
1  |   INTRODUCTION

The ability to efficiently respond to the environment according 
to current behavioral goals relies on the process of attention to 
prioritize information. The brain has a limited processing ca-
pacity and therefore, external stimuli and internal mental states 
compete for cognitive resources, for example by focusing on a 

specific location in space. According to our subjective expe-
riences, this struggle happens continuously: you can be so fo-
cused on a traffic light in order to hit the gas the moment it turns 
green, that you are totally oblivious to an acquaintance who 
waves at you from the sidewalk. We seem to attend to stimuli in 
a continuous fashion, but recent evidence suggests that, instead, 
our attention waxes and wanes in discrete, periodic cycles.
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Abstract
Sustained attention has long been thought to benefit perception in a continuous fash-
ion, but recent evidence suggests that it affects perception in a discrete, rhythmic way. 
Periodic fluctuations in behavioral performance over time, and modulations of behav-
ioral performance by the phase of spontaneous oscillatory brain activity point to an at-
tentional sampling rate in the theta or alpha frequency range. We investigated whether 
such discrete sampling by attention is reflected in periodic fluctuations in the decod-
ability of visual stimulus orientation from magnetoencephalographic (MEG) brain sig-
nals. In this exploratory study, human subjects attended one of the two grating stimuli, 
while MEG was being recorded. We assessed the strength of the visual representation 
of the attended stimulus using a support vector machine (SVM) to decode the orienta-
tion of the grating (clockwise vs. counterclockwise) from the MEG signal. We tested 
whether decoder performance depended on the theta/alpha phase of local brain activ-
ity. While the phase of ongoing activity in the visual cortex did not modulate decoding 
performance, theta/alpha phase of activity in the frontal eye fields and parietal cortex, 
contralateral to the attended stimulus did modulate decoding performance. These find-
ings suggest that phasic modulations of visual stimulus representations in the brain are 
caused by frequency-specific top-down activity in the frontoparietal attention network, 
though the behavioral relevance of these effects could not be established.
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Early indications of discrete sampling come from psycho-
physical experiments, showing that there are limitations on 
the number of temporal events one can perceive per unit of 
time. It turns out that when visual flashes are presented to a 
subject at a constant rate, the subject can only account for a 
maximum of 10–12 items/second, even when the presentation 
rate is higher (White & Harter, 1969). In another experiment, 
reaction time distributions were found to be multi-modal, 
with ~100 ms in between the peaks, indicating a periodicity 
of about 10 Hz (Venables, 1960). Given that attention has a 
facilitating effect on perception (Hawkins et  al.,  1990), the 
rhythmicity in reaction times suggests that attention might be 
discrete and rhythmic.

More recently, neuroscientific experiments have linked 
the rhythmic modulation of behavior to brain activity, 
in particular to the rhythmic synchronization of corti-
cal excitability in relation to visual attention (Fiebelkorn 
et  al.,  2013, 2018, 2019; Gaillard et  al.,  2020; Landau 
& Fries,  2012; Landau et  al.,  2015; Song et  al.,  2014; 
Spyropoulos et al., 2018). For example, Busch et al. (2009) 
found that the detection of a near-threshold stimulus was 
related to the phase of spontaneous rhythmic activity in the 
theta/alpha band (7–10 Hz) just before stimulus onset. In 
a similar experiment, Busch and VanRullen (2010) later 
found that this effect was only present when the subject ac-
tively attended the near-threshold stimulus. Thus, accord-
ing to these studies, the phase of the theta/alpha rhythm is 
inherently related to fluctuations in visual attention and, 
with that, behavior. Helfrich et al. (2018) pinpointed these 
top-down modulatory effects to the frontoparietal attention 
network, specifically the frontal eye fields (FEF), the in-
traparietal sulcus (IPS), and inferior and superior parietal 
regions.

