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ATP-binding cassette (ABC) proteins play important roles in a wide variety of species.
These proteins are involved in absorbing nutrients, exporting toxic substances, and
regulating potassium channels, and they contribute to drug resistance in cancer
cells. Therefore, the identification of ABC transporters is an urgent task. The present
study used 188D as the feature extraction method, which is based on sequence
information and physicochemical properties. We also visualized the feature extracted
by t-Distributed Stochastic Neighbor Embedding (t-SNE). The sample based on the
features extracted by 188D may be separated. Further, random forest (RF) is an efficient
classifier to identify proteins. Under the 10-fold cross-validation of the model proposed
here for a training set, the average accuracy rate of 10 training sets was 89.54%. We
obtained values of 0.87 for specificity, 0.92 for sensitivity, and 0.79 for MCC. In the
testing set, the accuracy achieved was 89%. These results suggest that the model
combining 188D with RF is an optimal tool to identify ABC transporters.

Keywords: ABC transporters, random forest, classify, 188D, t-SNE

INTRODUCTION

The ATP-binding cassette (ABC) transporters are members of the membrane protein superfamily
that translocate various molecules across extra- and intra-cellular membranes. ABC transporters
are split into eight subfamilies from ABCA to ABCH. In humans, there are only seven subfamilies,
designated ABCA through ABCG. Plants do not contain ABCH but instead possess ABCI (Sheps
et al., 2004; Ofori et al., 2018). ABC transport proteins bind ATP and consume energy to mediate
the movement of a variety of molecules across all cell membranes. As Figure 1 shows, the core
architecture is a pair of conversed cytoplasmic domains: the transmembrane domain (TMD) and
nucleotide binding domain (NBD) (Maqbool et al., 2015). TMDs are attached transmembrane
domains that contain the ligand binding site. In most species, TMDs are composed of five to six
α-helical segments (Locher, 2016). NBDs are responsible for ATP binding and hydrolysis (Locher,
2016), and conformational changes in the TMDs. The TMD amino acid sequence and topology are
also different in different types of ABC transporters (Beis, 2015). The NBD domains adopt open or
closed conformations by forming dimers. When NBD dimers separate, the transporter is inactive.
ATP transporters possess ATPase activity when the NBD dimer conformation is closed (Gerber
et al., 2008; Kadaba et al., 2008; Ward et al., 2013). During the process of conformational changes,
the NBD plays the role of the transporter “engine” (Locher, 2008). Because of the important
function of NBDs, the NBD domains are very conserved across different ABC transporter types.

ATP-binding cassette transporters play a very important role in many species, from
simple bacteria to complex humans. In bacteria, ABC transporters include two types: ABC
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FIGURE 1 | The structure of ATP-binding cassette (ABC) transporters.

importers and ABC exporters. ABC importers contribute to the
intake of nutrients and micronutrients by importing sugars, metal
ions, and vitamins (Davidson et al., 2008; Cui and Davidson,
2011). ABC exporters are predominantly involved in exporting
toxic substances and drug resistance (Seeger and van Veen,
2009; Wong et al., 2014). Bacterial ABC exporters also build
lipid-linked blocks (Ruiz et al., 2008). Plant ABC transporters
are involved in the exchange of secondary metabolites, coating
materials, plant hormones and supportive materials. These
functions are helpful to the overall development of plants (Hwang
et al., 2016). In humans, most of the known functions of ABC
transporters involve the transport of antigenic peptides that are
relevant to biomedicine and clinical medicine (Leprohon et al.,
2011). Mutations of the genes encoding ABC protein contribute
to a variety of human disorders, such as cholesterol and
bile transport defects, neurological disease, and cystic fibrosis.
Mutations also contribute to drug resistance (Dean et al., 2001).

