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Abstract: Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and painful condi-
tion in patients who have received chemotherapy. The role of neuromodulation therapy in treating
pain and improving neurological function in CIPN remains unclear and warrants evidence ap-
praisal. In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines, we performed a systematic review to assess change in pain intensity and
neurological function after implementation of any neuromodulation intervention for CIPN. Neu-
romodulation interventions consisted of dorsal column spinal cord stimulation (SCS), dorsal root
ganglion stimulation (DRG-S), or peripheral nerve stimulation (PNS). In total, 15 studies utilized SCS
(16 participants), 7 studies utilized DRG-S (7 participants), and 1 study utilized PNS (50 participants).
Per the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria,
there was very low-quality GRADE evidence supporting that dorsal column SCS, DRG-S, and PNS
are associated with a reduction in pain severity from CIPN. Results on changes in neurological
function remained equivocal due to mixed study findings on thermal sensory thresholds and touch
sensation or discrimination. Future prospective, well-powered, and comparative studies assessing
neuromodulation for CIPN are warranted.

Keywords: spinal cord stimulation; dorsal root ganglion stimulation; peripheral nerve stimulation;
chemotherapy; cancer pain; peripheral neuropathy; clinical outcomes; chronic pain

1. Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating
condition in cancer patients who have received chemotherapy. CIPN is predominantly a
sensory neuropathy localized in a stocking-glove distribution. Sensory symptoms may
range from allodynia to hypoesthesia and may be accompanied by motor and autonomic
deficits [1], resulting in increased fall risk and decreased quality of life [2,3]. The severity
of CIPN is dependent on the type of chemotherapy agent and its associated neurotoxicity
profile, cumulative dose, and duration of exposure [4–6]. Symptoms generally improve
with discontinuation of the chemotherapy agent over time, although complete recovery
to baseline is not always attained. It is estimated that 50–90% of patients who receive
chemotherapy go on to develop CIPN in the acute setting, and 30–40% of patients continue
to suffer from CIPN chronically [1,4,6].

Current pharmacologic therapy for CIPN includes a multimodal strategy consisting of
the following regimen: acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDs),
topical agents (e.g., lidocaine and capsaicin), anti-convulsants (e.g., gabapentinoid and
carbamazepine), anti-depressants (e.g., selective norepinephrine reuptake inhibitors and
tricyclic anti-depressants), opioids, and cannabinoids [1,7]. However, their effectiveness
may be limited. Low therapeutic index and adverse effect profiles from some medications
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may present additional challenges. Neuromodulation therapy has emerged as a viable
treatment option for many refractory cases of chronic pain, including CIPN [8].

This review focuses on dorsal column spinal cord stimulation (SCS), dorsal root
ganglion stimulation (DRG-S), and peripheral nerve stimulation (PNS). Dorsal column SCS
involves the placement of leads in the epidural space overlying the dorsal column of the
spinal cord [8]. Various stimulation waveforms, including tonic stimulation, high-frequency
(10-kHz) stimulation, burst stimulation, differential target multiplexed stimulation, and
closed-loop stimulation, can be delivered via dorsal column SCS [9–11]. DRG-S involves
lead placement in the epidural space overlying the dorsal root ganglion [12,13]. PNS
involves lead placement in close proximity to a target nerve that innervates the location of
the painful area [14,15].

Evidence from landmark trials has highlighted the efficacy of SCS, DRG-S, and PNS
in the treatment of neuropathic pain conditions, revealing superior pain relief, physical
functionality, mental health, and patient satisfaction compared to conventional medical
management alone [10,16–19]. Studies have also highlighted that animal models with
CIPN may benefit from stimulation. For instance, a study on rats with paclitaxel-induced
mechanical and cold hypersensitivity revealed that SCS therapy significantly inhibited the
development of mechanical and cold hypersensitivity compared to rats receiving paclitaxel
alone or sham SCS [20]. To date, there is Food and Drug Administration (FDA) approval
supporting SCS therapy for painful diabetic neuropathy (PDN) [21,22], failed back surgery
syndrome [23], non-surgical refractory back pain [24], and complex regional pain syndrome
(CRPS) [25]. DRG-S is approved for use in CRPS, while PNS is approved for the treatment
of chronic pain, post-surgical pain, or post-traumatic pain located in the back, extremities,
or head/neck.

In this systematic review, we appraise the current literature on the use of SCS, DRG-S,
and PNS for the treatment of pain related to CIPN. The primary objective is to assess changes
in pain intensity. The secondary objective is to assess changes in neurological function.

