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Abstract

Aims

None of the conventional echocardiographic parameters alone predict increased NTproBNP

level and symptoms, making diagnosis of heart failure with preserved ejection fraction

(HFpEF) very difficult in some cases, in resting condition. We evaluated LA functions by 2D

speckle tracking echocardiography (STE) on top of conventional parameters in HFpEF and

preHF patients with diastolic dysfunction (DD), in order to establish the added value of the

LA deformation parameters in the diagnosis of HFpEF.

Methods

We prospectively enrolled 125 patients, 88 with HFpEF (68±9 yrs), and 37 asymptomatic

with similar risk factors with DD (preHF) (61±8 yrs). We evaluated them by NTproBNP, con-

ventional DD parameters, and STE. Global longitudinal strain (GS) was added. LA reservoir

(R), conduit (C), and pump function (CT) were assessed both by volumetric and STE. 2 res-

ervoir strain (S) derived indices were also measured, stiffness (SI) and distensibility index

(DI).

Results

LA R and CT functions were significantly reduced in HFpEF compared to preHF group (all

p<0.001), whereas conduit was similarly in both groups. SI was increased, whereas DI was

reduced in HFpEF group (p<0.001). By adding LA strain analysis, from all echocardio-

graphic parameters, SR_CT<-1.66/s and DI<0.57 (AUC = 0.76, p<0.001) demonstrated the

highest accuracy to identify HFpEF diagnosis. However, by multivariate logistic regression,

the model that best identifies HFpEF included only SR_CT, GS and sPAP (R2 = 0.506,
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p<0.001). Moreover, SR_CT, DI, and sPAP registered significant correlation with

NTproBNP level.

Conclusions

By adding LA functional analysis, we might improve the HFpEF diagnosis accuracy, com-

pared to present guidelines. LA pump function is the only one able to differentiates preHF

from HFpEF patients at rest. A value of SR_CT < -1.66/s outperformed conventional param-

eters from the scoring system, reservoir strain, and LA overload indices in HFpEF diagnosis.

We suggest that LA function by STE could be incorporated in the current protocol for HFpEF

diagnosis at rest as a major functional criterion, in order to improve diagnostic algorithm,

and also in the follow-up of patients with risk factors and DD, as a prognostic marker. Future

studies are needed to validate our findings.

Introduction

Heart failure (HF) with preserved ejection fraction (HFpEF) has a growing prevalence, account-

ing for approximately 50% of patients with clinical HF syndrome [1–3]. However, despite pre-

served left ventricular ejection fraction (LVEF), HFpEF patients have high morbidity and

mortality, almost similar to patients with reduced EF (HFrEF) [4]. Because the pathophysiologi-

cal mechanisms underlying HFpEF remain incompletely understood, there is no standard diag-

nostic algorithm [3–8], and little therapeutic progress has been achieved [9]. Although the

newly proposed algorithms H2FPEF [5] and HFA-PEFF [6] tried to identify better HFpEF

patients, a significant fraction of patients are still classified discordantly or are classified in the

intermediate-likelihood category, where additional testing are needed [3, 6–8]. The current def-

initions have some limitations: the subjectivity of the symptoms, and the unfeasibility of mea-

surements of cardiac output or filling pressure (invasive), being the most important [10].

Moreover, in real world scenario, not all patients are able to perform echocardiographic exer-

cise stress tests, proposed by the HFpEF consensus. Elevated NTproBNP support, but normal

levels do not exclude diagnosis of HFpEF, especially in treated and obese patients [6, 10].

Since 2D echocardiography (2DE) in resting conditions is the most important piece in the

diagnosis of HFpEF, we need to better understand and define the transition from asymptom-

atic DD stage (pre-HFpEF) to symptomatic stage (HFpEF), in terms of echocardiographic

parameters [1, 5, 6, 10, 11]. However, none of the conventional parameters alone predict

increased NTproBNP level: E/A ratio, E’ velocities, E/E’ ratio, systolic pulmonary arterial pres-

sure (sPAP), and left atrial maximal volume indexed (LAVi max) [12]. The present diagnosis

of HFpEF depends on the level of NTproBNP and echocardiographic data, but the sensitivities

of both are quite low [10, 13, 14]. In summary, we need an easy-to-do echocardiographic

marker, or a sum of markers, able to predict HFpEF, regardless of NTproBNP level. These

markers should be thought as a stamp of myocardial dysfunctionality that can be revealed by

changing hemodynamic conditions.

In the earlier stage, LV filling pressure (LVFP) is normal at rest, but markedly increases

during exercise, while in an advanced stage it increases continuously even at rest [15]. Conse-

quently, prolonged increased LVFP generates structural and functional remodelling of the LA

[14]. LAVi assessed by 2DE is already incorporated in new HFpEF scoring system [6], using

well established cut-off values for grading severity. These values have strong evidence for
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prognosis in HF [16]. However, LAVi has no evidence in prediction of HFpEF diagnosis

alone, and it is insufficient to identify LA dysfunction. LA deformation analysis, particularly

LA reservoir strain, by STE appears to be robust to detect LA dysfunction, and has been shown

to carry prognostic value in patients with HFpEF [17, 18].

