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Abstract

Objective

HIV-associated CNS dysfunction is a significant problem among people with HIV (PWH),

who now live longer due to viral suppression from combined anti-retroviral therapy (ART).

Over the course of infection, HIV generates toxic viral proteins and induces inflammatory

cytokines that have toxic effects on neurons in the CNS. Among these viral proteins, HIV

Nef has been found in neurons of postmortem brain specimens from PWH. However, the

source of Nef and its impact on neuronal cell homeostasis are still elusive.

Methods and results

Here, in using a simian immunodeficiency virus (SIV) infected rhesus macaque model of

neuroHIV, we find SIV Nef reactivity in the frontal cortex, hippocampus and cerebellum of

SIV-infected animals using immunohistochemistry (IHC). Interestingly, SIV-infected

macaques treated with ART also showed frequent Nef positive cells in the cerebellum and

hippocampus. Using dual quantitative RNAscope and IHC, we observed cells that were pos-

itive for Nef, but were not for SIV RNA, suggesting that Nef protein is present in cells that are

not actively infected with SIV. Using cell specific markers, we observed Nef protein in micro-

glia/macrophages and astrocytes. Importantly, we also identified a number of NeuN-positive

neurons, which are not permissive to SIV infection, but contained Nef protein. Further char-

acterization of Nef-positive neurons showed caspase 3 activation, indicating late stage apo-

ptosis in the CNS neurons.

Conclusions

Our results suggest that regardless of ART status, Nef is expressed in the brain of SIV

infected macaques and may contribute to neurological complications seen in PWH.
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Introduction

Human immunodeficiency virus (HIV) infection has transitioned from a rapidly-progressing,

fatal disease to a chronic infection with the intervention of combined antiretroviral therapy

(ART) [1, 2]. ART successfully suppresses virus in the plasma and effectively increases the life

expectancy of people with HIV (PWH) [3, 4]. Despite successful therapy, ART has limited pen-

etrance in certain organs, such as the brain, leading to the formation of viral reservoirs and

development of chronic neuroinflammation and neurological disorders [5]. In the pre-ART

era, HIV-associated neurocognitive disorders were severe, since the onset of ART more mild

forms predominate [6]. Despite suppression of viral replication, persistent neuroinflammation

continues to perturb CNS homeostasis [7]. Although many studies have investigated HIV-

associated neurological dysfunction, the molecular pathways where HIV viral proteins con-

tribute to neurological impairment over the course of HIV infection are not fully understood.

The accessory Negative Regulatory Factor (Nef) gene is encoded by HIV-1, HIV-2 and the

simian immunodeficiency virus (SIV) genomes [8]. HIV Nef is a 27–35 kDa protein expressed

in the early stages of the viral life cycle and is the first viral protein produced in HIV-infected

cells [8, 9]. NMR structural analysis shows that HIV Nef is composed of four major regions: a

myristoylated N-terminal anchor domain, a proline-rich region, a conserved globular core

structure, and a C-terminal flexible loop [8, 10]. The functional domains of HIV Nef act post-

translationally to decrease the cell-surface expression of CD4, downregulate MHC-1 expres-

sion, modulate TCR signaling, increase HIV replication, and increase viral infectivity [11, 12].

In vitro studies indicate that Nef expression modulates the activation of the transcription factor

NF-κB and IL-2 expression, implicating Nef in regulation of immune function [13]. Nef was

initially considered an inhibitor of viral genome transcription [14], but studies have since

shown that the Nef gene is crucial for maintenance of a robust, high viral production and is

implicated in promoting disease progression to acquired immune deficiency syndrome

(AIDS) [15]. Nef also increases the infectivity of HIV virions, as HIV-1 particles produced in

the presence of Nef can be up to ten times more infectious than in the absence of Nef gene [16].

Exposure of human glial cells and neurons to HIV Nef demonstrated a neurotoxic effect to

CNS resident cells [17], likely through an indirect effect of IP-10 or quinolinic acid [18]. HIV

Nef deletion or mutation can diminish the neurotropism of HIV suggesting that Nef may play

a role in viral seeding into the CNS [19]. Furthermore, rodent studies revealed that HIV Nef

induces neurocognitive impairments in rats [20, 21]. Brain autopsy samples of PWH revealed

that Nef was found in both macrophages and astrocytes. In addition, Nef-positive astrocytes

were detected in six out of seven specimens from PWH who had moderate to severe cognitive

impairment [22]. Interestingly, Nef was also found in frontal lobe neurons of patients with

HIV associated dementia [23]. More interestingly, Nef expression in astrocytes associated with

neuroinflammation causing neuronal damage and inducing spatial and recognition memory

deficits [19, 21, 24, 25].