2. Methods
2.1. Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any new
studies with human participants or animals performed by any of the authors. The protocol
was registered in the International Prospective Register of Systematic Reviews (PROSPERO
CRD42022338500).

2.2. Search Strategy

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines [26]. As such, a comprehensive search of several databases
from each database’s inception to 16 May 2022 in the English language was conducted,
along with the creation of a hand-searched reference list of identified publications. The
databases included Ovid MEDLINE(R), Ovid EMBASE, Ovid Cochrane Central Register
of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, and Scopus. The
search strategy was designed and conducted by an experienced librarian (L.J.P.) with input
from the study’s principal investigator (R.S.D.). Controlled vocabulary supplemented with
keywords was used to search spinal cord stimulation and peripheral nerve stimulation
for CIPN in humans. The actual strategy listing all search terms used and how they are
combined is available in the Supplementary Tables S1–S3.

2.3. Study Selection

Included studies abided by the following criteria: any study design that involved
humans undergoing neuromodulation (SCS, DRG-S, PNS) for the treatment of CIPN.
Exclusion criteria consisted of the following: review or meta-analysis articles. Of note, we
included abstracts in this review. Two authors (M.Y.J. and M.M.) independently selected
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abstracts along with full-text articles from the above-listed databases, while a third author
(R.S.D.) resolved any discrepancies.

2.4. Data Extraction

The following data on the characteristics of each study were extracted: study design,
funding source, mean age and number of participants, type of intervention and lead
placement location, and stimulation settings. Relevant data on the primary and secondary
outcomes of interest were also extracted. The primary outcome of interest was participant-
reported changes in pain intensity related to their CIPN after neuromodulation therapy.
Secondary outcomes of interest included participant-reported changes in neurological
function (e.g., change in motor or sensory deficit). For each included study, two authors
(M.Y.J. and M.M.) independently extracted all relevant data, with a third author (R.S.D.)
arbitrating any disputes.

2.5. Assessment of Risk of Bias

Two independent reviewers (Y.F.H. and R.S.D.) assessed the risk of bias for the in-
cluded studies using the Newcastle–Ottawa Quality Assessment Scale for case-control
and cohort studies. There was no randomized controlled trial captured in this review.
For observational studies, bias was assessed based on the following domains: Selection
(representativeness of the exposed cohort, selection of the non-exposed cohort, ascertain-
ment of exposure, demonstration that outcome of interest was not present at the start);
Comparability (comparability of cohorts on the basis of the design or analysis); and Ex-
posure/Outcome (assessment of outcome, follow-up long enough for outcomes to occur,
adequacy of follow-up of cohorts). A maximum of one star for each numbered item within
the Selection domain and Exposure/Outcome domain can be awarded per study. A maxi-
mum of two stars can be awarded for the Comparability domain. A higher number of stars
indicates a lower risk of bias for each respective domain.

2.6. Quality of Evidence

GRADEpro software (McMaster University and Evidence Prime, Inc., Kraków, Poland,
2022; http://gradepro.org, accessed on 21 June 2022) was used to assess the quality of
evidence for each outcome per GRADE (Grading of Recommendations, Assessment, De-
velopment, and Evaluations) criteria. Randomized controlled trials are categorized as
high-level evidence. This can be downgraded based on the risk of bias, inconsistency,
indirectness, imprecision, and publication bias.

3. Results
3.1. Search Strategy and Study Selection

The search strategy identified 847 citations. After independent and duplicate screening,
40 full-text articles were assessed, and 23 articles were selected that met the full inclusion
criteria. The full study selection process is presented in Figure 1. All included studies
were case reports/series except for one retrospective observational study [27]. In total, the
studies comprised 73 total participants. Of these, 15 studies [28–42] utilized SCS (n = 16
participants), 7 studies [43–49] utilized DRG-S (n = 7 participants), and 1 study [27] utilized
PNS (n = 50 participants).

http://gradepro.org
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[28,35,36]. Cata et al. [41] reported SCS implantation in two patients with CIPN. Of these, 
1 patient reported a VAS score of 4.5/10 at baseline, which improved to 0/10 after SCS 
therapy, and substantial pain relief was maintained at 4 months follow-up. The second 
patient had initial improvement of pain from 4.6/10 at baseline to 0/10 during the trial 
period and after implantation but reported a slight increase in VAS score to 3.6/10 at the 
2-week follow-up. Regardless, the patient reports satisfaction with SCS therapy and im-
provement in gait and leg flexibility [41]. Panchal et al. reported the use of a wireless SCS 
device that provided more than 90% improvement in pain intensity from CIPN [33]. 

