561 give rise
to KCs and alveolar macrophages. HSC activity
then peaks in the foetal liver at around E16.5
and gives rise to tissue macrophages residing in
the cardiac system, skeletal muscle, dermis and
the gut before shifting to BM.62 The BM then

Figure 1. Origin of macrophages. Myeloid cells including macrophages arise from three successive haematopoietic waves, referred to as

primitive, pro-definitive and definitive. The primitive programme starts at embryonic days 6.5 (E6.5)-E8.5 in the blood islands of the

extraembryonic yolk sac (YS) and gives rise to nucleated erythrocytes, megakaryocytes and Mac-CFCs. The pro-definitive wave starts at E8.5 and

E10.5 in the yolk sac, allantois and embryo proper and gives rise to erythroid and myeloid progenitors (EMPs). Primitive and pro-definitive phases

contribute to microglia, Langerhans and Kupffer cells. The third wave of definitive haematopoiesis starts at E10.5 from the aorta–gonad–

mesonephros region (AGM) region and gives rise to LT-HSC. They migrate to the foetal liver and definitive haematopoiesis shifts to BM around

E17.5. Definitive haematopoietic stem cells give rise to Kupffer cells and alveolar macrophage tissue residing in cardiac system, skeletal muscle,

dermis and gut.
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remains the major site of haematopoiesis in
adult life.

PRIMITIVE VS. DEFINITIVE ORIGIN OF
MACROPHAGES

Despite the general agreement that most tissue
macrophages have an embryonic origin, the exact
contributions of primitive and definitive
haematopoiesis to embryo-derived adult tissue
macrophage populations remain unclear. All
tissue macrophages may arise from Myb and HSC-
independent lineage without going through a
monocyte intermediate.63 These macrophages can
seed various locations and give rise to bonafide
long-lived tissue macrophages. For example, the
BM contains precursor cells that give rise to LC
and microglia.64,65 Macrophages may also arise
from definitive haematopoiesis in foetal liver
through a monocyte intermediate.19 Pulse
labelling of myeloid precursors in the Runx1CreER
mouse has enabled researchers to determine the
relative contributions of YS and foetal liver to
tissue macrophage populations. Runt-related
transcription factor 1 (Runx1) expression is
restricted to the extraembryonic YS between E6.5
and E8.19,66 Inducible CreER reporter gene
expression driven by Runx1 has established
considerable input from foetal liver-resident
precursors to lung, dermis and spleen
macrophages19 with the exception of microglia
that originate solely from the yolk sac. Most tissue
macrophages except microglia lose their Runx1+

labelling in adult tissues suggesting that they are
replaced by non-labelled precursors before
birth.19,67,68 Contributions of YS versus foetal
liver-derived precursors, however, vary between
tissue macrophage compartments. For example,
heart-resident, cardiac macrophages are derived
from both YS-derived and foetal liver-derived
progenitors,69 while adult LC68 and adult lung
alveolar macrophages70 mainly originate from
foetal liver-derived monocytes. Despite the results
from the Runx1+ mice, the origin of cells arising
from foetal liver is less well-defined because
foetal liver is itself seeded by YS precursors.38,39

The revised concept of MPS now accommodates
two independent origins of tissue macrophages.
Embryonic macrophages are established prenatally
and self-maintain independent of any
haematopoietic input,17,19,58,69–72 whereas adult-
derived macrophages develop from tissue-
infiltrating monocytes, have a limited lifespan and

are associated with pathological inflammatory
reactions. Both types of macrophages seem to co-
exist in tissues, whether they have different
behaviour based on ontogeny or are made
functionally homogenous by the tissue
environment remains to be seen.