Previous studies reported preclinical atrial dysfunction, characterized by reduced reservoir

and conduit function, with preserved contractile function in stage A of American College of

Cardiology/American Heart Association (ACC/AHA) HF stages, prior to overt LA enlarge-

ment [19, 20]. Progressive subclinical dysfunction from stage B ACC/AHA leads to a consis-

tently reduction in reservoir and conduit function, with compensatory increase of pump

function [20]. Clinical HF, stages C and D, occur when contractile function fails to compensate

for reservoir and conduit dysfunction, advanced symptomatic HFpEF being characterized by a

significant decrease in all 3 atrial functions [19, 21–23]. At present, there are no clear data

regarding parameters that are able to diagnose HFpEF in patients with risk factors and symp-

toms. This is very important, since the essence of HF treatment is to prevent development of

HF in patient with risk factors.

Therefore, we conducted this study to evaluate the added value of the LA functions by STE

in diagnosis of HFpEF, on top of conventional parameters used in HFpEF diagnosis.

Materials and methods

Study population

We prospectively enrolled consecutive ambulatory patients with cardiovascular risk factors,

signs and symptoms of HF, from January 2018 to January 2020. All patients were referred to

our dedicated excellence HF centre to establish if they have HFpEF, according to guidelines

[4]. In order to evaluate the prediction power of each echocardiographic parameter for HFpEF

diagnosis, patients with HFpEF were compared to a group of patients with similar risk factor

profile and DD, but without HF signs and symptoms, and normal NTproBNP level (preHF

group), also prospectively enrolled on a 2:1 ratio model (HFpEF:preHF). The study protocol

conforms to the ethical guidelines as reflected in a priori approval by the Institution’s Human

Research Committee of the Carol Davila University of Medicine and Pharmacy. Informed

consent was obtained in all subjects prior to enrolment.

Inclusion criteria for HFpEF group were: age> 18 years, sinus rhythm, stable patient with

clinical, biological, and echocardiographic criteria suggestive for HFpEF, according to 2016

guidelines [4], informed consent signed. Exclusion criteria were recent hospitalization for

acute HF (< 4weeks), sustained atrial/ventricular arrhythmia, significant valvular heart dis-

ease, hypertrophic cardiomyopathy, pericardial disease, previous history of myocarditis, any

systemic inflammatory disease or vasculitis, active cancer in the last year, renal failure with

haemodialysis, pulmonary causes of dyspnoea, moderate to severe anaemia, inappropriate

quality of echocardiographic images for STE analysis. preHF group was selected from the

asymptomatic patients with risk factors, without clinical and biological criteria for HFpEF. All

patients had clinical examination, 12-lead electrocardiogram, screening laboratory tests,

NTproBNP, and a comprehensive 2DE.

Demographic and clinical data were collected before echo protocol (age, gender, BMI, heart

rate, systolic and diastolic blood pressure, HF symptoms and NYHA class, if any, HF aetiology,

risk factors (hypertension, diabetes mellitus, smoker status, pulmonary diseases, sleep apnea,

obesity, dyslipidaemia, ischemic disease documented by ECG, coronarography or other imag-

ing technique). Treatment with all potentially cardiovascular active drugs was recorded on

enrolment. After complete evaluation of the patients, the HFA-PEFF score was calculated,

according to the current consensus [6].
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Echocardiographic protocol

Conventional echocardiography was performed using a Vivid E9 echocardiographic ultra-

sound system (GE Healthcare, Horten, Norway) with a 3.5 MHz transducer. The electrocar-

diographic tracing was adjusted to show a well-defined P wave. Standard images were

acquired and digitally stored for offline analysis using a vendor specific software Echo PAC

PC, version BT12. Echocardiographic protocol included three apical views (four-chamber,

two-chamber, and long-axis) optimized for LV, followed by dedicated apical four-chamber

and two-chamber views for LA, avoiding foreshortening of the LV and LA, during acquisition.

For each view, three consecutive heart cycles were recorded with a frame rate ranging between

50 and 80 frames/sec. A good quality electrocardiogram (ECG) trace with well visible P was

recorded. All images were digitally stored and exported to a separate workstation for offline

analysis. The operators performing the echocardiographic analysis were blinded to the

patient’s clinical and lab details. The quantification of the cardiac chamber size and function

was performed in agreement with the current guidelines [16, 24]. LV mass indexed (LVMI)

was calculated using the linear method from the parasternal long axis view (Cube formula)

and indexed to the body surface area (BSA) [16].

LAVi max was calculated using the biplane disk summation technique and indexed to BSA,

as a mean from the apical 4- and 2-chamber views [16]. Transmitral pulsed-wave Doppler

velocities (E, A) and tissue Doppler velocities of the septal and lateral mitral annulus were

recorded and mean of both velocities was calculated (E’). Tricuspid regurgitant jet velocity and

inferior vena cava diameter were measured for the estimation of the sPAP. DD was assessed in

a step-by-step algorithm, based on the 2016 American Society of Echocardiography recom-

mendations [24].

LV global longitudinal strain (GS) was measured from apical 2D views (four-, two-, and

three-chamber views), by manually tracing the endocardial border of the LV at the end of sys-

tole, at the smallest LV chamber size. GS was calculated as the average strain values of all 18

LV segments, according to the guidelines [16].

LA volumetric and functional assessment by 2DE. LA analysis was performed by two

experienced operators, experts in STE analysis (RCR and SMB). LA volumetric assessment

was done from 4C and 2C dedicated views, and reported as a mean value and indexed by BSA

[25], as follows:

• LA maximal volume (LAVi max)—volume at the LV end-systole, before the mitral valve

opening.