The role of HIV Nef in the perturbation of neurological impairment is not fully understood.

Even in the presence of ART, neurocognitive deficits, including impairments in attention,

memory processing and retrieval, are present in PWH. Here, we utilized a well-established SIV

infection rhesus macaque model to further study and characterize Nef expression in the brain.

Our results suggest that regardless of ART status, Nef is expressed in the brain of SIV infected

macaques. In addition, by combining the state of the art RNAscope with IHC, we showed that

Nef detection was not limited to the cells actively replicating the virus. Moreover, cell type spe-

cific staining revealed that in addition to astrocytes and Iba-1 positive microglia and macro-

phages, Nef was also present in neurons and its presence was associated with apoptosis.
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Altogether, our results suggest that Nef may be a formidable contributor of neurological

impairment seen in PWH.

Results

Nef is expressed in the brain regions of SIV infected macaques

Tissue sections of frontal cortex, hippocampus and cerebellum from uninfected (SIV-, n = 3),

SIV-infected animals with encephalitis (SIVE, n = 3), SIV-infected animals without encephali-

tis (SIV+ No ART, n = 3), and SIV-infected animals treated with ART (SIV+ART+, n = 3)

were used to detect SIV Nef protein in vivo through immunohistochemistry. Viral, drug, and

zoological information of animals used in the study are provided in Table 1.

As expected, while SIV- (uninfected) tissues had no visible staining, SIV Nef staining was

evident in the frontal cortex of animals with SIVE (Fig 1 and S1 Fig in S1 File). Interestingly,

SIV Nef was very limited in cells from frontal cortex of SIV+ no ART and SIV+ART+ macaques

(Fig 1A and 1B, S1 Fig in S1 File). On the other hand, hippocampal areas of SIVE animals

showed lesions with high density of Nef staining and SIV+ no ART animals showed individually

Nef positive cells. Interestingly, hippocampal regions of SIV+ART+ animals also showed Nef

+ cells (Fig 1A and 1C, S2 Fig in S1 File). Cerebellar regions of SIV+ no ART and SIV+ART

+ showed Nef+ cells in the molecular and Purkinje cell layers (Fig 1A and 1D, S3 Fig in S1 File).

Nef positive lesions were found in the molecular layer and white matter of folium of the cerebel-

lum of SIVE+ macaques. The SIVE animals were utilized as controls for active viral replication.

For quantification purposes, and due to the current clinical presentation of HIV infection

where encephalitis is rare, we did not include the lesions seen in SIVE in quantitative analysis

and there was no significant difference between the number of Nef+ cells in SIV+ no ART and

SIV+ ART+ in three different brain regions analyzed. These results suggest that SIV Nef is still

expressed in the brain of SIV infected animals despite ART and reduced plasma viral loads.

Cell type-specific Nef expression in hippocampus

SIV Nef protein co-localization with cell type specific markers was achieved through a Multi-

plexing immunofluorescent approach. Hippocampal regions of SIVE, SIV+ no ART, and SIV

+ART+ animal cohorts were co-stained for GFAP, Iba-1 and SIV Nef (Fig 2, and S4 Fig in S1

Table 1. Viral, drug, and zoological information of animals used in the study.

Animal No. Infection Status CD8 Depletion Survival (Days) Age (years) Term. Viral Load (Log10) Brain pathology

C01 SIV- N/A N/A 3.28 N/A N/A

C02 SIV- N/A N/A 3.41 N/A N/A

C03 SIV- N/A N/A 2.27 N/A N/A

A01 SIV+ Depleted 55 7.3 7.83 SIVE

A02 SIV+ Depleted 89 10.4 7.71 SIVE

A03 SIV+ Depleted 77 5.8 8.54 SIVE

A04 SIV+ Depleted 174 10.8 7.28 AIDS no E

A05 SIV+ Depleted 168 4.3 5.87 AIDS no E

A06 SIV+ Depleted 106 4.5 7.69 AIDS no E

A07 SIV+ART+ Depleted 120 6.2 2.34 Normal

A08 SIV+ART+ Depleted 118 6.7 2.66 Normal

A09 SIV+ART+ Depleted 118 6.1 2.66 Normal

N/A = Not Applicable, SIV- = Uninfected, SIV+ = SIV Infected, ART+ = ART treated, Term. = Terminal, SIVE = SIV Encephalitis, AIDS no E = Non-encephalitic

https://doi.org/10.1371/journal.pone.0241667.t001
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Fig 1. Immunohistochemical staining to detect SIV Nef in different brain sections of SIV-infected macaques. A. Representative images from

paraffin embedded SIV-infected macaques brain tissue sections: frontal cortex, hippocampus and cerebellum in SIV+ ART +, SIV+ no ART and