 

Figure 1. PRISMA flow diagram for systematic review. Flow chart of the study selection process,
inclusion and exclusion of studies, and reasons for exclusion are displayed. * Databases included
Ovid MEDLINE(R), Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, Ovid
Cochrane Database of Systematic Reviews, and Scopus. ** Records excluded from title and abstract
screening only.

3.2. Evidence Supporting Neuromodulation Therapy for Pain Relief

SCS therapy for CIPN-related pain was evaluated across 15 case studies [28–42] and
reported in Table 1. A total of 3 recent case reports reported improvement in pain intensity
by 80% during the trial phase, which was maintained after permanent SCS implantation,
with visual analog scale (VAS) scores ranging between 0/10 and 2/10 at 2 years follow-
up [28,35,36]. Cata et al. [41] reported SCS implantation in two patients with CIPN. Of
these, 1 patient reported a VAS score of 4.5/10 at baseline, which improved to 0/10 after
SCS therapy, and substantial pain relief was maintained at 4 months follow-up. The second
patient had initial improvement of pain from 4.6/10 at baseline to 0/10 during the trial
period and after implantation but reported a slight increase in VAS score to 3.6/10 at
the 2-week follow-up. Regardless, the patient reports satisfaction with SCS therapy and
improvement in gait and leg flexibility [41]. Panchal et al. reported the use of a wireless
SCS device that provided more than 90% improvement in pain intensity from CIPN [33].
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Table 1. Summary of Studies on Neuromodulation Interventions for Chemotherapy-Induced Peripheral Neuropathy.

Author/
Year Study Design Funding Source Mean Age Type of Intervention

(Location) Stimulation Settings Pain Outcomes Neurological Function Outcomes Other Outcomes

Dorsal Column Spinal Cord Stimulation

Abd-Elsayed et al.
2021 [36] Case report No funding 47 years (n = 1) SCS (C3–C4)

45 Hz; 450 µs pulse
width; 2.8 mA right
side and 3.2 mA left

side amplitude

Pain decreased 80% during trial
and maintained improvement
through permanent implant

Improved ability to use hands Improved ability for
daily activities

Chai et al. 2017
[38] Case report No funding 57 years (n = 1) SCS (C4 and T8)

Two leads at C4 for
upper limb pain and
two leads at T8 for

lower limb pain

>50% pain relief during trial NR NR

Abd-Elsayed et al.
2015 [42] Case report NR 47 years (n = 1) SCS (C4–C5) NR

70–80% reduction in pain during
trial with sustained relief

post-implant

Improvement of function and
ability to use hands NR

Sarkar et al. 2019
[30] Case report No funding 55 years (n = 1) SCS (C4 and T9) 10-kHz >90% pain improvement NR NR

Kamdar et al. 2021
[35] Case report No funding 62 years (n = 1) SCS (T8–T9) 60 Hz frequency;

intensity of 6.5 mA

VAS pain score improved from
8/10 to 2/10 during 7-day trial that

was maintained through
permanent implant

Improved gait and decreased
frequency of falls. Able to walk
barefoot on cold surfaces and

tolerated a pedicure for the first
time. Sensory exam was mostly

unchanged (no pinprick sensation
below the mid-shin and no
vibration sensation in feet)

NR

Grant et al. 2019
[31] Case report No funding 47 years (n = 1) SCS (T9 and T10) NR

Trial VAS score decreased to 3/10
from 7/10 at baseline; post-implant

VAS: 0/10
NR NR

Sisson et al. 2017
[32] Case report No funding 69 years (n = 1) SCS (T9–10 disc space) 10-kHz 100% pain improvement in CPIN at

3-month follow-up NR NR

Panchal et al. 2016
[33] Case report Industrial

funding 70 years (n = 1) SCS (T9–T11) (Wireless
staggered by 4 cm)

120 Hz and 300 µs
pulse width, at an

amplitude of 2.5 mA
90% improvement in pain

Able to sit, stand, walk and lay
down with a significant reduction

in pain
NR

Braun Filho et al.
2007 [40] Case report NR 72 years (n = 1) SCS (T10) 80 Hz; 300 µs pulse

width; 0–4 V

VAS pain score improved from
10/10 to 3/10. Pain relief was

sustained 3 months after implant
NR Improved quality of life

Wright et al. 2021
[28] Case report No funding 60 years (n = 1) SCS (T10)

Two 8-contact
dorsal column leads

with intermittent burst
programming

5-day trial yielded 80% pain
improvement; Post-implant: VAS

0/10 was maintained at 2-year
follow-up

NR Improved quality of
sleep
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Table 1. Cont.

