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abstract

PURPOSE Diagnosis of AIDS lymphoma in low-resource settings, like South Africa, is often delayed, leaving
patients with limited treatment options. In tuberculosis (TB) endemic regions, overlapping signs and symptoms
often lead to diagnostic delays. Assessment of plasma cell-free DNA (cfDNA) by next-generation sequencing
(NGS) may expedite the diagnosis of lymphoma but requires high-quality cfDNA.

METHODS People living with HIV with newly diagnosed aggressive B-cell lymphoma and those with newly
diagnosed TB seeking care at Chris Hani Baragwanath Academic Hospital and its surrounding clinics, in
Soweto, South Africa, were enrolled in this study. Each participant provided a whole blood specimen collected in
cell-stabilizing tubes. Quantity and quality of plasma cfDNA were assessed. NGS of the immunoglobulin heavy
chain was performed.

RESULTS Nine HIV+ patients with untreated lymphoma and eight HIV+ patients with TB, but without lym-
phoma, were enrolled. All cfDNA quantity and quality metrics were similar between the two groups, except
that cfDNA accounted for a larger fraction of recovered plasma DNA in patients with lymphoma. The
concentration of cfDNA in plasma also trended higher in patients with lymphoma. NGS of immunoglobulin
heavy chain showed robust amplification of DNA, with large amplicons (. 250 bp) being more readily
detected in patients with lymphoma. Clonal sequences were detected in five of nine patients with lymphoma,
and none of the patients with TB.

CONCLUSION This proof-of-principle study demonstrates that whole blood collected for cfDNA in a low-resource
setting is suitable for sophisticated sequencing analyses, including clonal immunoglobulin NGS. The detection
of clonal sequences in more than half of patients with lymphoma shows promise as a diagnostic marker that may
be explored in future studies.
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INTRODUCTION

Nearly 75% of non-Hodgkin lymphomas are diag-
nosed at advanced stage in sub-Saharan Africa (SSA)
with two thirds of patients presenting with poor per-
formance status (≥ 2) and 80% presenting with
B-symptoms.1 Reports from South Africa (SA) suggest
that advanced stage, poor performance status, and
B-symptoms are more common in people living with
HIV (PLWH).2,3 In 2018, HIV prevalence in adults of
age 15-49 years in SA was 20.4%,4 representing a
major public health burden. Despite the introduction of
antiretroviral therapy, the incidence of HIV-associated
B-cell lymphomas has increased, in part due to im-
proved survival of PLWH.3,5 Yet, many patients are
too sick at the time of diagnosis to receive curative
therapy.6 Delayed diagnosis contributes to advanced
disease.

The diagnosis of lymphoma requires a team of spe-
cialists including radiologists, surgeons, pathologists,
and laboratory personnel to obtain a biopsy specimen
and render a diagnosis. In SA, this infrastructure ex-
ists, but is grossly overburdened. Additionally, the
diagnostic evaluation is often confounded by infec-
tions, especially in PLWH. Tuberculosis (TB) is the
leading cause of death in PLWH in SA.7-9 Symptoms of
TB, including fever, night sweats, weight loss, and
lymphadenopathy, overlap with those of lymphoma.
The empiric treatment of TB in PLWH and possible
misdiagnosis of TB in patients with lymphoma have
been recognized as an important problem in
SSA.6,10-12 Thus, improved understanding of diag-
nostic delays may help guide strategies to improve
outcomes. To that end, a recent review of time to
diagnosis in SA found that the longest period of delay
occurred between initial presentation to the healthcare
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center and until a diagnosis was pathologically confirmed,
termed the healthcare practitioner interval; when this in-
terval exceeded 6 weeks, patients were more likely to be
diagnosed with late-stage disease.10 In PLWH diagnosed
with lymphoma in SA, the median healthcare practitioner
interval was 8-11 weeks.10,13 One way to prioritize patients
presenting with suspicious symptoms for biopsy might
involve molecular analysis of plasma cell-free DNA
(cfDNA), rationales for which were described in earlier
work.14 Clonal immunoglobulin (cIg) gene rearrangements
can be detected in cfDNA in patients with either non-
Hodgkin lymphoma or Hodgkin lymphoma (HL),15-19 a
finding that is recapitulated in PLWH diagnosed with
lymphoma.20 The fact that cIg in plasma correlates with
lymphoma disease burden21 and treatment response18,22

suggests that it may be a sensitive and specific marker.