SIVE (no ART) were serial sectioned and stained for routine histological analysis and stained for SIV Nef. Representative images were taken at

20X magnification with a Keyence BZ-X700 microscope. B—D. Nef positive cells per mm2 of tissues from frontal cortex, hippocampus and

cerebellum were quantified using BZ-X analyzer software (Keyence). (n = 3/per group). Five images were taken per condition per tissue. The

average number per group was used for further statistical analysis. Comparison of means was determined by T-test. SIV+ ART+: SIV infected,

receiving ART. SIV+ no ART: SIV infected, untreated, and SIVE: SIV infected with encephalitis. Scale bar represent 10 μM.

https://doi.org/10.1371/journal.pone.0241667.g001

Fig 2. Cell type-specific Nef expression in hippocampus sections from SIV infected macaques. A. Paraffin embedded SIV-infected macaques

brain hippocampus region were serial sectioned and stained for cells specific biomarkers GFAP (red), IBA-1 (pink) and Nef (green) using 4 color

opal multiplex immunohistochemical assay staining (Perkin Elmer). Representative images were taken at 20X magnification with a Keyence

BZ-X700 microscope (n = 3/ per group). B -C. Quantification of number of Nef+ cells within GFAP + cells (B) and Iba-1+ cells (C) per mm 2. Five

images were taken per condition per tissue with 20x magnification. The average number per group was used for further statistical analysis.

Comparison of means was determined by one-way ANOVA, followed by post-hoc Tukey HSD test ��P<0.05, ���P<0.001. White Arrows: Nef

+/GFAP-/ IBA-1- cells. Yellow arrows: Nef+/ IBA+ cells. Grey arrow with tail: NEF+/GFAP+ cells. Scale bar represent 10 μM.

https://doi.org/10.1371/journal.pone.0241667.g002
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File). Interestingly, hippocampal sections of SIV+ART+ animals showed SIV Nef+ cells that

were negative for both GFAP and Iba-1 (Fig 2A, denoted by white arrows). The percent of Nef

+GFAP+ cells was significantly different among SIVE (~8%), SIV+ no ART (~1.5%), and SIV

+ ART + (~0.5%) animals (Fig 2B). Post-hoc analysis showed significantly less Nef+ GFAP

+ cells in SIV+ no ART animals compared to SIVE and in SIV+ART+ compared to SIVE ani-

mals (P = 0.0084 and 0.0042). There was no significant difference between SIV+ no ART and

SIV+ ART+ animals for Nef expression in GFAP+ cells. SIV Nef and Iba-1 overlap was also

quantified (Fig 2C, denoted by yellow arrow). The percent Nef+Iba1+ cells were significantly

different between SIVE (~19%), SIV+ no ART (~5%) and SIV+ART+ animals (~1%) (Fig 2C).

Post-hoc analysis showed significantly less Nef+ Iba1+ cells in SIVE+ animals compared to

SIV+ no ART and SIV+ART+ animals (P = 0.0006 and 0.0002). There was no significant dif-

ference between SIV+ no ART and SIV+ ART + animals for Nef expression in Iba-1 cells.

Nef expression is not limited to the SIV RNA positive cells in hippocampus

and cerebellum of SIV-infected animals

In order to investigate if SIV Nef expression was limited to the SIV-infected cells, dual RNA-

scope and immunohistochemistry was performed to detect SIV viral RNA and SIV Nef protein

in cerebellar and hippocampal regions of SIVE, SIV+ no ART, and SIV+ART+ groups. Inter-

estingly, a population of SIV RNA- and Nef+ cells were observed in the hippocampus and cer-

ebellum of SIVE and SIV+ no ART (Fig 3A, orange arrows, S5 and S6 Figs in S1 File).

Quantification analysis of Nef+ SIV RNA- cells in hippocampus and cerebellum (Fig 3C and

3E) and RNA+ cells in hippocampus and cerebellum (Fig 3B and 3D) were also performed.