Many biological laboratories identified ABC transporters
by artificial annotation. Pleiotropic drug resistance (PDR)
transporters constitute a subfamily that belongs to the ABC
superfamily. The Nicotiana tabacum PDR gene NtPDR6 was
identified via the Basic Local Alignment Search Tool (BLAST).
Previous studies compared the P. hybrida genome sequence to
expressed sequence tags of N. tabacum in the National Center
for Biotechnology database using BLAST (Xie et al., 2015). They
found a sequence that was similar to the P. hybrida PDR gene.
Finally, they used the molecular biology to clone this gene
and demonstrated its function. Some researchers also identified
ABC transporters in monogeneans including Gyrodactylus
salaris, Protopolystoma xenopodis, Eudiplozoon nipponicum, and
Neobenedenia melleni and identified the transporter subfamily
of each species. They identified putative ABC proteins of
monogeneans by using BLASTp and screened against the putative
proteins in Pfam using the HMMER web server. The server
is based on protein structure and discards proteins without
the conserved domains (NBD and TMD) (Caña-Bozada et al.,
2019). Therefore, this method is based on homology. Putative
ABC genes in the Anopheles gambiae genome sequence were
detected using various software including GENSCAN and the
HMMER package (Bateman et al., 1999) which are ab initio
techniques. GENSCAN and HMMER are based on the Hidden
Markov Model (HMM) and may be used to predict the location
of genes and their exon-intron boundaries (Burge and Karlin,
1997). The accuracy of these methods needs improvement, and
the experiments are time-consuming and have a tremendous cost.

With the advent of the era of big data, computational
prediction based on machine learning has become a powerful
approach for identifying important proteins in biology. This
method does not replace biological experiments, but it improves
the accuracy of prediction and provides more clues for biological
experimentation. There are many examples of the application of
machine learning algorithms for protein identification. A web
server and software (BinMemPredict) was developed to predict
membrane protein types. This approach demonstrated an
accuracy of 91.2% for the identification of membrane proteins
and an accuracy of 86.1% for selecting membrane protein
types (Zou et al., 2013a). Pretata used a novel feature and
a dimensionality reduction strategy to predict TATA binding
proteins, and it achieved 92.92% prediction accuracy (Zou et al.,
2016). Machine learning was also used to combine support vector
machine (SVM) and PSSM distance transformation to identify
DNA-binding proteins (Xu et al., 2015; Dong et al., 2019; Li Z.
L. et al., 2019; Yan et al., 2019). Zou et al., proposed a model
using a SVM named AOPs-SVM to identify antioxidant proteins
(Jin et al., 2019).

The present study used 188D for feature extraction and
employed five classifiers to predict ABC transporters. The
method of feature extraction focused on the sequence
information and the physical and chemical properties. We
also developed the t-SNE algorithm to visualize the features.
Finally, we compared five different classifiers and revealed that
random forest (RF) was the optimal model to identify ABC
transporters. The overall process is shown in Figure 2.

MATERIALS AND METHODS

Dataset
The identification of ABC transporters refers to the process
of judging whether a protein is an ABC transporter. This
classification problem needs two kinds of proteins. The present
study used the key word “ABC transporter” to search the

FIGURE 2 | Overall Process of this study.
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sequences in the Uniprot database. This search produced 1509
reviewed sequences that were used as the positive set. After
obtaining the positive example set, we constructed a negative set
using the following steps. We removed the families, including
the above-mentioned positive sequences, from the protein family
database PFAM. In these residual families, we extracted the
longest protein sequence from each family as a negative sample.
A total of 10661 negative example sequences was assigned to the
negative data pool.

To ensure reliability of the experimental results, CD-HIT (Fu
et al., 2012) was used to eliminate redundant data with a threshold
of 0.6. The final dataset contained 875 positive samples and 9736
negative samples.

The positive samples and negative samples were imbalanced.
To solve this problem, we randomly selected 875 negative
samples from the total 9736 of negative example sequences.
Therefore, the numbers of the positive samples and the negative
samples were equal. This operation was repeated 10 times and we
obtained 10 negative example sets. These 10 negative examples
and the same positive example sets formed the 10 training
sets, respectively. In every selection process, the remaining 8861
negative samples were assigned to the test set. A total of 10 test
sets was obtained.

Feature Extraction
The 188D feature extraction method was used in this study.
This method extracts 188 features based on protein sequence
information and physical and chemical properties. Previous
researchers used the composition-position of proteins and their
physical-chemical properties independently to extract protein
features (Dubchak et al., 1995; Ding and Dubchak, 2001; Shen
et al., 2017, 2019; Wang et al., 2017; Yu et al., 2017; Liu
et al., 2018; Qiao et al., 2018; Xiong et al., 2018; Zhang et al.,
2018a,b; Zou et al., 2019). In 2003, Cai et al. first combined
amino acid sequences with their physicochemical properties to
finish feature extraction (Cai et al., 2003). In summary, 188
features are divided into two different categories. One category
consists of the amino acid composition that is expressed by 20
features. The other category consists of the physical chemical
properties, including hydrophobicity, polarity, polarizability,
normalized van der Waals volume, secondary structure, charge,
surface tension, and solvent accessibility. The detail about the
physicochemical properties is shown in Table 1.