Author/
Year Study Design Funding Source Mean Age Type of Intervention

(Location) Stimulation Settings Pain Outcomes Neurological Function Outcomes Other Outcomes

Dorsal Column Spinal Cord Stimulation

Abd-Elsayed et al.
2016 [29] Case series NR 39 years (n = 1) SCS (T10–T11) NR

95% pain relief during 1-week trial.
Pain relief was sustained 3 months

after implantation
NR

Improvement in sleep
pattern, able to be more

independent in
performing daily

activities

Lopes et al. 2020
[37] Case report NR 51 years (n = 1) SCS (T10–T12) 40 Hz frequency; 350

µs pulse width; 1 V

About 50% pain improvement for
both 7-day trial and permanent

implant
NR NR

Cata et al. 2004
[41] Case report NR 55.5 years (n = 2) SCS (Patient 1 = L1,

Patient 2 = T11)

Patient 1: 22 Hz; 286 µs
pulse width; 0–2V.

Patient 2: 80 Hz; 500 µs
pulse width; 0–4 V

Patient 1: VAS pain score improved
from 4.5/10 to 0.2/10 during trial
and 2/10 after permanent implant.

Patient 2: VAS 4.6/10 to 0/10
during trial and 3.6/10 after

permanent implant

Improved gait, flexibility of legs,
and touch detection for both

patients. Improved sharpness
detection for patient 1, none for
patient 2. No change in thermal

thresholds for patient 2

NR

Michael et al. 2020
[29] Case report No funding 48 years (n = 1) SCS (NR) NR 100% pain improvement in CIPN NR NR

Sayed et al. 2015
[34] Case Report NR NR (n = 1) SCS (NR) NR >50% pain relief sustained at

3-month follow-up NR NR

Dorsal Root Ganglion Stimulation

Yelle et al. 2017
[46] Case report NR 49 years (n = 1) DRG-S (L4–L5) NR >60% improvement in pain

intensity
Increased walking distance

without pain

Improved mood and
dramatic improvement

in sleep

Rao et al. 2019 [45] Case report No funding 53 Years (n = 1) DRG-S (L5) NR Trial lead to >75% pain
improvement

Worsened right side lower
extremity numbness (buttock,
posterior thigh, calf, and heel)

NR

Groenen et al. 2019
[49] Case report No funding 52 years (n = 1) DRG-S (S1) NR

VAS pain score improved from
8/10 to 0/10 for trial. VAS was

1/10 five months post-implantation

Regained ability to stand for
prolonged period of time. EQ-5D
score improved from 0.13 to 0.85.
SF-36 physical component score

improved from 23 to 31

SF-36 mental
component score

improved from 7 to 59

Finney et al. 2017
[47] Case report No funding 47 years (n = 1) DRG-S (S1 and S2) NR 50% pain improvement at 1-month

follow-up NR NR
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Table 1. Cont.

Author/
Year Study Design Funding Source Mean Age Type of Intervention

(Location) Stimulation Settings Pain Outcomes Neurological Function Outcomes Other Outcomes

Dorsal Root Ganglion Stimulation

Sindhi et al. 2021
[43] Case report No funding 23 years (n = 1) DRG-S (S3) NR

7-day trial led to >65% pain
improvement; Post-implant: >60%

for 5 months
NR Able to work 12 h shift

with no pain

Kim et al. 2020 [44] Case report No funding 50 years (n = 1) DRG-S (NR) NR

Trial led to 100% pain
improvement; Post-implant: 100%

pain improvement at 3-year
follow-up

NR Able to wear shoes and
exercise regularly

Grabnar et al. 2021
[48] Case report No funding 50 years (n = 1) DRG-S (NR) NR

VAS pain score improved from
8/10 to 0/10 during 7-day trial that

was maintained through
permanent implant

Lacked sensation to light touch and
pinprick

Improved ability to
wear shoes and exercise

Peripheral Nerve Stimulation

Sacco et al. 2016
[27]

Retrospective
chart review No funding 60.5 years (n = 50) PNS (auricular) NR

All respondents reported at least
some reduction in pain (>50%

reduction in pain for 18 patients
with quantitative results)