Interestingly, while RNAscope revealed a significant decrease in SIV RNA expression in SIV

+ART+ animals compared to SIV+ no ART, SIV RNA- Nef+ cells were undistinguishable. In

order to further analyze if SIV RNA- Nef+ cells were neuronal phenotype, we also performed

co-immunostaining of Nef protein with neuronal marker Neu-N. Hippocampal tissue sections

were co-stained with SIV Nef and Neu-N, to determine possible overlap of Nef with neurons

(Fig 4A and S7 Fig in S1 File). The observed colocalization of NeuN and Nef was evident in the

perinuclear area in SIV+ART+, SIV+ no ART, and SIVE animals, suggesting the presence of

Nef protein in neurons which are known to be not susceptible for SIV infection. Quantifica-

tion of Nef+ and Neu-N+ cells suggested that co-expression of both proteins was about 1%,

0.8% and 0.4% in SIVE, SIV+ no ART and SIV+ART+ respectively (Fig 4B). Interestingly,

while there was no significant difference between SIVE and SIV+ no ART, Nef+ neurons were

significantly higher in SIV+ no ART group compared to the SIV+ ART+ animals and in SIVE

group compared to SIV+ ART+ animals (P < 0.002).

Neuronal Nef is associated with cleaved caspase-3 induction in

hippocampus of SIV-infected animals

In order to characterize neuroapoptosis with SIV infection in the brain and possible neuronal

Nef association with neurotoxicity, we utilized the multiplex immunofluorescence to stain for

Neu-N, cleaved caspase 3 and Nef protein (Fig 5 and S8 Fig in S1 File). Interestingly, hippo-

campal regions of SIVE, SIV+ no ART and SIV+ ART+ animals showed Nef+ lesions and Nef

+ NeuN+ neurons that colocalized with cleaved caspase 3. The total number of cells that were

positive for cleaved caspase 3 were determined per mm2. The percent of cleaved caspase 3 pos-

itive cells was significantly higher in SIV+ no ART (~12%) than SIV+ART+ (~ 2%)

(P = 0.0001) (Fig 5B). Further quantification suggested that there was a significant difference

in percent of cleaved caspase 3 within NeuN+ and Nef- cells between SIV+ no ART (~4%) and

SIV+ART+ (~0.5%) (P<0.0001) (Fig 5C). The percentage of cleaved caspase 3 within Nef
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+ cells were also quantified. Approximately 6% and 1% of Nef + cells were positive for cleaved

caspase 3 in SIV+ no ART and SIV+ ART+, respectively (P = 0.0002) (Fig 5D). Percentage of

cleaved caspase 3 within Nef+ and NeuN+ cells were analyzed and approximately 7.6% and

1% of NeuN+ and Nef+ cells were also positive for cleaved caspase 3 in SIV+ no ART and SIV

+ ART+ respectively (P< 0.0001) (Fig 5E). Further quantification analysis showed that 4% and

1% of cells were cleaved caspase 3+ and Nef–in SIV+ no ART and SIV+ ART+ groups

(P<0.0001) (Fig 5F). Lesions seen in SIVE animals were not considered in quantification anal-

ysis due to the extensive neuronal loss at lesion sites. While neurons are not directly infected

with the virus, they appear to acquire Nef protein and show proteolytic activation of late phase

caspase 3 and induction of apoptosis.

Fig 3. Nef + SIV RNA- cells are detected in different brain regions of SIV-infected animals. A. SIV RNA was

visualized with RNAscope (Red) and Nef protein (Brown) markers by immunohistochemistry in the hippocampus and

cerebellum of SIV-infected animals: SIV+ ART+, SIV+ no ART, and SIVE. Representative images were taken at 20X

magnification with a Keyence BZ-X700 microscope. Five images were taken per condition per tissue and the average

number per group was used for analysis. (n = 3/per group). B and D. Quantification analysis of SIV RNA+ cells in

hippocampus and cerebellum region per mm2. C and E. Quantification analysis of number of Nef+/RNA- cells in the

hippocampus and cerebellum region per mm2 using BZ-X analyzer software (Keyence). Yellow arrow: SIV RNA + and

orange arrow: SIV RNA—and Nef+ cells. Scale bar represent 10 μM.

https://doi.org/10.1371/journal.pone.0241667.g003
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Discussion

HIV-1 was initially thought to target immune cells in the periphery including T lymphocytes,

monocytes/macrophages, and dendritic cells. Although the mechanisms of HIV infiltration

into the brain remain debatable, several studies have illustrated that CNS cells such as perivas-

cular macrophages, microglia, and astrocytes are also susceptible to infection [26–29]. Micro-

glia and perivascular macrophages serve as persistence and latent viral reservoirs, supporting

productive HIV-1 infection [26–29]. Neurons are not infected with HIV, however, the virus

targets neurons through viral proteins, such as Tat, gp120, and Vpr. Effects of HIV-1 Tat and

gp120 expression in the brain have been extensively studied [30–32]. HIV Tat disrupts blood-

brain barrier integrity and alters neuronal intrinsic excitability, affects calcium dysregulation,

causes astrocytosis, and leads to the subsequent death of neurons [33]. Gp120 causes neuronal

apoptosis, increases inflammatory cytokines, increases oxidative stress, and disrupts the

blood-brain barrier [34]. Both Tat and gp120 appear to be well characterized causing serious

neurotoxic consequences in HIV-1 infected brains [30, 33–35]. Despite gp120 and Tat and

other viral proteins, little is known about the characteristics and potential impact of HIV-1 Nef