There are 20 amino acids. We calculated the respective
frequency of the 20 amino acids as n1, n2, n3. . .n20. The feature
can be expressed as:

(F1, F2, . . . . . . F20) = (
n1
L

,
n2
L

, . . . . . . ,
n20
L

)

where F is the feature, and L is the length of sequences.
Next, these 20 amino acids were divided into three types

according to their physicochemical properties. The three
categories included the content, distribution and the bivalent
frequency, which were used to describe the physicochemical
properties of proteins. We used surface tension as an example.

First, the 20 amino acids were divided into three groups (Chen
et al., 2012), namely, the GQDNAHR group, KTSEC group,

TABLE 1 | Three class divided according to physicochemical property.

Physicochemical
property

the 1st
class

the 2nd
class

the 3rd
class

hydrophobicity RKEDQN GASTPHY CVLIMFW

Normalized van der
Waals volume

GASCTPD NVEQIL MHKFRYW

polarity LIFWCMVY PATGS HQRKNED

polarizability GASDT CPNVEQIL KMHFRYW

charge KR ANCQGHILMFPSTWYV DE

surface tension GQDNAHR KTSEC ILMFPWYV

secondary structure EALMQKRH VIYCWFT GNPSD

solvent accessibility ALFCGIVW RKQEND MPSTHY

and ILMFPWYV group, according to their surface tensions. We
calculated the content of the three groups, which are expressed as
CS1, CS2, and CS3, respectively. The feature was denoted as:

(F21, F22, F23) = (
CS1
L

,
CS2
L

,
CS3
L

)

For the AAs of the GQDNAHR group, the position of the first, the
first and 25%, 50%, and 75% of the chain length are represented
by DSij where i ranges from 1 to 3 and j ranges from 1 to 5.

(F24, F25, F26, F27, F28) = (
DS11
L

,
DS12
L

,
DS13
L

,
DS14
L

,
DS15
L

)

(F29, F30, F31, F32, F33)=(
DS21
L

,
DS22
L

,
DS23
L

,
DS24
L

,
DS25
L

)

(F34, F35, F36, F37, F38) = (
DS31
L

,
DS32
L

,
DS33
L

,
DS34
L

,
DS35
L

)

The frequencies of occurrence of bigeminal sequences were
calculated as (Zou et al., 2013b):

(F39, F40, F41) = (
BS1
L− 1

,
BS2
L− 1

,
BS3
L− 1

)

A total of (3 + 3 + 3× 5) = 21 feature vectors were extracted
from each property, and we finally extracted all 168 (21 × 8)
feature vectors from the eight physicochemical properties. In
summary, the 188 (168 + 20) features were used to express the
characteristics of ABC transporter protein. The process of feature
extraction is illustrated in Figure 3.

Feature Selection
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a
dimensionality reduction tool based on non-linear manners.
t-SNE is particularly good at the visualization of high-
dimensional datasets (Shao et al., 2018). The present study
reduced the 188 features of protein sequences to two-dimensional
features by using t-SNE. The t-SNE algorithm uses the joint
probabilities to express the similarities between data points.
t-SNE endeavors to minimize the Kullback–Leibler discrepancy
between the joint probabilities of the low-dimensional and the
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FIGURE 3 | Flowchart of the 188D feature extraction method.
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high-dimensional data. t-SNE was applied to create the two-
dimensional embedding in the dataset described above using the
R package Rtsne. The settings of Rtsne in the present study were
as follows: dims = 2, perplexity = 10, verbose = TRUE, theta = 0,
max_iter = 1000, and exaggeration_factor = 8.

Classifier
We used RF, J48, Naïve Bayes, SVM, and IBk as the classifiers.
These classifiers were implemented in Weka, which contains a
wide variety of machine learning algorithms based on a Java
environment (Frank et al., 2004).

Random Forest
Random forest is an ensemble learning method that consists of
many classification trees (Breiman, 2001), and it is widely used
in bioinformatics research (Ding et al., 2016; Liu, 2017; Liu et al.,
2017; Wei et al., 2017a,b, 2019; Zeng et al., 2017a; Yu et al., 2018;
Gong et al., 2019; Lv et al., 2019; Ru et al., 2019). The “forest”
is built by using bagging and random feature selection methods.
The bagging method generally combines various learning models
to increase the overall result. RFs are an improvement over
bagged decision trees (Breiman, 1996). The details about this
algorithm are described below.