Over the past several years, a variety of massively parallel
sequencing techniques have been applied to the study of
cfDNA, particularly tumor-derived circulating tumor DNA.
Although the importance of preanalytical variables and
processing techniques to ensure high-quantity and high-
quality cfDNA is evident,23,24 there is yet to be such a study
focused on immunoglobulin sequencing or PLWH from a
low-resource setting. In this pilot study, we set out to in-
vestigate whether obtaining high-quantity and high-quality
cfDNA is feasible and suitable for sophisticated sequencing
analyses in PLWH in Soweto, SA.

METHODS

Study Participants and Ethics

As part of an ongoing Institutional Review Board–approved,
cross-sectional study, PLWHwith and without lymphoma were
recruited through the Perinatal HIV Research Unit located on
the campus of Chris Hani Baragwanath Academic Hospital in
Soweto, SA. To be eligible for this study, all participants were
required to be 18 years or older. Participants with lymphoma
were required to have a documented HIV diagnosis and a
newly diagnosed aggressive B-cell lymphoma. Participants

with TB without lymphoma were identified and recruited at
outpatient clinics in Soweto. Potential participants with
documented HIV infection and a positive Xpert MTB/RIF Ultra
(Cepheid, Sunnyvale, CA) result within the preceding week
were contacted by study personnel. After enrollment, monthly
follow-up calls were conducted with patients with TB to assess
response to TB treatment and to document signs and
symptoms suggestive of lymphoma or interval diagnosis of
lymphoma. This study was approved by the Johns Hopkins
School of Medicine Institutional Review Board (#00107027)
and the University of the Witwatersrand Human Research
Ethics Committee (#161608).

Specimen Collection

Between October 2018 and October 2019, 10 PLWH with
newly diagnosed aggressive B-cell lymphoma (four diffuse
large B-cell lymphoma, one plasmablastic lymphoma, one
Burkitt lymphoma, and four classical HL) and eight PLWH
with newly diagnosed TB were consented and enrolled.
Study participants provided whole blood samples and
consent for record review. Blood specimens were collected
in four 10 mL cell-stabilizing Streck BCT tubes (Streck,
Omaha, NE) and transferred by courier at ambient tem-
peratures (6°C-37°C) to a central laboratory in Johannes-
burg for same-day processing (Fig 1).

Specimen Processing

Blood was centrifuged twice following the manufacturer’s
protocols. The initial spin was performed at 2,000g for 10
minutes at 4°C. Plasma was then separated and centri-
fuged a second time at 4,000g for 20 minutes at 4°C.
Plasma that is free of cell debris obtained after the second
spin was then frozen at –80°C until subsequent transport.
Specimens were shipped to the United States on dry ice.
Once received, specimens were stored at –80°C until
further processing.

Plasma DNA Isolation

Approximately 10-15mL of frozen plasma, per sample, was
thawed at room temperature. Following this, plasma was
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centrifuged at 4,500g for 10 minutes at 4°C. cfDNA ex-
traction was performed using the NucleoSnap DNA
Plasma Isolation Kit (Cat#74030; Macherey-Nagel,
Bethlehem, PA) following a modified vendor protocol to
proportionally adjust for the increased plasma volume
being processed. cfDNA was ultimately eluted from spin
columns with 80 µL of a 1:1 dilution of Macherey-Nagel
Elution buffer in DNAse-free water. Total DNA quantity
was assessed by Qubit dsDNA High Sensitivity Assay
(Thermo Fisher, Waltham, MA) following vendor specifi-
cations. cfDNA quantity and quality were also assessed by
the Agilent High Sensitivity TapeStation assay (Agilent
Technologies, Santa Clara, CA) according to vendor
protocols and analyzed using the TapeStation analysis
software (version 3.2). cfDNA was then stored at –20°C
until further analysis.