Fig 4. Detection of Nef in neurons from hippocampus of SIV- infected macaques. A. Hippocampus regions from

paraffin embedded SIV-infected macaques brain samples were serial sectioned and stained for Neu-N (pink) and Nef

(green) using opal multiplex immunohistochemical assay staining. Representative images were taken at 20X

magnification with a Keyence BZ-X700 microscope. (n = 3/ per group). B. Quantification analysis of number of Nef

+ within NeuN + cells in hippocampus region per mm2, five images were taken per condition per tissue and the

average number per group was used (n = 3). Comparisons of means for significance was determined with T-test. Scale

bar represent 10 μM. (P< 0.002).

https://doi.org/10.1371/journal.pone.0241667.g004
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in the development of HIV-associated neurological disorders. Accumulating evidence suggest

that Nef is an important contributor to the development of HIV associated neurological disor-

ders. It can cause significant decrease in metabolic activities and increase cell death rates [17].

In vivo expression of Nef leads to neuronal loss and neuroinflammatory response, including

upregulation of IP-10. Interestingly, increased expression of IP-10 has been detected in the

brains of HIV individuals with severe cognitive deficits [20]. Also, Nef induces the recruitment

of peripheral immune cells such as macrophages into the CNS resulting in an increase in neu-

ronal apoptosis and a neuroinflammatory profile [20, 21]. In our work, we have elucidated the

expression of Nef protein in different brain regions of SIV-infected animals and correlated

cell-type-specific Nef expression with neurotoxicity. The results of our study demonstrate that

Nef is expressed in different brain regions; frontal cortex, hippocampus, and cerebellum. To

our knowledge, this is the first in vivo study demonstrating Nef expression and characterizing

different cell types expressing Nef in the brain of SIV-infected macaques. Furthermore, the

data presented here demonstrate that neurons within the hippocampus are positive for Nef in

macaques on ART indicating that despite ART therapy, Nef might be still present in the differ-

ent cell types, including neurons in the brain. Our RNAscope analyses further revealed that

within the hippocampus and cerebellum there are cells that are actively infected with SIV as

evidenced by the detection of viral RNA in these regions and cells in the proximity of infected

cells that are positive for Nef protein in which SIV RNA was not detected. These data suggest

that Nef protein is most likely transported from the infected cells to the uninfected neuronal

cells. One inherent limitation of this study is the sample size being small (n = 3 per group). Rel-

atively small number of animals used in this study is due to the limited availability of large-

Fig 5. Multiplex analyses of Nef and cleaved caspase-3 expression in neurons. A. Hippocampus regions from SIV-infected macaques brain

samples were serial sectioned and stained for cells specific biomarkers NeuN (pink), Cleaved caspase 3 (Red) and Nef (green) using 4 color opal

multiplex immunohistochemical assay staining. (Perkin Elmer). Representative images were taken at 20X magnification with a Keyence BZ-X700

microscope. (n = 3 per group). B. Quantification analysis of number of cleaved caspase 3 positive cells per mm2. C. Quantification analysis of

number of cleaved caspase 3 within NeuN+ and Nef- cells per mm2. D. Quantification analysis of number of % of cleaved caspase 3+ cells within Nef

+ cells in the hippocampus region. E. Quantification analysis of number of cleaved caspase 3+ cells within Nef + and NeuN + cells in the

hippocampus region. F. Quantification analysis of number of cleaved caspase 3+ cells within Nef—cells. Comparison of means was determined by T-

test (���P<0.005, ����P<0.0001). Scale bar represent 10 μM.

https://doi.org/10.1371/journal.pone.0241667.g005
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scale primate tissues and its focus on the presence of HIV-1 Nef in different cell types in differ-

ent brain regions of animals with different disease stages. In addition, our IHC studies with

Iba-1 marker suggested that a significant number of Iba-1+ cells are also positive for Nef. Due

to the shared lineage of microglia and macrophage/monocytes, Iba-1 only represents the over-

all lymphoid cells and does not necessarily suggest the lymphoid cell types. Whether Nef is

preferentially expressed in certain lymphoid cells at different stage of the HIV CNS disease

remains to be elucidated.