Improvement in numbness, gait,
and balance

Improvement in sleep
quality and activities of
daily living. Only one

patient reported
adverse outcomes

(intolerance of
intermittent pulsing)

Visual Analogue Scale (VAS)—Pain rating scale (lower score = lower pain); EuroQol- 5 Dimension (EQ-5D)—Health-related quality of life measurement (higher score = higher quality of
life); 36-Item Short Form Survey (SF-36)—Health-related quality of life measurement (higher score = higher quality of life); NR: not reported; SCS: spinal cord stimulation; DRG-S: dorsal
root ganglion stimulation; PNS: peripheral nerve stimulation; C: cervical level; T; thoracic level; L: lumbar level; S: sacral level; V: volt; Hz: hertz; kHz: kilohertz; mA: milliampere.
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DRG-S for CIPN-related pain was evaluated in seven case reports [43–49]. Of these, 3
recent case studies reported 100% improvement in pain with VAS scores ranging between
0/10 to 1/10, and this substantial relief was maintained between 5 months to 3 years
post-implant [44,48,49]. Finney et al. and Yelle et al. reported 50% and 60% improvement
in pain intensity, respectively, after DRG-S [46,47]. However, notable complications have
been reported with DRG-S use. For example, Sindhi et al. [43] described a male patient
who suffered sharp stabbing 10/10 pain intensity at the glans of the penis after penile mass
excision and chemoradiotherapy treatment. The patient reported >60% improvement in
pain after DRG-S. However, after 5 months, there was a severe increase in pain which was
not responding to reprogramming, which was attributed to slight dorsal migration of the
DRG leads. Similarly, Rao et al. [45] reported >75% improvement in pain with the DRG-S
trial, although immediately after permanent implantation, the patient suffered sudden
lower extremity numbness. This was attributed to the right DRG lead traversing the dura
anterior to the spinal cord and compressing the right S1 nerve root before exiting the thecal
sac. This lead was removed immediately, and the patient underwent re-implantation one
month later with adequate coverage of the right posterior calf, although with persistent
right foot pain.

The impact of PNS in alleviating neuropathic pain was evaluated in 1 retrospective
study of 50 participants. Sacco et al. [27] performed percutaneous auricular neurostimu-
lation (PANS) therapy which stimulated peripheral nerves in the ear. All 18 participants
who were available for quantitative assessment of pain intensity reported improvement
in pain VAS scores from a mean of 8.11 to 3.77. Of the remaining 32 participants available
for qualitative pain assessment, 59% reported marked improvement, 12.5% had minimal
improvement, and 29% reported no improvement.

3.3. Evidence Supporting Neuromodulation Therapy for Neuropathy and Neurological Deficits

The role of SCS in improving neuropathy and neurological deficits from CIPN was
reported in eight case reports [28,33,35,36,39–42] consisting of nine patients (Table 1).
Mixed results were reported regarding temperature sensation. Kamdar et al. [35] reported
a reduction in cold hypersensitivity after SCS therapy. However, Cata et al. [41] reported
no change in thermal thresholds after SCS therapy for one of their evaluated patients.
Outcomes for touch sensation also revealed equivocal and mixed results. Kamdar et al. [35]
reported an unchanged sensory exam post-implant, while Cata et al. [41] reported improved
touch detection in both of their patients after SCS therapy. Furthermore, Cata et al. reported
that sharpness detection was only improved in one of the two patients [41]. Six studies
consisting of seven participants reported improved ability to participate in daily activities
and more mobility with reasons attributed to improved gait [35,41], more stability [35],
better flexibility of legs [41], ambulation with less pain [33], decreased dependence on
assistance from others [39], and improvement of hand function [36,42].

Change in neurological function following DRG-S was evaluated in six studies [43,46,48]
consisting of six patients. Two studies reported results on touch sensation, with one
study [48] citing no change in sensation to light touch or pinprick sensation (n = 1), while
another study [45] reporting worsened lower extremity numbness after DRG-S. Four studies
consisting of four participants reported improved ability to participate in daily activities
and more mobility, with reasons being attributed to improved ability to wear shoes and
exercise [44,48] and reduced pain while working [43] or walking [43,46].

The impact of PNS on neurological deficits was evaluated in 1 retrospective study of
50 participants [27]. In this study utilizing PANS therapy, participants reported notable
qualitative improvements in numbness, gait, and balance. One patient reported adverse
outcomes due to the intolerance of intermittent pulsing.