First, “M” features were randomly selected from total “n”
features, where M <<n. Then, we use the best split point to
calculate the node “b” among the “M” features.

Next, by using the best split, the node was split into daughter
nodes. These three steps were repeated until “l” number of nodes
was reached. Finally, we constructed a “forest” by repeating the
above steps for “n” number of times to build “n” number of trees.
These are the pseudocode of RF creation.

After the RF model was produced, we made predictions.
The test features were taken, and the codes of each randomly
produced decision tree were used to predict the results. We
calculated the votes for each of the predicted results. Finally, we
chose the high voted prediction target as the ultimate prediction
(Song et al., 2017).

J48
J48 implements the decision tree algorithm C4.5 (Quinlan, 1986).
Ross Quinlan improved ID3 to the C4.5 algorithm in 1993.
C4.5 builds decision trees from training data using information
entropy. At each step, C4.5 selects an attribute of the data
to effectively split into subsets. Examining the standardized
information gain or the variation in entropy is the splitting
criterion (Radhika and Rao, 2015; Li M. J. et al., 2019). The
highest standardized information gain of an attribute is chosen
to make the decision. This process recurs on each branch node.
When all of the samples included in the branch nodes of
the decision belong to the same class, the process is stopped
(Jain et al., 2009).

Naïve Bayes
Naïve Bayes is an effective classifier based on the Bayesian
Theorem (Cao et al., 2003). The Bayesian Theorem finds the
probability of an event occurring when the probability of another
event occurring is known. The Bayesian Theorem is primarily

based on conditional probability, which is given in the following
equation:

P
(
y|x1, . . . , xn

)
=

P(x1|y)P(x2|y) . . . P(xn|y)P(y)
P (x1) P (x2) . . . P(xn)

where y is a class variable and x is a dependent feature vector.
P(y) is called class probability and P(xn| y) is called conditional
probability that means the probability of y given x1,. . .. . .,xn. The
formula above may be expressed as:

P
(
y|x1, . . . xn

)
=

P(y)
∏ n

i = 1
P(xi|y)

P (x1) P (x2) . . . P(xn)

We can remove the denominator because it remains constant for
a given input:

P(y|x1, . . . , xn) ∝ P(y)
∏ n

i = 1
P(xi|y)

When this formula is applied to a Naïve Bayes, we get the
probability of given features for all possible values of the class
variable y and select the outcomes with maximum probability.
This value may be expressed as:

ŷ = argmanyP(y)
∏ n

i = 1
P(xi|y)

Support Vector Machine
The SVM is a supervised machine learning algorithm based
on the structural risk minimization principle from statistical
learning theory. Vapnik first introduced this algorithm in 1995
(Mohammad and Nagarajaram, 2011). In this algorithm, every
data point was plotted as a dot in n-dimensional spaces (where
n is the number of samples’ features). Then, we find an optimal
hyperplane that differentiates the two classes very well. This
hyperplane can maximize the margin between the two classes,
and support vectors define the hyperplane. SVM has been applied
to many tasks in bioinformatics (Wei et al., 2014, 2016, 2018;
Ding et al., 2017; He et al., 2018; Zou et al., 2018; Fang et al., 2019;
Liu and Li, 2019; Liu et al., 2019; Zeng et al., 2019b,c; Zhang M.
et al., 2019; Zhang X. et al., 2019; Zhu et al., 2019).

IBk
The IBk is a machine learning classifier based on the k-nearest-
neighbor algorithm. “Feature similarity” is used to predict the
values of new data points in the K-nearest-neighbor algorithm.
For implementing this algorithm, we choose training and testing
data as datasets. Then, we choose an integer as “K.” We use
various methods such as Euclidean, Manhattan or Hamming,
to calculate the distance between the test data and each line of
training data. We sorted each line of training data in increasing
order based on the distance value and choose the top K lines from
the sorted array. Finally, we assigned the test point to a class based
on the most frequent class of these rows.