Several in vivo studies suggest that Nef protein can be transferred from infected to unin-

fected cells and is considered as circulating viral factor, contributing to HIV pathogenesis.

Using CD4.Nef.GFP transgenic mice and chimeric SIV infected macaques, it was shown that

intracellular Nef was transferred from T cells to the endothelium [36]. In addition, Nef protein

was present in extracellular vesicles (EVs) isolated from SIV infected macaques and was able to

transfer Nef into other recipient cells [37]. Furthermore, it was demonstrated that Nef was

present in the sera from 27 out of 32 HIV-1 patients [38]. Several other independent groups

have also detected HIV-Nef protein in EVs isolated from the plasma of HIV-infected patients

[39–42]. Other studies demonstrated that intracellular Nef was detected in peripheral blood

mononuclear cells (PBMCs) in HIV infected patients with and without antiretroviral therapy

[36] and was detected in uninfected B cells of lymphoid follicles of infected individuals [43].

Several decades ago, in vitro and in vivo studies illustrated that cell-type-specific proteins

are found in other cell types. [44, 45]. These observations were studied in greater depth, lead-

ing to the discovery of many mechanisms by which proteins traffic between cells. These

include trogocytosis, an active protein transport mechanism with tight contacts between cells

[46], and formation of nanotubes that extend between neighboring cells as 50–200 nm long F

actin containing protrusions from the plasma membrane of one cell to another cells [47].

Another mechanism in which proteins and other biological material transferred between cells

is the exosomal protein transport [48]. Exosomes are conserved intercellular communication

strategies between cells in which they exchange materials such as nucleic acids, proteins, and

lipids and are released from multivesicular bodies (MVBs) [48]. More recently, exosomes in

CNS have gained attention since these vesicles serve as one means of physiologic and patho-

logic cargo transfer between neurons and glial cells. Oligodendrocytes and astrocytes have

shown to release neuroprotective exosomes to support neuronal metabolism and homeostasis

[49–52]. In addition to neuroprotection, exosomes are also known to transfer pathological

proteins between cells, enhancing neurodegenerative disorders as evident by the neuronal

release of α-Syn-containing exosomes that are uptaken by glial cells [53] and the spread of β-

amyloid peptide and tau protein to the extracellular space [54–56]. HIV Nef may also utilize

multiple mechanisms to get transported from infected to the uninfected cells. Indeed, Nef was

shown to be transferred to the bystander T cells by trogocytosis [57]. Nef is also shown to

induce TNT formation [58, 59], and can be transferred from infected macrophages to the B

lymphocytes [60], macrophages to T cells [59], Nef-expressing T cells to hepatocytic cells [61],

and T cells and monocytes to human coronary arterial endothelial cells [36]. Accumulating

evidence suggests that Nef -associated EVs from Nef expressing donor cells have damaging

effects on recipient cells [37, 41, 62–66]. We also recently reported that Nef is released from

infected astrocytes in association with EVs that are taken up by primary neurons [67]. These

Nef carrying EVs suppressed functional neuronal action potential as it was assessed by multi-

electrode array studies and caused neurotoxicity. Here, in line with the previous studies, our

data suggest that the presence of Nef in neurons is associated with induction of cleaved caspase

3, indicative of late apoptosis and neurotoxicity.

HIV infection in the brain manifests itself at different levels in neuronal activities leading to

a wide spectrum of neurological disorders ranging from mild cognitive deficiencies to motor
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functions and behavior abnormalities. PWH receiving ART have reduced risk of neurocogni-

tive impairment but still are at a greater incidence of neurological impairments compared to

the uninfected population [68]. Overall in this study, we characterized Nef expression in differ-

ent brain regions of SIV-infected macaques. Interestingly, our data suggest that Nef is

expressed in the hippocampus and cerebellum of SIV-infected animals despite treatment with

ART. We further shed light on the different cell types positive for Nef protein including neu-

rons that are undergoing apoptosis in ART-treated animals. Expression and secretion of viral

proteins are proportional to viral load [69] but are not necessarily eliminated by ART, as illus-

trated with Nef expression and its association with apoptosis. Overall, our study highlights the

possible role of HIV secretory proteins including Nef in HIV CNS disease seen in PWH.

Material and methods

Animals used in the study and ethical statement

Twelve male, Indian rhesus macaques (Macaca mulatta) were used in this study (Table 1).

Three rhesus macaques (C01-C03, SIV-) served as uninfected controls. Nine animals

(A01-A09, SIV+) were injected intravenously with SIVmac251 viral swarm (5ng p27; Tulane

National Primate Research Center’s (TNPRC) Viral Core). A subcutaneously a dose of 5mg/kg

of anti-CD8 antibody was administered at 6 days post-infection (dpi) and 5mg/kg of the anti-

body intravenously at 8 and 12 dpi (Nonhuman Primate Reagent Resource) for CD8 depletion.