3.4. Bias Assessment

The risk of bias was assessed for one observational study [27]. Since the remaining
studies were case reports/series, they were considered high risk for bias and not amenable



Biomedicines 2022, 10, 1909 9 of 15

to appraisal with bias assessment tools. Using the Newcastle–Ottawa Quality Assessment
Scale, the study by Sacco et al. [27] received two stars for the Selection domain (maximum
possible four stars) and two stars for the Exposure/Outcome domain (maximum possible
three stars). There were no stars assigned to the Comparability domain, indicating a high
risk of bias for that respective domain.

3.5. Quality of Evidence

An evidence profile table and summary of findings table with quality of evidence for
each outcome are summarized in Tables 2 and 3. Overall, there was very low quality of
evidence that neuromodulation interventions (SCS, DRG-S, PNS) were effective in reducing
pain intensity from CIPN. Results were equivocal regarding the role of neuromodulation
interventions in improving neurological function, with some reporting improvements,
some reporting no change, and some reporting deteriorating neurological deficits. For
both outcomes, there was a high risk of bias, inconsistency, indirectness, impression, and
potential publication bias in the included studies. A total of 22 studies were case reports,
and 12 studies were non-peer-reviewed abstracts presented at conferences.

Table 2. Evidence Profile Table. Evidence profile table evaluating domains per the Grading of
Recommendations, Assessment, Development, and Evaluations (GRADE) criteria are displayed.

Participants
(Studies)

Follow-Up
Risk of Bias Inconsistency Indirectness Imprecision Publication Bias

GRADE
Certainty of

Evidence

Pain relief

73
(23 studies)

Very
Serious a,b Serious a,b,c Serious b,c Very

serious a,b,c,d
publication bias

strongly suspected a,e,f
⊕###

Very low

Improvement in neurological function

73
(23 studies)

Very
Serious a,b,f

Very
Serious b,c,f

Very
Serious b,c,g

Very
Serious d,f

publication bias
strongly suspected e,f

⊕###
Very low

a Included studies consisted of 22 case reports and 1 retrospective review. There was a high risk of bias in patient
selection, comparability, and assessment of outcomes. b High heterogeneity was present in between and within
the studies. c Some studies used dorsal column spinal cord stimulator, and some studies used dorsal root ganglion
stimulator. Variations in the targeted location of chemotherapy-induced peripheral neuropathy. d Success rates
widely varied between the studies. e 12/23 studies were case reports presented in conferences. f Studies reported
on different neurological function outcomes. There was no consistency in the functional testing scale used. “⊕”
indicates very low certainty, “⊕⊕” indicates low certainty, “⊕⊕⊕” indicates moderate certainty, and “⊕⊕⊕⊕”
indicates high certainty.

Table 3. Summary of Findings Table. Per the Grading of Recommendations, Assessment, Develop-
ment, and Evaluations (GRADE) criteria, this summary of findings table displays the certainty of
evidence for each outcome of interest. Population: Cancer patients with CIPN. Intervention: SCS,
DRG-S, and/or PNS trial/implant. Comparison: baseline pain/neurological function.

Outcomes № of Patients
(Studies)

Certainty of the Evidence
(GRADE) Comments

Pain relief 73 patients
(23 studies)

⊕###
Very low a,b,c,d,e

All studies reported >50% pain relief after SCS/DRG implantation. A total
of 14 of 23 studies reported >70% pain relief after SCS/DRG implantation.

Neurological
function

73 patients
(23 studies)

⊕###
Very low a,b,c,d,e,f

Only 10 studies assessed neurological function. Of these, 6 of 10 studies
reported improved gait after neuromodulation. Two studies reported
improved hand motor function. Four studies reported improved sensory
thresholds. Only one study reported worsening lower extremity numbness.

a Included studies consisted of 22 case reports and 1 retrospective review. There was a high risk of bias in patient
selection, comparability, and assessment of outcomes. b High heterogeneity was present in between and within
the studies. c Some studies used dorsal column SCS, some studies used DRG-S, and some studies used PNS. There
was variation in the targeted location of CIPN. d Success rates widely varied between the studies. e 12/23 studies
were case reports presented in conferences. f Studies reported on different neurological function outcomes. There
was no consistency in the functional testing scale used. GRADE Working Group grades of evidence - Very low
certainty: we have very little confidence in the effect estimate; the true effect is likely to be substantially different
from the estimate of effect. “⊕” indicates very low certainty, “⊕⊕” indicates low certainty, “⊕⊕⊕” indicates
moderate certainty, and “⊕⊕⊕⊕” indicates high certainty.
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4. Discussion
4.1. Summary of Evidence