• LA pre-A volume (LAVi pre-A)—volume before the onset of the P-wave on the ECG

tracing.

• LA minimal volume (LAVi min)—volume at the LV end-diastole, after mitral valve closure.

LA phasic functions were generated by using published formulas, based on LA volumes

[25]:

• Reservoir function:

LA total emptying fraction EFð Þ ¼ LAVmax � LAVminð Þ=LAVmax x 100

LA expansion index ¼ LAVmax � LAVminð Þ=LAVmin x 100

• Conduit function: LA passive EF = (LAV max—LAV preA)/LAV max x 100
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• Pump function: LA active EF = (LAV preA–LAV min)/LAV preA x100

LA longitudinal deformation analysis by STE. A detailed LA longitudinal deformation

evaluation by 2DSTE was published previously by our echocardiography lab [26, 27]. In sum-

mary, the LA strain curves were generated by manually tracing the endocardial border in the

apical four- and two-chamber views (P-P gating) [27, 28]. The average deformation values

from the apical four- and two-chamber views were used for analysis. LA phasic functions were

defined as follows:

• LA reservoir function: LA reservoir strain (S_R) deformation between MVC to MVO (cal-

culated as the sum between the peak negative longitudinal strain (absolute value), and LA

reservoir strain rate (SR_R) during systole, defined as peak positive strain rate from de strain

rate curve (Fig 1).

• LA conduit function: LA conduit strain (S_CD) as peak positive strain (Fig 1A), and LA

conduit strain rate (SR_CD) as peak negative strain rate during early LV diastole.

• LA booster pump function: LA contractile strain (S_CT) as peak negative strain (Fig 1A)

and strain rate during late diastole, corresponding to atrial contraction, defined as and strain

rate (SR_CT) (Fig 1B).

Fig 1. LA strain by speckle tracking echocardiography. Example of left atrial strain (panel A) and strain rate (panel

B) from four-chamber apical view, using speckle tracking echocardiography, illustrating reservoir, conduit and pump

deformation in a diastolic dysfunction patient. S_R, reservoir strain; SR_R, reservoir strain rate; S_CD, conduit strain;

SR_CD, conduit strain rate; S_CT, contractile strain, SR_CT, contractile strain rate.

https://doi.org/10.1371/journal.pone.0267962.g001
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• LA overload indices. We defined two non-invasive indices as markers of LA overload:

• stiffness index (SI), estimated by the ratio between E/E’ ratio and S_R [29], as a marker of

pressure overload, representing the amount of pressure required to induce a change in LA

deformation during the reservoir phase.

• distensibility index (DI), estimated by the ratio between S_R and LAVi max, as a marker

of volume overload, representing the amount of deformation for any volume change of

LA, knowing that the excursion is lower for an already dilated LA [30]. We also evaluated

the time added for measurement of all LA parameters, in order to estimate how much time

adds a functional assessment of the LA at the conventional echocardiographic evaluation

proposed by the guidelines.

Reproducibility

Intra- and inter-observer variability from our echo lab for all conventional echocardiographic

and TDI parameters, and also for STE parameters were already reported elsewhere [27, 31–

33]. We also assessed intra- and inter-observer variability for all LA strain and strain rate

parameters, on 10 patients that were randomly selected, using an online random selection gen-

erator. The intra-observer assessment was performed at 2 weeks apart (RRC). For inter-

observer variability assessment, the same patients were analysed by a second blinded observer

(SMB).

Statistical analysis

All continuous variables were assessed for the normal distribution by Kolmogorov–Smirnov

test. Normally distributed continuous variables were reported as mean ± SD and compared for

statistical significance with Independent Samples T Test. Non-normally distributed continu-

ous variables were presented as the median and interquartile range (IQR) and compared using

the Mann Whitney U Test. A p value of<0.05 was considered significant. Categorical variables

were expressed as percentages and compared with Chi-square test. Correlation between con-

tinuous variables was performed using Pearson’s or Spearman’s correlation coefficient as

appropriate. Multivariate logistic regression was used to identify predictors of HFpEF and to

calculate the corresponding odds ratios. The receiver operating characteristic (ROC) curve

was used to identify prediction of HFpEF diagnosis for each echocardiographic parameter and

to determine cut-off values. Sensitivity (Se) and specificity (Sp) were calculated. ICCs and their

95% confident intervals were calculated usingSPSS statistical package, based on an absolute-

agreement, 2-way mixed-effects model. Statistical analysis was performed using SPSS version

21 (SPSS Inc., Chicago, IL, USA).

Results

Demographics and clinical data

We screened 100 symptomatic patients potentially having HFpEF, and 50 asymptomatic

patients with cardiovascular risk factors and DD (preHF). We enrolled prospectively 125

patients, 88 patients with stable HFpEF (HFpEF group), and 37 asymptomatic patients, with

cardiovascular risk factors and LVDD (preHF group). 12 patients were excluded from HFpEF

group (2 with severe pulmonary diseases, 2 hypertrophic cardiomyopathy, 3 severe anaemia, 5

with images unsuitable for STE analysis). Patients excluded based on the echocardiographic

evaluation were because of the inability to obtain optimal images, either for LV or for LA anal-

ysis, an essential part of the STE evaluation.
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We excluded 13 patients from asymptomatic patients with RF because they do not have

DD, according to 2016 guideline. Patients’ characteristics are summarized in Table 1. The two

groups are almost similar in terms of demographic and clinical data, except that the HFpEF

patients are older (Table 1). As expected, NT-proBNP level was significantly higher in HFpEF

group, median 197 pg/ml, IQR (143, 318) vs preHF group, median 42 pg/ml, IQR (24, 68)

(P<0.001).