Immunoglobulin Heavy Chain Library Preparation

cfDNA libraries were prepared in duplicate using the
LymphoTrack IGH-MiSeq (frameworks 1, 2, and 3) panel
(Cat#71210129, Invivoscribe, San Diego, CA). Vendor
protocols were followed with minor adjustments. To
achieve the DNA input requirements within the volume
constraints for the assay, samples with lower DNA con-
centrations (, 10 ng/µL) were vacuum centrifuged to
dryness before the addition of master mix. This was then
reconstituted to the recommended input volume and
combined with master mix. A total of 40 ng or 50 ng of
input DNA per framework was used for library prepara-
tions in duplicate for a total of up to 240-300 ng of input
DNA per sample. Polymerase chain reaction amplifica-
tion was carried out for 31 cycles according to vendor
protocol.

Immunoglobulin Heavy Chain Sequencing

Final amplified libraries up to 100 pM were prepared.
All libraries were first pooled according to framework
and then combined into a single sequencing pool
comprising 40 µL of each of the framework pools. This
final pool was denatured for 5 minutes at room tem-
perature using 15 µL of 1N NaOH. Denaturing was
stopped by the addition of 15 µL of chilled 1N HCl,
450 µL of chilled HT1 buffer, and 50 µL of denatured 20
pM PhiX control (Cat# FC-110-3001, Illumina, San
Diego, CA), resulting in a final sequencing library
concentration of 20 pM This final library was sequenced
on the Illumina MiSeq using v2 500 cycle kits (Cat# MS-
102-2003, Illumina).

Data and Statistical Analyses

Raw sequencing data were processed, aligned, and analyzed
using the LymphoTrack analysis software (version 2.4.3).
Additional analyses were performed using Microsoft Excel
(2016) and GraphPad Prism (Version 8.4.3, GraphPad
Software, San Diego, CA). Statistical analyses were performed
using GraphPad Prism. Continuous variables were compared
using unpaired two-tailed t tests, if parametric, or Mann-
Whitney tests, if nonparametric. Anderson-Darling and
D’Agostino-Pearson tests were used to test for normality.25-27

RESULTS

High-Quality and High-Quantity cfDNA Was Obtained

Plasma DNA was isolated from nine patients with lym-
phoma and eight patients with TB. Plasma from one
patient with lymphoma was found to be hemolyzed and
was not analyzed. The abundance of cfDNA molecules
was evaluated by high-sensitivity electrophoresis, and

Patients recruited from hospital wards and local TB clinic. After consent
obtained, 40 mL blood collected in cell-stabilizing tubes 
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FIG 1. Study design. Sample collection occurred
in Soweto/Johannesburg, South Africa. Patients
referred from the Hematology Department with
newly diagnosed HIV–associated lymphoma were
approached at Chris Hani Baragwanath Academic
Hospital. Patients with newly diagnosed TB were
recruited from the surrounding TB clinics in the
Soweto area. After appropriate consent was ob-
tained, 40 mL of blood was collected in cell-
stabilizing tubes. Specimens were then trans-
ferred to the Perinatal HIV Research Unit located
on the hospital campus awaiting daily courier
transport to the local clinical laboratory in Johan-
nesburg. After initial processing, specimens were
shipped to United States for further processing.
TB, tuberculosis.
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representative electropherograms are shown in Figure 2.
Fragments measuring within 90-400 bp with character-
istic profiles were designated as cfDNA, and fragments
larger than 500 bp were designated as genomic DNA
(gDNA). There was typically no detectable DNA between
400 and 500 bp. Dominant cfDNA peaks of shorter
fragment lengths were readily detected in all samples and
likely represent mononucleosomal molecules.28 Eighty-
eight percent of samples (15 of 17) also demonstrated
prominent secondary peaks of larger fragment lengths
likely representing dinucleosome molecules. One lym-
phoma sample showed a measurable tertiary peak (data
not shown) likely representing trinucleosomal cfDNA
molecules.