MACROPHAGE SUBSETS

Macrophages are a highly heterogenous
population of cells. The initial classification of
macrophages into M1 and M2 subsets was based
on macrophages isolated from C57BL/6 mice and
Balb/c mice. Macrophages from C57BL/6 mice have
a Th1-dominated immune response and, when
challenged with LPS and IFN-c, produce nitric
oxide (NO) from arginine via iNOS.73 Macrophages
from Balb/c mice have a Th2-dominated immune
response and, when challenged by LPS and IFN-c,
produce ornithine via arginase.73 C57BL/6 mice
carry a deletion in the promoter of Slc7a2, the
key arginine transporter in macrophages causing
large differences in arginine utilisation between
C57BL/6 and BALB/c mice.74 Categorisation of
macrophages into M1 and M2 subsets based on
arginine metabolism fits neatly with the
inflammation vs. resolution functions of
macrophages. Macrophages producing NO inhibit/
kill pathogens or nearby cells, while ornithine
promotes cell proliferation and wound healing.
M1/M2 classification has also been used to define
macrophage polarisation states. LPS and IFN-c
induce M1 macrophages in a STAT-1 and aerobic
glycolysis-dependent manner,75 while IL-4 induces
M2 macrophages in a STAT6 and fatty acid
oxidation (FAO)-dependent manner.76,77 Currently,
M1/M2 macrophages are divided based on the
expression of specific markers; M1 macrophages
express CD68, TNF-a, iNOS, IL-1b and IL-12, while
M2 macrophages express arginase 1, transforming
growth factor (TGF)-b, CD163 (cluster of
differentiation 163), mannose receptor 1, CD206,
Rtnla, IL-10, VEGF and Ym1.78,79 M1 macrophages
produce pro-inflammatory cytokines (TNF-a, IL-12,
IL-27 and IL-23), chemokines (CXCL11, CXCL9 and
CXCL10) and matrix-metalloproteinases (MMP-1, 2,
7, 9, 12) and demonstrate enhanced antigen
presentation and generation of reactive oxygen
species. In contrast, macrophages stimulated with
IL-4 and IL-13 show an anti-inflammatory and
reparative profile.80 M2 macrophages produce
anti-inflammatory cytokines (IL-10), chemokines
(CCL17)81,82 and growth factors (VEGF, TGF-b).
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Together, these mediators promote tissue
remodelling and repair by stimulating
extracellular matrix production by fibroblasts, cell
proliferation and angiogenesis.

The classification of macrophages into M1/M2
groups based on well-defined stimuli does not
model the infinitely more complex tissue milieu
where macrophages (potentially of different
origin) would be exposed to multiple signals in
different sequential order. Nevertheless,
macrophages have been classified into subgroups
within the M1-M2 range as M2a, M2b, M2c and
Mox macrophages.79,83–85 Given the phenotypic
diversity of macrophage populations in vivo, the
relevance of the M1-M2 paradigm may be
minimal. For example, one study acquired a data
set of 299 macrophage transcriptomes in response
to diverse activation signals.85 In another study,
CyTOF analysis of renal cancer macrophages
identified 17 different subsets.86 A plethora of
recent publications have used single-cell RNA-seq
to identify previously unrecognised macrophage
populations with unique gene expression
signatures.87–91 These new subtypes may represent
macrophage adaptation to unique
microenvironments within organs. Macrophage
subtypes are also classified based on the
expression of few cell surface markers, but M1 or
M2 macrophages can acquire canonical markers of
the other subset in vitro.92,93 In spite of the M1/
M2 classification model being accepted as an
over-simplification, it continues to be widely
used.94 A standardised experimental framework
for macrophage subtype classification based on
the source of macrophages, activators used and
macrophage markers has been proposed.95 Single-
cell RNA sequencing, mass cytometry and
advanced clustering algorithms should shed more
light on macrophage heterogeneity in the
future.96,97

THE MACROPHAGE NICHE

Tissue-resident macrophages develop with the
organ they reside in and adapt to perform not
only immune functions but also homeostatic
functions essential for the particular organ they
inhabit.12,98 Circulating monocytes taking up
residence in tissues also adopt a tissue-specific
identity very similar to resident macrophages, if
not completely similar.99 The existence of a niche
for macrophages in individual tissues has been
postulated. These niches may nurture and modify

macrophages by providing them with a physical
scaffold and trophic factors for survival and
proliferation. The type of physical scaffold may
affect the differentiation and function of
macrophages by inducing specific transcription
factors to suit the temporal homeostatic function
of a tissue.

NICHE ADAPTATION OF
MACROPHAGES

All tissue macrophages, after going through a
programme of lineage determination directed by
a unique set of transcription factors such as PU.1
and MafB,54,100–102 acquire a common set of
functions (e.g. phagocytosis, immune surveillance)
and cell surface markers (F4/80, CD64, Mertk).
Ultimately, the tissue microenvironment
customises the local macrophage population to
suit its homeostatic needs (Figure 2). As
organogenesis proceeds, the differentiating milieu
of an organ guides the resident macrophages to
acquire the phenotype and functions appropriate
to that organ. Expression of a limited set of
transcription factors confers a tissue-specific
character on macrophages. For example, nuclear
factor of activated T cells 1 (NFATC1) is necessary
for osteoclast differentiation and functional
specialisation.103 Similarly, transforming growth
factor- b (TGF-b) signalling,104–108 notch
signalling109–112 and bone morphogenetic protein
(BMP) signalling drive the specialisation of
multiple subsets. It appears that all macrophage
subsets are active phagocytes and the material
they ingest appears to dictate their fate. Tissue
macrophages are exposed to specific metabolites
in different organs. For example, haem,113