LV structure and functions

LV dimensions, volumes, LVMI, and LVEF were similar in HFpEF and DD groups, but GS

was impaired in HFpEF as we expected (Table 2). HFpEF group displayed lower mean E’

velocity, higher E/E’ ratio and sPAP. Regarding the severity of DD, grade 1 predominated in

preHF group, whereas grade 2 in HFpEF group (Table 2).

LA volumes and phasic functions

LAVi max, preA, and min were significantly higher in HFpEF by comparison to preHF group

(p<0.001). Reservoir function was significantly impaired in HFpEF compared to preHF

(Table 3). LA conduit function was similar in both groups. By contrast, LA pump function was

significantly reduced in HFpEF, with lower values of the S_CT, and SR_CT (Table 3). SI was

significantly higher, whereas DI was significantly lower in HFpEF compared to preHF group

(p<0.001) (Table 3). Time added for all LA strain derived parameters analysis was 148±14 sec

(138–159).

Correlations between NT-proBNP level and echocardiographic parameters

All parameters correlated to NT-proBNP are reported in Table 4. NTproBNP best correlated

with sPAP, DI, and SR_CT (all p<0.001) (Table 4).

Table 1. Demographic and clinical characteristics of all patients.

Parameter preHFpEF HFpEF P value

(n = 37) (n = 88)

Age (yrs) 61.4±8.3 67.5±9.1 0.001

Female (%) 62 75 0.15

BMI (kg/m2) 30.9±4.5 29.7±4.9 0.2

SBP (mmHg) 142±17 141±22 0.91

DBP (mmHg) 85±9 80±11 0.03

HR (bpm) 69±9 69±10 0.9

Smoker (%) 24 14.8 0.1

Arterial hypertension (%) 97. 93. 0.3

Dyslipidaemia (%) 89 89 0.8

Diabetes mellitus (%) 46 31 0.12

AFib (n, %) 0 17 (19%) <0.001

BMI >25kg/m2 (%) 54 49 0.5

HFA-PEFF score - 5.8±0.6

NYHA class

Class II (%) - 96.4

Class III (%) - 3.6

AFib, atrial fibrillation in the medical history. BMI-body mass index, SBP-systolic blood pressure, DBP-diastolic blood pressure, HR-heart rate.

https://doi.org/10.1371/journal.pone.0267962.t001
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LA pump function correlations

Since from all LA deformation parameters the higher correlation of NT-proBNP was with

SR_CT, we evaluated separately the additional correlations of this parameter. The best correla-

tions were with DI, LAVi min and max, and S_CT (Fig 2). LAVi min correlated with SR_CT

better then LAVi max. E/E’ ratio registered a weak correlation with SR_CT (Table 5).

Diagnostic performance of the conventional and STE parameters for

HFpEF diagnosis

From all parameters included in the current HFpEF algorithm (6), with their cut-off values

specified in the guidelines, sPAP>35 mmHg demonstrated the highest accuracy for HFpEF

diagnosis, although with limited sensibility and specificity (Table 6, Fig 3). Parameters such as

E/E’, E’ velocities, GS, LAVi max, LVMi, LVWT had low accuracy in detection of HFpEF

(Table 6, Fig 3).

However, we identified a new cut-off value for LAVi max > 43 ml/m2, able to detect

HFpEF diagnosis with higher specificity by comparison to the conventional cut-off value (>34

ml/m2) (Sp = 75.7% vs 16.2%) (p<0.001) (Table 6, Fig 3). Moreover, LAVi min> 19.8 ml/m2

had a higher specificity for HFpEF diagnosis than LAVi max. Although E/E’ >12 had very

good Sp = 91.7%, the sensitivity for HFpEF diagnosis was extremely low (Table 6). However,

by comparison with the cut-off values from the HF consensus, the accuracy was higher

Table 2. Comparison between groups in terms of systolic and diastolic parameters.

Parameter preHFpEF HFpEF P value

(n = 37) (n = 88)

LV structure and systolic function

IVS (mm) 12.4±1.9 12.0±2.0 0.43

PW (mm) 11±1.8 10.9±1.7 0.95

LVEDD (mm) 43.6±4.6 45.3±5.3 0.09

LVEDVi (ml/m2) 47.5±9.9 46.0±9.8 0.45

LVESVi (ml/m2) 19.97±6.9 18.74±5.5 0.29

LVEF (%) 58.8±6.9 60.3±5.7 0.22

LVMI (kg/ m2) 94.6±19.6 103.2±26.3 0.08

GS (%) -20±3 -18±3 <0.001

Diastolic dysfunction

E (cm/s) 74.±16. 81.±22 0.07

A (cm/s) 88.±17.8 90.±22 0.48

E/A median (IQ) 0.82 (0.73, 099) 0.86 (0.71, 1.1) 0.37

E’ mean (cm/s) 8.3±1.6 7.5±1.7 0.014

E/E’ median (IQ) 9 (7.6, 10.6)) 10.4 (8.8, 13)- 0.03

sPAP (mmHg) 27.9±7.6 34.6±8.5 <0.001

Grade I % (n) 81(30) 46 (40) <0.001

Grade II % (n) 19 (7) 53 (48) <0.001

Grade III % (n) 0 (0) 1(1) 0.52

E/A, ratio between peak early to late diastolic mitral inflow peak velocities; E/E’, ratio between early diastolic mitral

inflow to mitral annular early diastolic tissue velocities; GS, global strain; IVS, interventricular septum; LVEDD, left

ventricular end-diastolic diameter; LVEDVi, left ventricular end-diastolic volume indexed; LVESVi, left ventricular

end-systolic volume indexed; LVEF, left ventricular ejection fraction; LVMI, left ventricular mass indexed, PW,

posterior wall; sPAP, systolic pulmonary artery pressure.