The behavioral evidence that suggests that visual per-
ception might inherently be discrete is thus supported by 
neural evidence that ascribes these effects to the phase 
of spontaneous activity. However, it remains unclear why 
visual attention is so strongly related to theta/alpha activ-
ity. According to theoretical accounts of visual processing 
and attention (Haegens et  al.,  2011; Jensen et  al.,  2014; 
Klimesch, 2012), these (particularly alpha) rhythms priori-
tize input by inhibiting neural processing. In short, neuronal 
firing is inhibited at oscillatory peaks, but once inhibition 
ramps down (i.e., in the downgoing flank and trough of 
the oscillation), visual representations will activate accord-
ing to their excitability. Alternatively, theta rhythms could 
organize brain activity into alternating states of sensory 
sampling at behaviorally relevant locations and moving 
the focus of attention to another location through saccades 
(Fiebelkorn & Kastner, 2019).

Moreover, there are some studies that question the role 
of alpha power and/or phase in perceptual sensitivity alto-
gether (Antonov et al., 2020; Benwell et al., 2017; Ruzzoli 

et al., 2019; Van Diepen et al., 2019), by highlighting lim-
itations and potential confounds in the literature on this mat-
ter (Van Diepen et al., 2019), questioning the size of these 
effects (Ruzzoli et  al.,  2019), or providing evidence for a 
relation between alpha power and perceptual awareness but 
not visual sensitivity (Benwell et al., 2017). In case the theta/
alpha phase does, indeed, modulate perceptual sensitivity, we 
would expect the input gain of incoming stimuli to be modu-
lated accordingly. We thus investigated whether the strength 
of a stimulus’ representation in brain activity shows periodic 
fluctuations.

Developments in the analysis of neuroimaging data have 
resulted in the ability to decode mental states from non-in-
vasive measurements (Haynes & Rees,  2006). This has 
been particularly successful in the visual domain in both 
fMRI and M/EEG (van de Nieuwenhuijzen et  al.,  2013; 
Zafar et  al.,  2015). The high temporal resolution of M/
EEG enables us to ask questions about the temporal evo-
lution of visual presentations using multivariate pattern 
analysis (MVPA; Cichy et al., 2015; Pantazis et al., 2018; 
Ramkumar et al., 2013). In order to investigate whether the 
strength of visual representations in brain activity shows 
periodic fluctuations, in this exploratory study we decoded 
visual stimulus information from MEG activity as a func-
tion of the instantaneous phase of the ongoing activity. 
Human subjects participated in a spatial attention task, 
while MEG was being recorded. The visual stimuli con-
sisted of oriented gratings, with two possible orientations. 
If the representations of these stimuli are activated only 
in distinct time windows as a result of discrete attentional 
sampling, we expect the decoding performance to fluctuate 
accordingly, with a dependency on the theta/alpha phase. 
Because the early visual cortex is most sensitive to oriented 
gratings (Hubel & Wiesel,  1962), this modulating signal 
was expected to be present there. Alternatively, the modu-
latory signal could come from the frontoparietal attention 
network, given its putative role in attention (Buschman & 
Kastner,  2015) and evidence that points to this network 
in the phasic modulation of behavior (Busch et al., 2009; 
Helfrich et al., 2018).

2  |   MATERIALS AND METHODS

2.1  |  Subjects

Ten healthy volunteers participated in this study, of which 
three male and seven female. Their age range was 19–27 
(M ± SD: 24 ± 2.3). All subjects had a normal or corrected-
to-normal vision, and all gave written informed consent 
according to the declaration of Helsinki. This study was ap-
proved by the local ethics committee (CMO region Arnhem/
Nijmegen) and conformed to the Declaration of Helsinki.
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2.2  |  Experimental design

2.2.1  |  Stimuli

The experimental task was programmed in MATLAB (2020, 
MathWorks, RRID: SCR_001622) using Psychophysics 
Toolbox (Brainard & Vision, 1997), RRID: SCR_002881). 
All stimuli were presented against a black background 
(Figure 1). A fixation cross (1.8 visual degrees (°)) was pre-
sented for a baseline period (800 ms), after which one of the 
horizontal arms widened to act as a spatial cue (800  ms). 
Then two sinusoidal gratings (3.2°) appeared on the lower 
part of the screen, one in either hemifield. The gratings were 
drifting upwards (1.33 cycles per degree, drift rate 1 Hz) and 
could be oriented clockwise (CW, 45°) or counter-clockwise 
(CCW, 135°). After a variable stimulus duration (0.5–1.5 s) 
one of the gratings rotated clockwise or counterclockwise 
with a variable rotation angle. The gratings then remained 
drifting for 100  ms, after which a question mark was pre-
sented to indicate the response window (max. 1,200 ms).