oxysterol113–115 and retinoic acid98,116,117 can
induce functional polarisation of macrophages.
Macrophage crosstalk with other immune cells
also plays a role in defining their differentiation.
For example, alveolar macrophage development
involves crosstalk with pulmonary innate
lymphoid cell 2s (ILC2s) and basophils producing
CSF2 and IL-13,118 whereas LC replenishment
requires CSF1 produced by neutrophils.119

Even though a restricted set of transcription
factors decides macrophage identity, multiple
signals in a specific sequence are required to
prime macrophages and prepare the epigenetic
landscape for macrophages to adopt a tissue-
specific identity. Predictably, these multiple signals
are specific to a location or a macrophage niche.
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For example, monocyte engraftment to liver
requires interaction with endothelial cells,
hepatocytes and stellate cells with key roles for
TGF-b and desmosterol.109,112 Another example of
multistep imprinting of macrophage identity by
the niche is mucosal Langerhans cell

differentiation. In this particular example,
precursor cells have to be first exposed to BMP7 in
lamina propria and then TGF-b from endothelial
cells to complete their differentiation.120,121 Thus,
a unique combination of tissue niche factors can
induce reversible activation of gene expression

Figure 2. The heterogenous functions of tissue macrophages. All tissue macrophages go through a process of lineage determination via

expression of limited set of transcription factors to acquire functions and cell surface markers common to all macrophages (phagocytosis, F4/80,

MertK). The tissue microenvironment customises the macrophage to take over organ-specific functions by inducing expression of unique set of

transcription factors. Multiple signals specific to a tissue in a sequential combination are required to prime the macrophage and prepare the

epigenetic landscape for macrophages to take up a tissue-specific identity.
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programmes that is responsible for functional
polarisation of macrophages in tissues.

NURTURE IN THE NICHE

Macrophages require a continuous supply of
trophic factors IL-34, CSF-1(M-CSF) and CSF-2 (GM-
CSF) for normal maintenance and development.
IL-34 and CSF-1 share a similar tertiary structure
and bind to a common receptor, CSF1R.5,122–125

CSF-1 is produced in three different forms by
alternate splicing (secreted form, secreted
proteoglycan form and a membrane form), and all
three forms have a common active N-terminal and
distinct but overlapping functions.126–128 CSF-1-
deficient mice have normal number of Langerhans
and microglial cells but display a deficiency in
most other macrophage types.53 Reconstitution of
CSF-1-deficient mice with the soluble form of CSF-
1 rescues most resident macrophage populations,
the membrane form corrects for macrophages in
most tissues except in liver, spleen and
kidneys.127,128 The proteoglycan form of CSF-1
integrates into the matrix of local tissues and
regulates local macrophage numbers. Mice lacking
CSF1R, the common receptor for IL-34 and CSF-1,
have reduced numbers of macrophages
throughout the body.53,129 Administration of anti-
CSFR1 blocking antibody depletes most of the
macrophage populations in embryonic67 and adult
tissues130 conversely, administration of CSF-1
produces a massive expansion of blood monocytes
and tissue macrophages in mice.131–134 The
secreted form of CSF-1 when injected into CSF-1-
deficient mice rescues most of the resident
macrophage population.127,128 In fact,
administration of CSF-1 leads to increased
macrophage numbers in the liver and a rapid
increase in the size of liver.131,134 This may
indicate a role for macrophages in homeostatic
regulation of organ size. CSF-1 consumption by
Ly6Chi monocytes can regulate the generation of
the Ly6Clo subpopulation17,125,132 and depletion of
monocytes can lead to an increase in circulating
CSF-1 levels which, in turn, will promote an
increase in tissue macrophage numbers.
Bioavailability of CSF-1 may also be regulated by
post-translational modification. For example,
tumor necrosis factor-a (TNF-a)-converting enzyme
(TACE) can convert the membrane-bound isoform
of CSF-1 to the soluble form of CSF-1.135 IL34 KO
mice are deficient in LC and brain microglia.136–140

IL-34 is not detected in blood, probably because it

acts locally near the tissue where it is
produced.141,142 In summary, IL-34 and CSF-1 are
the most important trophic factors produced by
the macrophage niche and are essential for the
maintenance and survival of macrophages.