https://doi.org/10.1371/journal.pone.0267962.t002
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(Table 6). GS <-20%, was identified as having a higher AUC than GS < -16%, considered as

minor functional criteria in the consensus (Table 6, Fig 3).

From all strain derived parameters, DI and SR_CT were the best parameters able to identify

HFpEF, with a cut-off value of<0.57 and < -1.66 /s, respectively (p<0.001). S_R<25%

Table 3. Left atrial volumes and functions.

Parameter preHFpEF HFpEF P value

(n = 37) (n = 88)

LA volumes

LAVi max (ml/m2) 40.3±9.2 48.6±11 <0.001

LAVi pre A(ml/m2) 27.8±6.9 34.3±10.2 <0.001

LAVi min (ml/m2) 16.7±5.2 22.5±8.8 <0.001

LA functions

Reservoir

Total EF (%) 58.7±8.0 54.6±9.1 0.018

Expansion index 151.6±51.4 128.6±43.2 0.011

S_R (%) 25.4±3.8 23.3±4.5 0.014

SR_R (1/s) 1.2±0.2 1.1±0.3 0.383

Conduit

Passive EF (%) 31.0±8.9 30.0±7.1 0.508

S_CD (%) 10.9±3.2 10.1±3.3 0.172

SR_CD (1/s) -1.15±0.4 -1.14±0.6 0.896

Pump

Active EF (%) 40.1±8.5 35.1±9.7 0.009

S_CT (%) -14.5±2.4 -13.2±3.1 0.030

SR_CT (1/s) -1.8±0.4 -1.4±0.5 <0.001

LA overload indexes

Stiffness index 0.4±0.1 0.5±0.2 <0.001

Distensibility index 0.7±0.2 0.5±0.2 <0.001

EF, emptying fraction; LA, left atrium, LAVi, left atrium volume indexed, S_R, reservoir strain. SR_R, reservoir strain rate; S_CD, conduit strain; SR_CD, conduit strain

rate; S_CT, strain contraction; SR_CT, strain rate contraction.

https://doi.org/10.1371/journal.pone.0267962.t003

Table 4. Correlations between NT-proBNP and echo parameters.

Parameter R correlation P value

sPAP (mmHg) 0.422 <0.001

Distensibility index -0.410 <0.001

SR_CT (1/s) 0.406 <0.001

LAVi min (ml/m2) 0.375 <0.001

LAVi max (ml/m2) 0.358 <0.001

Stiffness index 0.269 0.003

GS (%) -0.262 0.002

E/E’ 0.230 0.010

S_R (%) -0.178 0.047

E/E’, ratio between early diastolic mitral inflow to mitral annular early diastolic tissue velocities; GS, global strain;

LAVi, left atrium volume indexed; sPAP, systolic pulmonary artery pressure; S_R, reservoir strain; SR_CT,

contractile strain rate.

https://doi.org/10.1371/journal.pone.0267962.t004
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demonstrated lower accuracy for HFpEF diagnosis, by comparison with these two parameters

(Fig 4, Table 6).

When compared the AUC for all newly defined cut-off values, DI and SR_CT were superior

to all echocardiographic parameters used for diagnosing HFpEF in scoring system (Fig 4).

According to multivariate logistic regression, using all parameters defined in Table 6, the

model that best identified HFpEF included only SR_CT < -1.66 1/s, sPAP>33.5 mmHg, and

GS< - 20% (R2 = 0.506, p<0,001) (Table 7). Neither LAVi max/min, nor DI or SI were inde-

pendent predictors. SR_CT< -1.66 1/s was an independent predictor of HFpEF, and had the

most important role in this model, having the highest OR (Table 7).

Using parameters with the highest AUC, such as SR_CT, sPAP, GS, DI, LAVi min, with

their cutt-off values, we create a combined model (1point for each parameters), in order to see

if a combination of parameters might identify HFpEF better than conventional and new

parameters alone. A combined index of 3 from 5 parameters identified better HFpEF than

SR_CT, DI, sPAP, GS, and than guidelines combined index (AUC = 0.775, Se = 70, Sp = 86%,

p<0.001) (Fig 4). By using 4 or 5 parameters of 5, the AUC (0.73 vs 0.62) and Se (52 vs 24%)

decrease, whereas Sp increases (95% vs 100%), respectively.

Intra- and inter-observer reproducibility were good to excelent for all LA strain and strain

rate parameters (Table 8).