The SIV-infected (SIV+) animals were sacrificed according to humane endpoints consistent

with the recommendations of the American Veterinary Medical Association (AVMA) Guide-

lines for the Euthanasia of Animals. The development of simian AIDS was determined post-

mortem by the presence of Pneumocysti carinii-associated interstitial pneumonia, Mycobacte-

rium avium-associated granulomatous enteritis, hepatitis, lymphadenitis, and/ or adenovirus

infection of surface enterocytes in both small and large intestines. SIVE was defined by the

presence of multinucleated giant cells, accumulation of macrophages in the CNS, and produc-

tive viral infection [51]. It is important to note that SIVE animals did not receive ART. Three

animals (A10-A12, SIV+ART) received a triple ART regimen: Raltegravir (22 mg/kg oral twice

daily, Merck), Tenofovir (30 mg/kg subcutaneous once daily, Gilead), and Emtricitabine (10

mg/kg subcutaneous once daily, Gilead) at 21 dpi until the timed sacrificed at 118–120 dpi.

Animals were anesthetized with ketamine-HCL and euthanized by intravenous pentobarbital

overdose. Animals used in the study were housed at the TNPRC. All animals used in this study

were handled in strict accordance with American Association for Accreditation of Laboratory

Animal Care with the approval of the Institutional Animal Care and Use Committee of Tulane

University. Monkeys were housed in pairs to promote the psychological well-being of nonhu-

man primates. Enrichment included manipulable items in cage (durable and destructible

objects), perches or swings, various food supplements (fruit, vegetables, primate treats), forag-

ing or task-oriented feeding methods and human interaction with caretakers and research

staff as dictated by The United States Animal Welfare Act. Enrichment devices are rotated on

a weekly basis and include toys, mirrors, radios, TV/VCRs, foraging boards, and a variety of

complex foraging devices. Animals were fed a normal monkey chow. Animal care staff moni-

tored the health and well-being of the animals on a daily basis with physical examinations per-

formed weekly. All possible measures were taken to minimize discomfort of the animals.

Anesthesia and analgesics were used and administered under the direction of a licensed veteri-

narian. All procedures were performed under ketamine or telazol anesthesia. Analgesics such

as buprenorphine and lidocaine were used preemptively and following each potentially painful

procedure. All animals were euthanized according to humane endpoints consistent with the

recommendations of the American Veterinary Medical Association (AVMA) Guidelines for
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the Euthanasia of Animals. Endpoint criteria for euthanasia included the following: weight

loss >15% in 2 weeks or>30% in 2 months, documented opportunistic infection, persistent

anorexia >3 days without explicable cause, severe, intractable diarrhea, progressive neurologic

signs, significant cardiac and/or pulmonary signs or any other serious illness.

Immunohistochemistry (IHC)

For histologic examination, frontal cortex, hippocampus and cerebellum regions of brains

from uninfected animals (SIV-), SIV-infected animals with encephalitis, without receiving

ART (SIVE), SIV-infected animals without encephalitis (SIV+), and SIV-infected animals

treated with ART (SIV+ART+) were fixed in 10% formalin and embedded in paraffin. Paraf-

fin-embedded tissues were cut in five-micron thick sections and analyzed for protein expres-

sion by IHC. Sections were deparaffinized in xylene and hydrated in 100%, 90%, and 75% of

ethanol. Sections were heat-treated at 95˚C for 20 min in an antigen unmasking solution (Vec-

tor, H-3300) for heat-induced antigen retrieval, cooled to room temperature, and washed in

Phosphate-Buffered Saline (PBS) (Invitrogen). The sections were incubated for 5 minutes in

Dual Endogenous enzyme block (Dako) and 30 minutes in Protein block (Dako). SIV-Nef pri-

mary antibody (1:1500), as detailed in Table 2, was prepared in antibody diluent (Dako), and

the sections were incubated for overnight at 4˚C. Slides were washed three times with DPBS.

Sections were incubated in polymer-based HRP-conjugated anti-mouse Dako EnVision sys-

tem and developed with 3,30-diaminobenzidine (DAB) chromogen. All paraffin-embedded

sections were counterstained with Harris hematoxylin (Sigma). Controls included uninfected

animals. Images were obtained with a Keyence, BZ-X710 microscope. Five images were taken

per tissue per condition with 20x magnification and SIV-Nef staining was quantified using

BZ-X analyzer software (Keyence). The average number per group was used for further statisti-

cal analysis.