REGULATION OF MACROPHAGE
DENSITY IN TISSUES

Resident macrophages are abundant in every
organ of the body and have similar relative
densities and are arranged with regular
spacing.143,144 The regular spacing of
macrophages in tissues has been explained by self-
avoidance or self-repulsion.145 Macrophages may
actively surveil large areas146 of their environment
through highly motile filopodia145 and actively
repel neighbouring macrophages when
encountered. Thus, macrophages may establish
territories in a cell-autonomous manner. The
mutual repulsion theory may not be an entirely
sufficient explanation, as macrophages are
densely packed in splenic red pulp and the
subcapsular sinus of the lymph node,113,147,148

compared to the T-cell zone of these two organs
where macrophages are regularly patterned.149

Thus, the repulsion hypothesis may not be
sufficient to explain macrophage density in some
organs, with other variables such as tissue-specific
factors or inflammatory status playing a role in
macrophage density. Zhou et al.150 used the
concept of carrying capacity from evolutionary
biology to postulate that each tissue has an
abundant population of cells like fibroblasts
whose numbers are regulated by the carrying
capacity of that tissue (the carrying capacity of a
tissue is influenced by the availability of glucose,
oxygen, space and other growth factors). The
abundant tissue fibroblast population can then in
turn negatively regulate an accessory population
of cells, such as macrophages. Fibroblasts form a
cell-circuit based on growth factor exchange with
macrophages.150,151 Fibroblasts produce the
macrophage survival factor CSF-1, whilst
macrophages provide the fibroblast growth factor
PDGFs. Both CSF-1 and its receptor (CSF1R) are
rapidly internalised upon binding allowing for
negative feedback regulation of macrophage
numbers. This reductionist explanation may also
provide a template for complex models involving
multiple cell types, secreted factors and physical
interactions coming together to regulate
macrophage density in tissues. Also, since
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macrophage numbers are well below the carrying
capacity of tissues, inflammation may transiently
change the status quo and lead to increases in the
number of macrophages.

During inflammation, apoptotic macrophages
may produce chemotactic factors to attract
monocytes which would then clear the dying cell
and occupy the vacant site.49,152,153 Another
possibility is that an increase in local
concentration of tropic factors (e.g. CSF-1) after
macrophage death may cause neighbouring
macrophages to divide and occupy the available
space.154 Yet, another possibility is that
inflammatory conditions may lead to
downregulation of macrophage-repulsive function
and increase their number in tissues. The degree
of inflammation is correlated with the
engraftment efficiency of infiltrating
monocytes.109 During Listeria infection, the
recruitment and differentiation of monocytes into
KCs are regulated by the release of IL-1 from
dying KCs.155 The time window of inflammation
may also affect infiltrating monocyte engraftment
vs. repopulation by dividing tissue macrophages,
as the infiltrating monocytes are at a
disadvantage because they must differentiate into
macrophages before they can engraft. This may
be the reason why tissues in a state of constant
inflammation witness the highest turnover rate of
tissue macrophages. For example, infiltrating
monocytes replace gut macrophages only after
the establishment of gut microbiota156 and the
contribution of infiltrating monocytes to gut
macrophages is very low in antibiotic-treated and
germ-free mice.156,157 Monocyte-derived
macrophages also gradually replace tissue
macrophages in organs (kidney, heart, liver) that
are subject to continuous low-grade inflammation
because of mechanical or metabolic
inflammation158,159 and levels of monocyte-
derived macrophages in tissues may be an
indicator of the inflammatory state of specific
tissue.160 Thus, in summary each tissue has a
certain macrophage density under homeostatic
conditions that can be substantially altered by
inflammatory conditions.

WE ARE WHAT WE EAT:
IMMUNOMETABOLISM OF
MACROPHAGES

Metabolic pathways contribute to the
development, fate and behaviour of macrophages

and are critical for induction of inflammatory
responses and initiation of tissue healing.13,161–163

The plastic nature of macrophages is reflected in
the ability of macrophages to make dramatic
changes to their intracellular metabolism in
response to environmental and inflammatory
cues. In macrophages treated with
lipopolysaccharide (LPS), prototypical of inflamed
macrophages, the Warburg effect is observed with
a preference towards glycolysis over oxidative
phosphorylation.164 Inflammatory activation of
macrophages by LPS hampers pyruvate transport
to the mitochondria and inhibits the TCA cycle.
Pyruvate generated during glycolysis is
preferentially converted to lactate instead of
being shuttled into mitochondria to be converted
into acetyl-CoA to fuel the tricarboxylic acid cycle
(TCA) cycle. The many inflammatory stimuli [e.g.
pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns
(DAMPs)] that activate NF-jB also lead to
activation of HIF1a which in turn causes
macrophages to switch to glycolysis and inhibit
TCA cycle.165