Fig 2. Correlations between LA pump function and other parameters. Correlations between LA pump function and distensibility

index (Panel A), LAVi min (Panel B) and LAVi max (Panel C). LAVi, left atrium volume indexed; SR_CT, contractile strain rate.

https://doi.org/10.1371/journal.pone.0267962.g002

Table 5. Correlations between LA pump function and other echo parameters.

Parameter R correlation P value

Distensibility index -0.60 <0.001

LAVi min 0.51 <0.001

LAVi max 0.47 <0.001

S_R -0.41 <0.001

Stiffness index 0.32 <0.001

GS 0.27 0.002

E/E’ 0.18 0.048

E/E’, ratio between early diastolic mitral inflow to mitral annular early diastolic tissue velocities; GS, global strain;

LAVi, left atrium volume indexed, S_R, reservoir strain.

https://doi.org/10.1371/journal.pone.0267962.t005
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Discussions

In our prospective study we enrolled 125 patients, 88 with stable HFpEF, and 37 asymptomatic

LVDD patients without HF, analysed by conventional 2DE and STE, to establish the added

value of the LA function in the diagnosis of HFpEF, on top of conventional parameters from

the scoring system.

LA functional analysis

To the best of our knowledge, this is the first study that showed that LA pump function and

distensibility index, evaluated by STE, are able to detect better HFpEF than any other struc-

tural or functional parameter from the 2019 scoring system. A value of SR_CT < -1.66/s and

DI<0.57 outperformed conventional parameters, reservoir strain, and GS in HFpEF diagno-

sis. However, when clinical parameters, standard echocardiographic parameters, LA strain

parameters, and GS were included in a multivariate logistic regression, the model that best pre-

dicted HFpEF, included only SR_CT, GS, and sPAP, SR_CT having the highest OR in this

model. Our study also confirms significant impairment of the reservoir function, with similar

conduit function in HFpEF compared to preHF group. Of note all LA strain and strain rate

parameters had very good reproducibility in our study, similar to the most recent publications

[33, 34].

By comparison to our study, previous studies have shown contradictory data on potential

predictors of HFpEF. However, they compared patients with cardiac vs. non-cardiac dyspnoea,

regardless of the presence or absence of DD, with other possible confounding factors in the

control group [35–37]. Sanchis et al. [35] showed that DI is the best predictor for HF diagnosis.

Table 6. Diagnostic accuracy for HFpEF diagnosis of the guideline and new suggested echocardiographic parameters.

Cut-off values AUC p value Sensitivity Specificity

LAVi max (ml/m2) >34 0.56 [0.45–0.679] 0.26 96.7% 16.2%

> 43 0.71 [0.6091–0.807] <0.001 65.9% 75.7%

sPAP (mmHg) >33.5 0.678 [0.575–0.782] 0.002 61% 74.3%

>35 0.670 [0.567–0.773] 0.003 56.8% 77.1

E/E’ >12 0.633 [0.531–0.734] 0.02 34.9% 91.7%

9–14 0.616 [0.504–0.728] 0.04 73% 50%

>15 0.576 [0.47–0.68] 0.19 15% 100%

E’ medial/lateral (cm/s) >7/10 0.611 [0.501–0.68] 0.05 68.2% 54.1%

LVWT (mm) >12 0.406 [0.299–0.51] 0.10 56.8% 24.3%

LVMi (g/m2) (m/w) 149/122 0.55 [0.443–0.65] 0.39 12% 97.3%

115/95 0.56 [0.446–0.67] 0.33 52% 60%

GS (%) < -20 0.701 [0.611–0.810] <0.001 72.7% 67.6%

< -16 0.616 [0.611–0.810] 0.04 66% 90%

S_R (%) < 25 0.635 [0.521–0.739] 0.017 69.3% 56.8%

S_CT (%) > -14.7 0.627 [0.523–0.732] 0.025 71.6% 51.4%

SR_CT (1/s) < -1.66 0.760 [0.608–0.811] <0.001 71.6% 70.3%

Stiffness index > 0.51 0.700 [0.609–0.792] <0.001 37.5% 97.2%

Distensibility index < 0.57 0.766 [0.685–0.866] <0.001 69.3% 83.8%

E’, diastolic tissue Doppler velocities; E/E’, ratio between early diastolic mitral inflow to mitral annular early diastolic tissue velocities; GS, global strain; LAVi, left atrium

volume indexed; LVMi, left ventricle mass indexed; LVWT, left ventricle wall thickness, sPAP, systolic pulmonary artery pressure; S_R, reservoir strain; S_CT,

contractile strain; SR_CT, contractile strain rate.

https://doi.org/10.1371/journal.pone.0267962.t006
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These results could be explained by different patients’ profile (older patients, severely dilated

LA, mixed HFpEF and HFrEF patients). It worth mention that we found an almost similar

cut-off value for SR_CT as Sanchis et al. (< -1.69/s), however with slightly lower sensitivity

and specificity in our case. This might be explained by the differences in patient’s selection.