Quantification of cfDNA showed a trend toward higher
concentration of cfDNA (Fig 3A) in patients with lymphoma
when compared with patients with TB (median 65.10 ng/mL
plasma, 95% CI, 29.40 to 111.3 ng/mL v median
26.75 ng/mL plasma, 95% CI, 10.80 to 107.8 ng/mL;
P = .0745). The concentration of either mono- or dinu-
cleosomal molecules was similarly higher in patients with
lymphoma than patients with TB (58.90 ng/mL v
18.90 ng/mL, P = .0580; 9.350 ng/mL v 3.80 ng/mL,
P = .3357), but the differences were not statistically sig-
nificant. However, cfDNA was more abundant in patients
with lymphoma (Fig 3B) since cfDNA accounted for a
median 91% (95% CI, 89 to 96) of all isolated DNA in
patients with lymphoma versus 86% (95% CI, 74 to 93) in
patients with TB (P = .0039). The contribution from either

mono- or dinucleosomal molecules to total cfDNA was
similar in both groups (median 86% v 85%andmedian 14%
v 15%, respectively).

With respect to the fragment length of cfDNA molecules,
both mono- and dinucleosomal molecules were mea-
sured at similar lengths in patients with lymphoma and
patients with TB. The median dominant cfDNA mole-
cules were 130 bp (95% CI, 119.0 to 136.0) in length in
patients with lymphoma and 139.5 bp (95% CI, 119.0 to
184.0) in patients with TB. The secondary cfDNA
molecules had a median measurement of 236.0 bp
(95% CI, 205.0 to 287.0) in patients with lymphoma, as
compared with 252.0 bp (95% CI, 222.0 to 335.0) in
patients with TB. A single lymphoma sample showed a
distinct tertiary cfDNA molecule that measured to be
374.0 bp, which comprised 3% of all cfDNA in that
sample.

Immunoglobulin Heavy Chain Sequencing Showed

Variable Amplification Robustness Correlating With

Amplicon Size

The immunoglobulin heavy chain (IGH) locus was se-
quenced using primers that amplify multiple framework
regions of the IGH variable gene (IGHV) (Fig 4) to evaluate
for the presence of cIg gene rearrangements. Sequencing
across three framework regions not only increases sensi-
tivity but also requires the presence of longer fragments of
B-cell DNA when primers target framework 1 (FR1) or FR2
regions of the IGHV gene. A nonclonal pattern appears as a
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polyclonal distribution of unique VDJ sequences (Fig 4B)
when separated by amplicon length, whereas a clonal
sequencing pattern is represented as a single, or two,
dominant VDJ sequence(s) with little-to-no polyclonal se-
quences (Fig 4C).

To assess amplification robustness of different fragment
lengths of B-cell DNA, we compared the frequency dis-
tributions of the VHFR1-J, VHFR2-J, and VHFR3-J ampli-
cons based on amplicon length (see Appendix Fig A1 for
normality test of the frequency distributions). The profiles
obtained from plasma cfDNA in patients either with lym-
phoma or without (with TB) were compared against the
expected profiles obtained from an internal control sample
(Fig 5). The internal control is a contrived B-cell gDNA
mixture with a variety of polyclonal sequences and no clonal
sequence. In gDNA, intact DNA length is not a limiting
factor for amplification efficiency; however, length may be a
limiting factor in cfDNA. Since cfDNA is generally short,
sequences amplified using FR3 primer sets (smallest
amplicon) showed the strongest amplification signal in both