This systematic review appraises the evidence of neuromodulation therapy for pain
and neuropathy in CIPN. Overall, this review highlights that dorsal column SCS, DRG-S,
and PNS are associated with a moderate to high reduction in pain severity from CIPN. Pain
relief from dorsal column SCS ranged from 50–100% between 3 months and 2 years, whereas
pain relief from DRG-S ranged from 50–100% between 1 month and 3 years. These findings
are concordant with the literature highlighting the efficacy of neuromodulation therapy
for a variety of neuropathic pain conditions, including failed back surgery syndrome [50]
and PDN [51]. Furthermore, although the mechanism of nerve injury between CIPN and
PDN differs, they both present similarly with distal axonopathy and symmetrical length-
dependent sensory neuropathy in a stocking-glove distribution [52]. Thus, it would seem
rational that the response to neuromodulation would be similar between CIPN and PDN.

Efficacy of PNS therapy was highlighted in 50 participants, with reports of >50% pain
relief among those who reported quantitative pain assessments. However, in this study [27],
it is unclear how auricular nerve stimulation may alleviate CIPN which typically manifests
in the distal extremities in a stocking-glove distribution. PNS implantation at the site of
CIPN (e.g., lower extremity peripheral nerves or upper extremity peripheral nerves) was
not described. Due to the very low-quality GRADE evidence supporting decreased pain
intensity from neuromodulation interventions, additional prospective and powered trials
are warranted. There are ongoing prospective clinical trials assessing the efficacy of dorsal
column SCS for CIPN (ClinicalTrials.gov Identifier: NCT05411523).

In terms of change in neurological function and neuropathy assessment metrics,
results from studies remained equivocal. Although most studies reported improvement
in numbness, gait, balance, and ambulation, results were mixed with regard to thermal
sensory thresholds, touch sensation, and touch discrimination. Similar to the primary
outcome of pain intensity, there was very low-quality GRADE evidence on the outcome of
neurological function.

Given the stocking-glove distribution of CIPN which frequently involves multiple
nerve distributions, the authors recommend offering dorsal column SCS as the neuromod-
ulation intervention of choice due to its ability to target broader areas of pain. DRG-S
also has the capability of providing alleviation across multiple nerve distributions, partly
due to its mechanism of cross-talk between dorsal root ganglions at different levels [13].
PNS may be considered if the patient’s pain symptoms are primarily located in one to two
nerve distributions. The decision to pursue a specific neuromodulation intervention should
also weigh its respective adverse effect profile. Overall, studies have highlighted that
SCS [53–55], DRG-S [56], and PNS [15] are safe interventions overall. Special considerations
unique to patients with CIPN may include an immunocompromised status due to ongoing
malignancy and/or chemotherapy, which is associated with an increased risk for infection.
Coagulopathy due to the underlying malignancy or due to side effects from chemotherapy
may increase the risk for hematoma, which is particularly worrisome in the setting of
neuraxial hematoma from SCS or DRG-S placement.

Our review suggests that clinicians caring for patients with CIPN should consider
neuromodulation options in their treatment algorithm, particularly due to the paucity
of evidence supporting conservative measures and conventional pharmacotherapy. Con-
ventional treatment options for CIPN are highlighted by the American Society of Clinical
Oncology (ASCO) guidelines [57]. The ASCO guidelines confirmed that no pharmacother-
apeutic agents are recommended for CIPN prevention. Certain strategies such as dose
delaying, dose reduction, substitution, and stoppage of chemotherapy may be considered
in patients who develop intolerable symptoms from CIPN. In terms of treatment after the
occurrence of CIPN, duloxetine is the only current neuropathic agent with intermediate-
level evidence to support use in CIPN with moderate-level efficacy. Importantly, the ASCO
guidelines recommended against the use of other commonly used neuropathic agents such
as amitriptyline, gabapentin, pregabalin, and venlafaxine due to no evidence of efficacy or
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low-level efficacy. Importantly, many neuropathic medications may have a high prevalence
of side effects such as somnolence, dizziness, difficulty in concentration, and other drug-
specific side effects [7]. Further evidence is warranted for other conservative treatment
options such as scrambler therapy, acupuncture, and exercise [57].