Fig 3. Comparative receiver-operating curves of the conventional echocardiographic parameters for HFpEF

diagnosis, between new-proposed and old cut-off values. Panel A. E/E’ ratio>12 registered a higher accuracy

(AUC = 0.633), compared to the old values 9–14 (AUC = 0.616) and>15 (AUC = 0.576); Panel B. Systolic pulmonary

artery pressure (sPAP)> 33.5 mmHg (AUC = 0.678) showed a slightly higher accuracy compared to the guidelines

value> 35 mmHg (AUC = 0.670). Panel C. Global strain (GS)< -20% demonstrated a significantly higher

AUC = 0.727, compared to the consensus proposed value of< -16%; Panel D. Left atrial maximal volume indexed

(LAVimax)> 43 ml/m2 predicts better patients with HFpEF, by comparison to the conventional cut-off value>34 ml/

m2.

https://doi.org/10.1371/journal.pone.0267962.g003

Fig 4. Comparative receiver-operating curves of guideline and new echocardiographic parameters for HFpEF diagnosis. The

new echocardiographic parameters (Panel B) showed higher AUC compared to all current guideline parameters (Panel A). A

combined index of 3 from 5 parameters with the highest AUC (SR_CT, sPAP, GS, DI, LAVi min) identified HFpEF better than the

actual guideline index and all parameters alone, including the new ones. LAVi, left atrium volume indexed; E/E’, ratio between early

diastolic mitral inflow to mitral annular early diastolic tissue velocities; LVMi, left ventricle mass indexed; sPAP, systolic pulmonary

arterial pressure; GS, global strain; SR_CT, LA contractile strain rate; DI, distensibility index; S_R, LA reservoir strain.

https://doi.org/10.1371/journal.pone.0267962.g004
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Sanchis et al., in another paper, found that SR_CT< -1.40/s was the best parameter to evaluate

prognosis in HF [38].

On the contrary, Reddy et al. [36], found that S_R outperformed the conventional used DD

parameters. They found that S_R<24.5% can identify HFpEF (Se = 56%, Sp = 94%) very close

to that identified by us, S_R< 25%. Moreover, they found that LA stiffness index was superior

to S_R alone in diagnosis of HFpEF. Similarly, we found that SI was superior to S_R, when

analysed alone, but both were inferior to SR_CT. The lack of discriminatory power of SR_CT

in Reddy’s study might be related to the inclusion of patients with atrial fibrillation.

Compared to these two studies, in which in the control group GS was reduced, in our

study, preHF patients had preserved GS, despite increased LAVi max and impaired LA phasic

function. In this light, our findings confirm the hypothesis of an earlier LA failure in preHF

patients [19].

Telles et al. demonstrated that HFpEF patients compared to patients with non-cardiac dys-

pnea (NCD), have decreased S_R (24.3±9.6 vs. 36.7±8.4%), SR_R (0.9±0.3 vs. 1.2±0.3/s), S_CT

(-11.5±3.2 vs.-17.0±3.4%) and SR_CT (-1.1±0.5 vs. -1.6±0.4/s, p<0.001), with similar conduit

function [37]. Our data confirm similar values for reservoir and pump strain in HFpEF

patients, but different values for preHF group. Differences can be explained by the enrolment

of patients with NCD as control group, without DD. Moreover, they also showed that S_CT

identified HFpEF (Se = 94%, Sp = 80%, AUC = 0.88), while S_R (Se = 83%, Sp = 80%,

AUC = 0.83) (P<0.001). Both reservoir and pump strain far exceeded the predictive ability of

E/E’. By contrast, we found that SR_CT was superior to S_CT in prediction of HFpEF, because

our HFpEF group had less severe symptoms (NYHA II class) and less severe dilated LA. The

non-invasive SI was also higher in HFpEF patients, as in our study.

In another study, LVH magnitude and atrial dilation/failure provided the best separation

between preHF and HFpEF group in hypertensive patients. Their results suggested that atrial

Table 7. Predictors of HFpEF in multivariate logistic regression.

Parameter OR [95% CI] P value

SR_CT 5.829 [1.389–24.451] 0.016

GS 1.303 [1.066–1.592] 0.010

sPAP 1.129 [1.055–1.209] 0.001

GS, global strain; sPAP, systolic pulmonary arterial pressure; SR_CT, contractile strain rate.

https://doi.org/10.1371/journal.pone.0267962.t007

Table 8. Reproducibility of the LA strain parameters by STE.

Intraobserver Interobserver

Parameters MN±SD ICC 95% CI MN±SD ICC 95% CI

S_R 22.12±0.56 0.984 0.845–0.997 22.32±0.15 0.934 0.760–0.983

SR_R 1.09±0.03 0.976 0.891–0.994 1.09±0.03 0.800 0.391–0.946

S_CD (%) 9.38±0.29 0.981 0.924–0.995 9.60±0.14 0.937 0.771–0.984

SR_CD (1/s) -0.9±0.02 0.974 0.902–0.993 -0.92±0.02 0.883 0.525–0.971

S_CT (%) -12.73±0.27 0.987 0.885–0.997 -12,72±0.29 0.961 0.857–0.99

SR_CT (1/s) -1.59±0.03 0.980 0.927–0.995 -1.612±0.02 0.970 0.891–0.992

MN, mean; SD, standard deviation; ICC, intraclass correlation coeficient; CI, confidence interval; S_R, reservoir strain; SR_R, reservoir strain rate; S_CD, conduit strain;

SR_CD, conduit strain rate; S_CT, strain contraction; SR_CT, strain rate contraction.

https://doi.org/10.1371/journal.pone.0267962.t008
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function may be a key compensatory mechanism countering evolution of HFpEF, and they

highlight the diagnostic utility of atrial failure as a marker of the disease, too [39].