The preference for glycolysis is conducive for an
inflammatory response in macrophages. Glycolysis
is not only a faster source of ATPs but also has
other roles during inflammation. For example,
lactate produced by glycolysis is involved in
termination of inflammation.166 Increased lactate
promotes histone acetylation that leads to
arginase 1 expression and resolution of
inflammation.166,167 The pentose phosphate
pathway which is highly activated in a glycolytic
cell provides ribose sugars and NADPH for
biosynthetic pathways essential for macrophage
inflammatory response.75,168 LPS inhibits the
expression of SHPK (sedoheptulose kinase) that
controls the non-oxidative phase of the pentose
phosphate pathway. This inhibition increases the
availability of ribose to be used for fatty acid and
sterol synthesis pathways. The enhanced
commitment to glycolysis in activated
macrophages also supports the production of
inflammatory mediators (e.g. TNF-a, CCL2, IL-12
and nitric oxide), and these mediators in turn
have an inhibitory effect on critical steps of the
TCA cycle.168 In macrophages, LPS boosts the
expression of several rate-limiting enzymes in
glycolysis, including hexokinase 3,169 PFKFB3 (6-
phosphofructo-2-kinase/ fructose-2,6-
biphosphatase 3) and pyruvate kinase isozymes 2
(PKM2).169,170 These changes are coupled to the
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inhibition of the key TCA cycle enzymes, isocitrate
dehydrogenase and succinate dehydrogenase
leading to accumulation of citrate and
succinate.168,171,172 The autocrine type I IFN
pathway is responsible for the inhibition of
isocitrate dehydrogenase in LPS-stimulated
macrophages.173 Nitric oxide (NO) produced by
M1 macrophages can also lead to suppression and
loss of mitochondrial electron transport chain
(ETC) complexes and rerouting of pyruvate away
from pyruvate dehydrogenase (PDH) to promoting
glutamine-based anaplerosis.174 These TCA cycle
intermediates get diverted to other biosynthetic
reactions specific to inflammatory metabolism.
The full spectrum of inflammatory activation by
macrophages requires increased expression of
glycolytic enzymes and accumulation of TCA cycle
intermediates. For example, hexokinase is needed
for inflammasome activation and release of IL-
1b175,176; similarly, PKM2 serves to increases
glycolytic flux by induction of GLUT-1 in the
nucleus and serves as a co-activator for HIF1a.177

PKM2/HIF1a complexes bind to the Il1b promoter
and induce IL-1b expression.178 The accumulation
of certain metabolites can support macrophage
activation or restore homeostasis. Succinate, can
drive IL-1b production via stabilisation of HIF1a,172

whereas citrate accumulation can, via
malonylation of GAPDH, promote TNF-a
translation.179

In addition to LPS, the effect of other factors on
the metabolism of macrophages and their
inflammatory status has been studied. For
example, insulin has been shown to enhance
glycolysis and IL-1b secretion in intraperitoneal
macrophages.180 IL-1b is also known to activate
macrophages in the pancreas leading to b-cell
dysfunction and death,181 explaining a link
between chronic elevation of IL-1b signalling and
type 2 diabetes.182 Indeed, in patients with type 2
diabetes, blockade of interleukin-1 with IL-1
receptor antagonist anakinra improved glycemia
and b-cell secretory function and reduced markers
of systemic inflammation.183 Macrophages
exposed to oxidised phospholipids in
hyperlipidemic states use mitochondrial
respiration, feeding the Krebs cycle with
glutamine and causing the accumulation of
oxaloacetate in the cytoplasm. This subsequently
leads to increased IL-1b production, resulting in
hyperinflammation.184 Oxidised LDL also can bind
to CD36 on macrophages and suppress oxidative
phosphorylation leading to mitochondrial ROS

production, which drives chronic inflammation.185

Macrophages exposed to extracellular pathogenic
lipids can activate a triggering receptor expressed
on myeloid cells 2 (TREM2)-dependent gene
response involved in phagocytosis and lipid
catabolism.186,187 TREM2 expression is required for
a metabolic switch towards glycolysis and is
essential for the maintenance of healthy energy
metabolism under conditions of stress.90,188