In summary, prior to offering neuromodulation options for the treatment of pain in
CIPN, the authors recommend offering first-line conventional therapy such as multimodal
pharmacologic therapy and physical therapy. Although pharmacologic therapy may consist
of non-steroidal anti-inflammatory drugs, gabapentinoids, and anti-depressants, the litera-
ture supports that only duloxetine should be offered for treatment due to intermediate-level
evidence for moderate efficacy. Of note, CIPN may also improve over time after completion
of chemotherapy. In the setting of conventional treatment failure, pain specialists may offer
neuromodulation options, including SCS, DRG-S, and PNS.

4.2. Proposed Mechanism of Action

Several mechanisms of action have been proposed to explain the improvement of pain
from neuromodulation. Although a commonly proposed mechanism is the gate control
theory, new mechanisms have been proposed associated with unique waveform paradigms,
including high-frequency, burst, and other waveforms [58]. In high-frequency SCS, the gate
control mechanism may be activated without stimulating pathways for paresthesia [59].
In burst stimulation, both the lateral and medial aspects of the spinothalamic tract are
activated [60]. Besides the gate control theory, analgesia from SCS may also be explained by
its modulation of neurotransmitters (cholinergic, serotonergic, and opioidergic pathways),
depression of wide dynamic range neurons, and activation of supraspinal levels from
orthodromic dorsal column action potentials [61]. In PNS, modulation of the central
nervous system involves the dorsal lateral prefrontal cortex, parahippocampal areas, and
the anterior cingulate cortex [14,62].

The mechanisms explaining the improvement of neurological deficits from neuro-
modulation therapy remain unknown. A prior review by Khunda et al. proposed that
the neurological improvement of neurogenic urinary and bowel disorders through neuro-
modulation may be due to the stimulation of afferent pathways from the genital area [63].
Recently, a study revealed that activity-dependent SCS could rapidly restore truncal and
lower extremity motor function in patients with complete paralysis [64]. Future studies
are warranted to elucidate the mechanisms of improvement in neurological function after
neuromodulation therapy.

4.3. Limitations

Clinical heterogeneity was significant across studies that evaluated different neuro-
modulation interventions for CIPN. Even in studies that focused on one neuromodulation
intervention (e.g., DRG-S), there was variable placement of lead location or variable wave-
form parameters. Furthermore, details regarding waveform settings were not provided in
several studies. Due to this level of heterogeneity, outcome measurements were unable to
be pooled. Only one observational study was captured, and the remaining evidence was
limited to case series/reports. Although this review evaluated all neuromodulation inter-
ventions, the majority of studies focused on dorsal column SCS and DRG-S. Another reason
for low-quality evidence was the absence of placebo-controlled randomized controlled
trials. A prior review of placebo-controlled trials highlights the improvement in neuro-
pathic pain syndromes from neuromodulation interventions [50]. However, challenges
to performing placebo-controlled studies in neuromodulation are prominent and include
difficulty in developing placebo or sham arms, issues with inadequate blinding, placebo
and nocebo effects, and, most importantly, ethical concerns centered over the concept
of equipoise [65]. Thus, with these significant limitations and very low-quality GRADE
evidence, it is imperative that the findings from this systematic review be interpreted with
caution. Clinical implications from this systematic review, whether in support of or against
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the efficacy of neuromodulation for improving pain and neurological function from CIPN,
cannot be concretely concluded.

4.4. Future Directions

Future studies should conduct adequately powered and prospective studies assessing
neuromodulation for CIPN. Although efficacy may be dependent on the type of waveform,
as demonstrated in prior studies [66,67], included studies did not compare the efficacy
between different waveforms for CIPN. Thus, comparative studies assessing different
waveforms are warranted. Finally, primary care clinicians, oncologists, and hematologists
rarely consider neuromodulation for the treatment of cancer-related pain. Therefore,
dissemination of information and education for both physicians and patients via conference
proceedings, social media coverage [68,69], and other avenues of information dissemination
are important [70].

5. Conclusions

Our systematic review performed an evidence synthesis on neuromodulation inter-
ventions for the treatment of CIPN. The current evidence suggests that neuromodulation
interventions, including SCS, DRG-S, and PNS, may lead to clinically meaningful pain
relief in patients with CIPN. Improvement in gait, motor function, and sensory function
was also highlighted in several studies. The GRADE certainty of evidence is limited due to
a lack of prospective comparative studies, clinical and methodological heterogeneity, and
low sample size.
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