LA morphological analysis

In our study, all LA volumes were significantly increased in HFpEF patients compared to

preHF patients. LAVimax >43 ml/m2 can predict HFpEF with significant increased specificity

when compared to the guideline value (>34 ml/m2). However, when LAVimax was included

in the regression analysis, it did not predict HFpEF. Moreover, we found a better correlation

of LAVi min, with SR_CT compared to LAVimax. Previous studies suggested that LAVimin,

is a marker of atrial afterload and is more closely related to LVFP, being strongly associated

with NT-proBNP than LAVimax [40–42]. Russo et al. [40] found that LAVimin had a strong

association with E/E’ ratio, whereas LAVimax had not. Recently, Thadani et al. [42] demon-

strated a better predictive power for LAVimin compared to LAVimax for HF hospitalization

and cardiovascular outcomes.

Filling pressures analysis

In our study, sPAP and E/E‘ratio, considered old surrogates for increased LVFP, demonstrated

reduced diagnostic performance for HFpEF diagnosis, when compared to SR_CT and LAVi-

max. However, when included in a multivariate logistic regression, together with all the classi-

cal diastolic and strain parameters, only sPAP was incorporated in the model that best

identified HFpEF, with p<0.001. Furthermore, we suggested new cut-off values to increase

sensitivity for HFpEF diagnosis, for both sPAP (>33.5 mmHg) and E/E‘ratio (>12), by com-

parison with values suggested by the scoring system.

E/E0 has been the main non-invasive surrogate parameter to predict LVFP. However, many

studies demonstrated that E/E0 ratio has a weak correlation with pulmonary capillary wedge

pressure (PCWP) in patients with HFpEF [43–48]. Overall, there is a lack of strong evidence in

HFpEF patients supporting the utility of E/E0 as an accurate marker of LVFP. Even if the cur-

rent guidelines [6, 10] use E/E’>15 as a parameter useful for HF diagnosis, this parameter

demonstrated very low sensitivity in our study, in line with other studies. Horiuchi et al. found

that only sPAP had a strong correlation with PCWP (R = 0.738, p<0.001), E/E‘ratio having a

weak correlation [49]. Another study demonstrated that tricuspid regurgitation velocity, used

to non-invasively estimate sPAP, had the highest predictive value in identifying PCWP>15

mmHg (AUC = 0.89), compared to E/E’ and LAVimax [50]. The poor correlation of E/E’ ratio

with LVFP in all studies might be explained by the fact that at least one third of patients with

HFpEF may exhibit normal LVFP at rest, with elevated FP only on exertion [51]. In line with

these findings, we also found a high performance for sPAP to identify HFpEF, when compared

to E/E‘ratio.

Lindqvist et al. [34], in a recent publication, demonstrated using invasive evaluation of the

LA pressure, that SR_CT was the best accurate component of LA deformation measurements

that correlated with PCWP. This parameter had superior accuracy in predicting elevated

PCWP compared to recently proposed uni- and multivariable-based algorithms (r2 = 0.60,

p< 0.001). Relationship was even stronger in patients with enlarged LA [34].

As 2019 scoring system suggested a multiparametric approach for HFpEF diagnosis, we

also evaluated a combined parameter, composed by SR_CT, DI, sPAP, GS, LAVi min, these

parameters exceeding the accuracy of conventional parameters. A combination of three from

five parameters, was able to predict with the highest accuracy HFpEF diagnosis, by comparison

with each parameter alone and by comparison with combined index from the scoring system.

In these light, we suggest that these parameters should be validated in larger studies, in order
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to incorporate them in the scoring system, as functional and structural criteria. We also sug-

gest that functional criteria might have higher contribution than structural ones, in a future

alghorithm for HFpEF diagnosis, since than all functional parameters registered a higher accu-

racy than structural parameters. These parameters could be of particular interest to follow-up

the preHFpEF patients to determine whether they progress to HFpEF.

Limitations

Several limitations of our study should be acknowledged. The main limitation was the lack of

invasive hemodynamic data. However, invasive assessment in our patients was not clinically

indicated. Also, exercise stress echo was not performed in our study because we selected

patients with a clear diagnosis of HFpEF. Another limitation was that it was a single centre and

single vendor experience (GE). However, our subjects were rigorously selected, representing a

reasonable sample. Finally, in terms ofapplicability in clinical practice, it is hard to be confi-

dent with strain rate values, since changes in the range of subunit are hard to manage. Most of

HFpEF patients were in NYHA functional class II, with grade I and II of LVDD. Hence, fur-

ther studies, with larger numbers of patients in NYHA functional class III or IV and grade III

of LVDD are needed to validate the findings from our study.

Conclusions

Our study demonstrated that by adding LA functional analysis, we might improve the HFpEF

diagnosis accuracy, compared to present scoring system. Booster pump function is the only

function that differentiates preHF from HFpEF patients. A value of SR_CT < -1.66/s outper-

formed conventional parameters from the scoring system, reservoir strain, and LA overload

indices in HFpEF prediction. We also confirmed that none of the conventional parameters

predict alone HFpEF diagnosis, making differentiation between HFpEF and preHF by echo-

cardiography in resting condition impossible. The value of diagnosing HFpEF without the

need for stress echo and invasive hemodynamic data is important, since not all patients are

able to perform it in real world scenario. We suggest that functional LA analysis by STE could

be used to improve diagnostic algorithms of HFpEF, and in the follow-up of HFpEF patients.

Further studies are needed to validate our findings in a large population evaluated for HFpEF

diagnosis.
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