patients with lymphoma and TB, whereas FR2 and FR1
primer sets (larger amplicons) showed reduced amplifi-
cation, although there appears to be robust amplification
up to 300 bp. Although the amplification profiles obtained
from cfDNA from patients with lymphoma and TB did not
differ from one another for any of the primer sets, both
groups differed significantly from the internal control gDNA
for the largest (FR1: lymphoma v gDNA P = .030; TB v
gDNA P = .034) and smallest (FR3: lymphoma v gDNA
P = .006; TB v gDNA P = .007) amplicons. This suggests
that there are fewer available B-cell DNA fragments of the
appropriate size in plasma at either extreme (, 100 bp
and . 250 bp). In contrast, the amplification profiles ob-
tained from the intermediate-size amplicon (FR2) showed
no difference among the three groups, suggesting ade-
quate abundance of B-cell DNA molecules of approxi-
mately 200-250 bp in plasma cfDNA irrespective of
diagnosis. Although the amplification profiles from cfDNA
did not differ based on diagnosis, the median amplicon
length differed significantly for the largest FR1 amplicons.
The median amplicon size was 272 bp, compared with
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FIG 3. Quantity and quality of plasma cfDNA in
patients with lymphoma and TB. (A) Concentration of
cfDNA in circulation, as quantified as amount of
cfDNA in each milliliter of plasma (median 65.10
ng/mL v 26.75 ng/mL). (B) Percent cfDNA as a
proportion of all plasma DNA (median 91% v 86%,
P = .0039). Fragment lengths of (C) the dominant
mononucleosomal cfDNA molecules (median 130
bp v 139 bp) and (D) the secondary dinucleosomal
cfDNAmolecules (median 236 bp v 252 bp). Bars in
each graph represent median values. None of the
comparisons in A, C, or D reached statistical sig-
nificance. cfDNA, cell-free DNA; TB, tuberculosis.
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275 bp in internal control gDNA, in patients with lym-
phoma, and only 219 bp in patients with TB (P , .0001).

IGH Sequencing Positively Identifies Clonal Sequences in

Patients With Lymphoma

Using the above technique, cIg sequences were detected
in cfDNA in five of nine (56%) patients with lymphoma but
were not detected in any of the patients with TB (Table 1).
Amplification and sequencing using multiple framework
regions increased sensitivity, as two of five samples only
demonstrated clonality in a single framework, and two of
five samples only showed clonality in the longer amplicons
(FR1 and/or FR2), but not FR3.

DISCUSSION

cIg DNA is routinely used on tissue biopsies to aid in the
diagnosis of lymphoma and is increasingly being assessed
in plasma cfDNA as a disease monitoring marker, partic-
ularly for mantle cell lymphoma.29 However, the analysis of
cIg DNA in cfDNA has not previously been used to facilitate
the diagnosis of lymphoma. Traditionally, definitive diag-
nosis requires a biopsy of suspicious lesions identified by
physical examination and/or imaging during the healthcare

practitioner interval. However, in SSA, this interval is often
prolonged in PLWH. We focused on HIV patients with newly
diagnosed lymphoma and a population of PLWHwith newly
diagnosed TB because the two disease processes are easily
confounded and confused with regard to clinical signs and
symptoms. Our findings suggest that with appropriate
specimen tubes, it is straightforward to collect and transport
blood specimens to a central lab and isolate high-quality
cfDNA.

Although cIg DNA is present in plasma of patients with
untreated lymphoma, DNA quantity and quality have
been a long-standing barrier to cfDNA investigations.
Poor-quality DNA can yield false-negative results, and
contamination with cellular DNA resulting from lysis of
white blood cells ex vivo can mask a clonal pattern. In this
small series of patients, we identified dominant mono-
nucleosomal cfDNA molecules in all patient samples and
prominent dinucleosomal molecules in the majority of
patient samples (lymphoma and TB) reflecting the high
quality of cfDNA collected. Despite the fact that similar
amounts, and proportions, of larger dinucleosomal cfDNA
molecules were found in both cohorts and the amplification
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profiles obtained from both cohorts were similar, se-
quencing data showed that the largest B-cell DNA mole-
cules (. 250 bp) were more abundant in patients with
lymphoma. In the absence of systemic lymphoma to
continuously release tumor DNA in circulation, larger B-cell

cfDNAmolecules may not be readily available in individuals
without lymphoma. This conjecture is supported by the fact
that only a minute fraction of cfDNA represents B-cell DNA
in healthy individuals.30,31 Although these larger B-cell DNA
molecules were likely derived from dinucleosomal cfDNA
molecules, the true source of this DNA is unknown. Since
circulating tumor cells are rarely found in aggressive B-cell
lymphoma, or HL,32 this DNA may simply represent gDNA
from dying lymphoma cells.