Prediction System Assessment
The present study used some common evaluation indicators,
including the total prediction accuracy (ACC), sensitivity (SN),
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FIGURE 4 | Display of the training features by t-SNE. S is the abbreviation for sample.
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FIGURE 5 | Performance of different classifier. (A) Accuracy comparison for the training sets by using all the classification methods. (B) Sensitivity comparison for the
training sets using all of the classification methods. (C) Specificity comparison for the training sets by using all of the classification methods. (D) Matthew’s correlation
coefficient comparison for training sets by using all the classification methods. (E) Accuracy comparison for the testing sets by using all of the classification methods.
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specificity (SP), and Matthews’ correlation coefficient (MCC)
(Matthews, 1975; Yu et al., 2015; Wei et al., 2017c; Zeng et al.,
2017b, 2019a; Jia et al., 2018; Hong et al., 2019; Shan et al., 2019;
Zhang et al., 2019a,b). These indicators are expressed as follows:

ACC =
TP + TN

TP + TN + FP + FN

SN =
TP

TP + FN

SP =
TN

TN + FP

MCC =
TP × TN − FP × FN

√
(TP + EN)(TP + FP)(TN + FP)(TN + FN)

where TP, TN, FP, and FN express the rates of true positives, true
negatives, false positives, and false negatives, respectively.

We also used receiver operating characteristic (ROC) curves
and the area under the curve (AUC) to judge the performance
of each classifier. The ROC curve is used to choose some better
classifiers that maximize the true positives and minimize the
false positives. Its abscissa is the false positive rate (FPR), and
its ordinate is the true positive rate (TPR). We plotted the ROC
curves in R. AUC is the area under the ROC curve. Generally, the
higher the AUC number, the better the classifier.

RESULTS AND DISCUSSION

t-SNE Visualization of the Feature
Extracted by 188D
To examine whether the high-level features extracted by 188D
had the prediction power and were generalizable, we visualized
the features for the training set by applying t-SNE (Figure 4). We
visualized 1750 proteins including 875 positive samples and 875
negative samples. All 10 training sets were visualized by t-SNE.
Each sample had 188 features. t-SNE mapped the 188 features
based on two principal features and minimized the information
loss during dimension. As the figure shows, the various protein
classes were almost separated clearly. The process suggested that
188D extracted representative features, and the samples were split
by using t-SNE. Therefore, the classifier exhibited a sufficient
performance based on these features.

Performance of Different Classification
Algorithms
To evaluate the performance of different classifiers on our
data set, we used 10-fold cross-validation to select the optimal
parameters in the training set by implementing WEKA. The
excellent parameters in RF were obtained and evaluated on the
test set. We repeated the entire process 10 times to ensure the
accuracy of the experimental results.

The performances of different classifier models on the
training set and testing sets are shown in Figure 5. For

FIGURE 6 | ROC curve to compare difference classifiers. S is the abbreviation
for sample.

the training set, we used the total prediction accuracy, SN,
SP, and MCC as the evaluation indicators. The weighted
average of these results was used. The accuracy is shown
in Figure 5A. The accuracy of RF was 0.8954, and the
accuracy of Naïve Bayes was only 0.7397. Surprisingly, for
the sensitivity indicator (Figure 5B), Naïve Bayes gave the
best performance, and RF was close behind. The highest
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sensitivity score was 0.9346, and the second sensitivity
score was 0.9189. Sensitivity measures the proportion of
positives that were correctly identified. This result suggests
that Naïve Bayes would recognize the positive samples.
However, its specificity score (0.5448) was very poor.
This result indicates that SVM occurred at the expense
of specificity for higher sensitivity. The specificity scores
of Naïve Bayes, IBk, J48, SVM, and RF were 0.5448,
0.7925, 0.8007, 0.8499, and 0.8718, respectively, as shown
in Figure 5C. Obviously, the RF classifier showed the best
specificity. According to the data shown in Figure 5D,
the MCC value of RF is higher than the MCC value
of the other algorithm. We achieved an MCC score of
0.7915 using the RF model. However, the lowest MCC
value was only 0.521.

Receiver operating characteristic curves provide a useful
approach to compare different classifiers. The performance of
all classifiers in ROC plots is shown in Figure 6. The five
classification models used in 10 randomly selected training
sets performed differently. RF covered the maximum AUC
in all training sets followed by Naïve Bayes, SVM, IBk,
and J48. All of the AUC values of RF exceeded 95% in
10 training sets.

The testing set was used to test the models mentioned above.
As the Figure 5E shows, except for Naïve Bayes, the accuracy
values of the remaining classifiers exceeded 80%, and the accuracy
score of RF reached 89%.

All of these indicators demonstrate that RF gives the best
performance, and Naïve Bayes is the worst classifier. The RF
classifier was considered the optimal classifier for prediction ABC
transporter proteins in the dataset.

On the basis of the analysis above, we may draw a conclusion
that the optimal strategy of identifying ABC transporter is using
188D as feature extraction method and RF as classifier.
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