TREM2 signalling also drives the formation of
lipid-associated macrophages (LAM) in adipose
tissue. LAMs regulate systemic lipid homeostasis in
obesity90 and may also be involved in suppression
of obesity-induced inflammation.90 TREM2
macrophages are also reported to play a role in
neurodegenerative disease189 and
atherosclerosis.87 Hypoxia can induce glycolysis in
macrophages, for example tumor-associated
macrophages (TAMs) present in the hypoxic
regions of tumors express HIF-1a inducing a
switch to glycolytic fermentation. High amounts
of lactic acid present in the tumor
microenvironment also stabilise the expression of
HIF-1a and cause M1 to M2 polarisation.167

Hypoxia also promotes pro-tumoral activities of
TAMs by increasing the availability of iron for
tumor cell proliferation and by causing
upregulation of DNA damage-inducible transcript
4 (DDT4), which inhibits the mechanistic target of
rapamycin (mTOR) pathway to promote OXPHOS
and reduced glucose intake in TAMs.190

In contrast to LPS-treated macrophages, IL-4-
treated M2 macrophages are more dependent on
OXPHOS and have an intact TCA cycle.191 The
elevated OXPHOS in M2 macrophages is
supported by increased FAO.77 There is some
debate as to the role of glycolysis in M2
macrophages.192 However, both glucose and
glutamine seem to support OXPHOS and M2
polarisation.193 Macrophage activation by IL-4
stimulates the Akt-mTORC1 pathway which
regulates ATP citrate lyase (ACLY), a transferase
that catalyses the conversion of citrate and
coenzyme A to acetyl-CoA, leading to increased
histone acetylation and M2 gene induction.194 In
comparison, the impaired OXPHOS in LPS-treated
macrophages can reduce acetyl-CoA levels and
alter histone acetylation, leading to impaired
expression of inflammatory genes and
tolerance.195 LPS stimulation of macrophages also
results in reduction of FAO,168 whereas IL-4 can
induce FAO through transcription factors STAT-6
and PGC1b.76 In summary, macrophage plasticity is
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most likely supported by their remarkable ability
to remodel their core metabolic pathways in
response to a range of signals. This rewiring of
metabolism provides a faster source of energy,
activates biosynthetic pathways needed for
inflammation, stimulates the production of
inflammatory mediators such as IL-1b and TNF-a
and sets the ground for shutdown of
inflammation in a time-delayed manner.

THE RELATIONSHIP BETWEEN
MONOCYTES AND MACROPHAGES

No discussion of macrophages is complete without
an understanding of the origin and function of
monocytes. Monocytes can give rise to
macrophages under pathological conditions and
can support near-complete reconstitution of tissue
macrophages after depletion. Human monocytes
are divided into three groups based on the
expression of CD14 and CD16 on HLA-DR+ cells.
CD14+CD16� monocytes are referred to as classical
monocytes, CD14+CD16+ cells as intermediate cells
and CD14-CD16+ monocytes are referred as non-
classical monocytes. Mouse monocytes are divided
into Ly6Chi monocytes (also defined as CX3CR1int

CCR2+ CD62L+ CD43lo) and Ly6Clo monocytes
(CX3CR1hi CCR2� CD62L� CD43hi).34,72,81,196

Transcriptional comparisons correlate mouse
Ly6Chi monocytes with ‘classical’
CD14+CD16� monocytes in humans and Ly6Clo

monocytes with ‘non-classical’ CD14lo

CD16+ monocytes. Despite similar transcriptional
profiles and cell surface marker expression,
differences exist between human and mouse
monocytes. For example, major histocompatibility
complex (MHC II) is expressed on
Ly6Clo monocytes and absent on mouse
Ly6Chi monocytes, but human monocytes overall
are positive for MHC II.197

MONOCYTE ORIGINS AND EGRESS
FROM BM

According to the classical model of monocyte
development, monocytes arise from
haematopoietic stem cell-derived common
myeloid progenitor (CMP) with granulocyte–
macrophage progenitors (GMPs), macrophage
(monocyte)/ dendritic cell precursor (MDP) and
common monocyte progenitor (cMoP) acting as
intermediates.198 Yanez et al. showed that MDPs
arise directly from CMPs directly and give rise to

monocytes via cMoPs.199 Also recently, Liu et al.200

used Ms4a3 reporter mice (a specific gene
reporter for GMPs) and showed that MDPs do not
arise from GMPs and that monocytes arise from
both GMP and MDPs. Emergency monopoiesis can
also give rise to granulocyte like segregated
nucleus containing Ly6Clo monocytes (SatM).201