Quantitative RNAscope in situ hybridization

SIV viral RNA was visualized using RNAscope on paraffin embedded tissues from hippocam-

pus and cerebellum of SIVE, SIV+, and SIV+ART+ according to manufacturer’s protocols,

using the SIVmac239 probe and RNAscope 2.5 HD Red Chromogenic Assay (Advanced Cellu-

lar Diagnostics, Newark, CA, cat #322360). Uninfected animals served as a negative control.

Double labeling for SIV RNAscope followed by IHC staining for Nef protein, as previously

reported [70, 71]. Slides were stained for anti-SIV-Nef. Sections were incubated in Polymer-

based HRP-conjugated anti-mouse Dako EnVision system and developed with DAB

Table 2. Primary and secondary antibodies used in the study.

Antibody Source Concentration Secondary Antibody Source Fluorophore

Mouse anti-SIV-Nef Thermofischer MA1-

71522

1:1500 polymer-based HRP-conjugated

anti-mouse

Dako EnVision system/ Agilent N/A

Mouse anti-SIV-Nef Thermofischer MA1-

71522

1:1500 Opal polymer HRP Ms+Rb Perkin Elmer, Opal™ 4-Color IHC Kit

NEL810001KT

Opal 520

Mouse anti Neu-N Millipore MAB377 1:1000 Opal polymer HRP Ms+Rb Perkin Elmer, Opal™ 4-Color IHC Kit

NEL810001KT

Opal 690

Rabbit Anti IBA-1 Wako 019–19741 1:1000 Opal polymer HRP Ms+Rb Perkin Elmer, Opal™ 4-Color IHC Kit

NEL810001KT

Opal 690

Rabbit Anti- GFAP Proteintech 23935-1-AP 1:2000 Opal polymer HRP Ms+Rb Perkin Elmer, Opal™ 4-Color IHC Kit

NEL810001KT

Opal 570

Rabbit Anti- Cleaved

Caspase 3

Calbiochem 2923436) 1:1500 Opal polymer HRP Ms+Rb Perkin Elmer, Opal™ 4-Color IHC Kit

NEL810001KT

Opal 690

https://doi.org/10.1371/journal.pone.0241667.t002
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chromogen. Sections were counterstained with hematoxylin, dried at 60˚C, and mounted.

Images were obtained with Keyence, BZ-X710 microscope and analyzed for colocalization of

SIV viral RNA and SIV Nef protein. Five images were taken per tissue with 20x magnification

and SIV-Nef staining was quantified using BZ-X analyzer software (Keyence). The average

number per group was used for further statistical analysis.

Opal multiplex immunohistochemistry

Sections from hippocampus region of SIVE, SIV+, and SIV+ART+ macaques were deparaffi-

nized and rehydrated through ethanol. Slides were treated for antigen unmasking using an

AR6 buffer (Perkin Elmer) according to manufacturer’s guidelines (Microwave: 45 seconds,

100% power; 15 min, 20% power). Slides were allowed to cool for 30 min at room temperature

and washed with 1X PBS. Slides were incubated for 10 min in blocking reagent, rinsed with 1X

PBS, and incubated with the primary antibodies for one hour, as detailed in Table 2.

Slides were incubated with polymer HRP Ms + Rb for 10 min at room temperature. Opal

dyes were diluted in amplification reagent (1:100) and slides were incubated in dyes for 10

minutes. Following development, slides were re-treated with AR6 buffer (Microwave: 45 sec-

onds, 100% power; 15 min, 20% power) to strip slides of antibody complexes and allow conse-

cutive staining without concern for antibody isotypes. Detection for each marker was

completed before application of the next antibody. Slides were counterstained with spectral

DAPI (Perkin Elmer) for 5 min at room temperature and washed with 1XPBST buffer and

water. Coverslip slides were mounted using ProLong1Diamond Antifade Mountant (Ther-

mofisher). All reagents are from Perkin Elmer, Opal™ 4-Color IHC Kit NEL810001KT. Images

were obtained with Keyence, BZ-X710 microscope. Five images were taken per tissue with 20x

magnification and SIV-Nef staining was quantified using BZ-X analyzer software (Keyence).

The average number per group was used for further statistical analysis.

Statistical analysis

All statistics and graphical representations were done using GraphPad Prism version 8.0.

Results are expressed as Mean +/- SEM. T-test was used in comparison of two unpaired

groups. One-way ANOVA was used to compare three non-paired groups followed by a post-

hoc Tukey HSD test. P value< 0.05 was considered significant.
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