With this high-quality cfDNA, we were able to detect cIg in
most (56%) lymphoma plasma specimens, and none of the
specimens taken from patients with TB. The primer sets
targeting frameworks 1 and 3 were able to identify clg
sequences in three samples, whereas primer sets targeting
framework 2 were able to identify cIg sequences in four
samples. Although these numbers remain small, the
sensitivity afforded by targeting all three primer sets is
superior to the sensitivity of single individual primer sets,
which is a finding that has been consistently demonstrated
when evaluating tumor tissue biopsies.33 With an approx-
imate sensitivity of 50%, our results are similar to previous
reports of clonal Ig detection in plasma when the tumor-
specific sequence is unknown, and clone detection is
performed in an uninformedmanner.20,34-36 This somewhat
lower detection rate may also be related to somatic
hypermutation abrogating primer binding sites,33 which
is a phenomenon that affects germinal center and
post–germinal center–derived lymphomas. Finally, lower
cIg detection may be due to lower abundance of circulating
tumor DNA18 in some of the studied samples. Future
studies will include the analysis of other lymphoma-specific
markers, such as light chain gene rearrangements and
characteristic tumor mutations, to improve diagnostic
sensitivity.

In the current study, we note that the next-generation
sequencing (NGS) was performed in Maryland and not
in SA. This fact not only highlights the robustness of our
collaboration and our ability to preserve specimen integrity
but also highlights the work that is still needed to be done to
build the infrastructure in SA to be able to sequence these
specimens in country. To that end, we note a collaboration
with a key stakeholder on the ground in Johannesburg, SA,
the iLEAD initiative. This Gates-funded, African laboratory
initiative has provided resources to increase NGS capacity
in SA. Future work will focus on building in-country capacity
to sequence specimens locally using paired specimens.
Establishing initial feasibility of specimen collection and
processing in SA is an important first step in achieving this
goal.

The small sample size in this study limits our ability to
assess the clinical utility of the NGS technique. Future
investigations will include more patients and an expanded
menu of molecular markers to assess the diagnostic utility
of these assays. Markers to be studied include clg, somatic
mutation panels, and Epstein-Barr virus DNA analysis to
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nosis, whereas the intermediate-size amplicons (VHFR2-J) showed no
difference among the three groups. Statistical significance was
evaluated using two-tailed unpaired Mann-Whitney test, as these
distributions were not parametric. gDNA, genomic DNA; TB, tuber-
culosis; VHFR1-J, immunoglobulin heavy chain variable region
framework 1 amplified across the J gene; VHFR2-J, immunoglobulin
heavy chain variable region framework 2 amplified across the J gene;
VHFR3-J, immunoglobulin heavy chain variable region framework 3
amplified across the J gene. *P = .01-.05, **P = .001-.01.
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distinguish virion DNA from tumor DNA.37 Which tests will
prove most sensitive, specific, and economically feasible
and what the most useful algorithm for applying these
investigations are yet to be determined. The feasibility re-
sults described herein suggest that these approaches have

promise. As the value of plasma-based approaches is better
defined, we look forward to the possibility that plasma DNA
diagnostics may play a role in facilitating more rapid lym-
phoma diagnosis in the future, particularly in PLWH in
resource-limited settings.
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FIG A1. Normal quantile-quantile (QQ) plot of the frequency distributions of VHFR1-J, VHFR2-J, and VHFR3-J amplicon lengths. Normal QQ plots of
amplicon lengths obtained from (A) a B-cell DNA (+) control, (B) cell-free DNA (cfDNA) from patients with lymphoma, and (C) cfDNA from patients with
tuberculosis. VHFR1-J, immunoglobulin heavy chain variable region framework 1 amplified across the J gene; VHFR2-J, immunoglobulin heavy chain
variable region framework 2 amplified across the J gene; VHFR3-J, immunoglobulin heavy chain variable region framework 3 amplified across the J gene.
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