Ly6Chi monocytes egress out of BM in a CCR2/
CCL2/CCL7.202–204 and CXCR4 -dependent
manner.205–207 CCL2 and CCR2-deficient mice show
increased number of monocytes in the BM but
fewer numbers in the periphery.202 Ly6Chi

monocytes in the BM parenchyma are juxtaposed
to nestin+ stromal cells.206,208 CCL2 binding to
CCR2 leads to desensitisation of monocyte
response to CXCL12 because of internalisation of
CCR2-CXCR4 complex, which weakens CXCR4
binding and causes egress of monocytes out of
BM.206,209 The release of Ly6Chi monocytes from
BM is also regulated by circadian rhythm. Ly6Chi

monocyte egress from BM peaks between 4 and
8 hours after light onset and is controlled by the
circadian rhythm transcription factor, Bmal1.210

The number of circulating monocytes is strongly
linked to the physiological status of an
organism211 and depends on monocyte
production and release from BM and peripheral
reservoirs. Exercise, age and a host of other
pathophysiological conditions (e.g. chronic
inflammatory disorders) can also influence the
number and ratio of monocyte subsets.212–215

MONOCYTE REPROGRAMMING OR
CONVERSION TO MACROPHAGES

Classical monocytes (Ly6Chi monocytes in mice)
have a diverse differentiation potential because of
their plastic transcriptional profile which allows
them to take on different roles under homeostatic
conditions. Classical monocytes comprise over 90%
of circulating monocytes,81 and upon
extravasation into tissues, they contribute to the
innate immune response via production of TNF-a
and NO, or by differentiating into macrophages
and dendritic cells.72 Ly6Chi monocytes can replace
embryo-derived tissue-resident macrophages by
differentiating into macrophages.69,72,156,216–222

Conversion of monocyte to tissue macrophages is
accompanied by extensive transcriptional changes
to mirror the transcriptome of resident
macrophages. Even though monocyte-derived
macrophages adopt most of the functions
associated with the tissue-resident macrophages
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that they are replacing, some epigenetic,
transcriptional and functional differences
remain.11,99,223,224 Some monocytes can also
remain within tissues, show minimal
transcriptional change and act as a local
monocyte reservoir.225 These monocytes can
survey resident tissues and transport antigen to
lymph nodes.226 Once in the lymph nodes, they
can either differentiate into dendritic cells or
remain as monocytes while losing their ability to
recirculate.72 Thus, monocytes as macrophage
precursor cells that mirror the flexibility and
plastic nature of macrophages can readily replace
tissue macrophages.

TISSUE-RESIDENT MACROPHAGES
AND THE RELEVANCE OF MPS
CLASSIFICATION

Monocytes are rapidly recruited to sites of
inflammation/injury and depending on the
situation they encounter they undergo different
cell fates. Under conditions of inflammation,
tissue injury or macrophage depletion,
embryonically derived macrophages undergo
death and are replaced by monocyte-derived
macrophages.69,71,155,227,228 Long-term integration
of monocyte-derived macrophages depends on
the type of tissue and conditions encountered.
For example, monocyte-derived macrophages do
not integrate into the CNS after injury,64 but do
integrate into the heart with ageing and after a
myocardial infarction (MI).220,227 They also
integrate into the peritoneal cavity after
thioglycolate challenge17 and in the liver after
KC depletion.224 Under inflammatory conditions,
they take on pro-inflammatory effector functions
and DC-like functions such as antigen
presentation and migration to LNs. In addition
to monocyte-derived macrophages, peritoneal
cavity macrophages and pericardial macrophages
can also be recruited to sites of inflammation.
For example, Gata6+ peritoneal cavity
macrophages are recruited to help resolve
inflammation in the setting of sterile liver
injury,229 and Gata6+ macrophages in mouse
pericardial fluid contribute to reparative
immune response in heart following
experimental MI.230 Since these macrophages do
not have to take a vascular route to get to the
sites of injury or undergo differentiation into
macrophages, they may represent rapid
responders to the site of injury.

Tissue-resident macrophages are imprinted to
have a higher tolerance to stimuli associated with
acute inflammation, while macrophages derived
from infiltrating monocytes may be more
inflammatory. In experimental autoimmune
encephalomyelitis (EAE) which is a commonly used
murine model for multiple sclerosis, infiltrating
monocytes trigger EAE progression.18 Monocyte-
derived macrophages in EAE are highly
phagocytic, express pro-inflammatory genes such
as IL-1b and TNF-a231,232 and initiate
demyelination, whereas microglia are inert and
appear to be dedicated to the clearance of
debris.231 CCR2-deficient animals (deficient for
recruitment of Ly6Chi monocytes) and mice
depleted for Ly6Chi monocytes are relatively
protected from EAE.233 Monocyte-derived cells
and microglia remain distinct entities during
disease progression. Following recovery, recruited
monocytes vanish and do not integrate into the
resident microglial pool, while the microglia can
enter the cell cycle and return to quiescence
following remission from EAE.64 Such a scenario,
where tissue-resident macrophages have higher
inflammatory signal threshold, is also supported
by studies focusing on acutely inflamed gut218,234

and liver.235 Monocyte-derived macrophages also
replace the Kupffer cells lost because of
inflammation in nonalcoholic steatohepatitis
(NASH) a form of nonalcoholic fatty liver disease.
A NASH diet was found to induce significant
changes in resident Kupffer cell gene expression
and result in cell death, while monocyte-derived
macrophages replacing the lost Kupffer cells
exhibited convergent epigenomes, transcriptomes
and functions.187

Gut macrophages are the largest macrophage
population in the mouse, and macrophages in the
intestinal lamina propria are continuously
replaced by blood monocytes in the adult
mouse.157 TGF-b-dependent monocyte
differentiation in the colonic lamina propria
causes rapid downregulation of inflammatory
signalling molecules and rapid upregulation of
receptors involved in apoptotic cell recognition.107

However, the intestine has a population of
TIM4+CD4+ macrophages that can self-maintain
for months.157

The liver and lung macrophage populations are
seeded primarily from foetal liver-derived
monocytes and maintained by self-renewal.43,67

Depletion of KCs in adult mice would result in
BM-derived monocytes occupying the vacant
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sinusoidal location and adopting the
transcriptomic profile and clearance functions of
the cells they replaced.224,236,237 YS macrophages,
foetal liver monocytes or adult BM monocytes
when transplanted to Csf2r�/�mice can acquire
the differentiated alveolar macrophage
phenotype.99 When all the three subtypes were
mixed and transferred to Csf2r�/� mice,
preferential outgrowth of foetal monocytes was
observed, correlating with better GM-CSF
sensitivity. When transferred separately, however,
all precursors colonised the alveolar niche and
generated AMs that were transcriptionally almost
identical and self-maintained.99

Brain macrophage populations are established
during embryonic development and are maintained
independently of monocytes. Microglia are
constantly replaced by proliferation in the adult
mouse brain,152 and the perivascular macrophages
have also been shown to be maintained
independently of monocytes.153 However, donor
monocytes could replace brain macrophages in
irradiated mouse chimeras,49,153 macrophage-
deficient, PU.1 knockout mice238 and Csf1r–/– mice
at birth.239 As in liver, subtle transcriptome
differences are detected between resident
microglia and the engrafted macrophages.223

Cardiac macrophages originate from YS and
foetal monocyte progenitors, and four different
types of macrophages have been reported.69,220

Monocyte-derived macrophages increase in the
heart with age, and Ly6Chi monocytes were
able to differentiate into long-lasting populations
of cardiac macrophages after macrophage
depletion.220 F4/80hi peritoneal macrophages are
also slowly replaced by differentiation of F4/80lo

MHCII+ monocyte-derived progenitors. All the
above evidence points to the continued relevance
of the MPS model where blood monocytes can
and do enter tissues to progressively replace tissue
macrophages.

CONCLUSION

Macrophages are key players in the immune
system, but beyond their role as sentinels,
macrophages play a crucial role during
development and homeostasis. After starting out
with a relatively homogenous gene expression
profile in the embryo, macrophages become
specialised for disparate functions in different
tissues. This diversity of function makes us rethink
their classification as a single-cell type. Despite

functional specialisation in different locations,
macrophages are amazingly plastic with a fluid
identity. Monocyte-derived macrophages further
add to the complexity by functionally replacing
embryo-derived macrophages but still retaining a
lower threshold for inflammatory activation and
not quite taking over the reparative function of
tissue-resident macrophages. Much still needs to
be understood regarding the origin and
maintenance of tissue-resident macrophages. We
need to fully understand the reparative properties
of embryo-resident macrophages and why they
are progressively lost with age and why
monocyte-derived macrophages are lacking in
their reparative capability. Exploiting these diverse
macrophage functions for therapeutic benefit is a
promising strategy in a range of pathologies.
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