2.2.2  |  Experimental equipment

Stimuli were presented by back-projection onto a semi-trans-
lucent screen (width 48 cm) by an Eiki LC-XL100L projector 
with a refresh rate of 60 Hz and a resolution of 1,024 × 768 
pixels. Subjects were seated at a distance of ~76  cm from 
the projection screen in a magnetically shielded room. MEG 
was recorded throughout the experiment with a 275-chan-
nel axial gradiometer CTF MEG system at a sampling rate 
of 1,200  Hz. In addition, the subject's gaze direction and 
pupil size were continuously recorded using an SR Research 
EyeLink 1000 eye-tracking device (RRID: SCR_009602) at 
1,000 Hz and resampled to 1,200 Hz. This resulted in three 

extra channels that were saved together with the MEG data: 
the horizontal and vertical gaze position and pupil diameter.

Head position was monitored in real-time during the ex-
periment by head-positioning coils at the nasion and left and 
right ear canals of the subject (Stolk et al., 2013). Subjects 
were adjusted to the starting position of the first session at 
the start of the next session. Additionally, subjects read-
justed to the original position when the head position devi-
ated more than 5 mm from it. Behavioral responses during 
the MEG session were recorded using a fiber optic response 
pad (FORP). In addition to the MEG recording, anatomical 
T1 scans of the brain were acquired with one of the 1.5/3 T 
Siemens MRI systems present at the facility (Siemens). In 
order for the co-registration of the MEG and MRI datasets, 
the scalp surface was mapped using a Polhemus 3D electro-
magnetic tracking device (Polhemus).

2.2.3  |  Procedure

The experiment contained three 1-hr MEG sessions per sub-
ject. Each session consisted of a maximum of 10 blocks of 80 
trials or until the end of the session, with a self-determined 
break in between the blocks. Subjects were instructed to keep 
their head as still as possible and, preferably, to blink at the 
end of every trial (see Figure 1 for trial timeline). Subjects 
had to fixate at the fixation cross at all times and pay covert 
attention to the cued grating, instructed by the fat arm of the 
fixation cue. Both gratings could either have a clockwise or 
counterclockwise orientation and were presented for either 
0.5 (10%), 1.0 (80%), or 1.5 (10%) seconds. Only the 1s trials 
were of interest, the other timings functioned to exclude the 
possibility that the subject would adapt their attention only 
after a fixed period following the stimulus onset. Then one of 
the gratings (cued grating in 80% of 1-s trials) rotated either 

F I G U R E  1   Trial timeline. Subjects 
had to look at the center of a fixation cross 
throughout the trial. After a baseline period, 
a spatial cue appeared, indicating the target 
hemifield for covert visuospatial attention. 
Then two oriented, drifting gratings were 
presented, after which the rotation direction 
of one of them had to be indicated with a 
button press. Semi-transparent arrows in the 
gratings indicate the direction of movement 
of the drifting grating

   | van ES Et al. 3193

https://scicrunch.org/resolver/RRID:%20SCR_001622
https://scicrunch.org/resolver/RRID:%20SCR_002881
https://scicrunch.org/resolver/RRID:%20SCR_009602


clockwise or counterclockwise. The amount of rotation was 
adjusted online throughout the experiment such that the per-
formance level would be at 80% for all validly cued, 1-s trials, 
and was initiated at 1.5°. Subjects had to indicate the rotation 
direction with a button press of the index finger (CW: right 
index finger; CCW: left index finger). If the subject was too 
slow (i.e., slower than 1,200  ms) the question mark in the 
response window turned red for 100 ms, and a new trial was 
initiated. All trials were counterbalanced regarding grating 
orientation, cue validity, and stimulus presentation time, and 
trial order was randomly permuted per session.

2.3  |  Data analysis

All analyses of MEG data were executed in MATLAB (2020, 
MathWorks, RRID: SCR_001622) using the FieldTrip tool-
box (Oostenveld et al., 2011; RRID: SCR_004849) and cus-
tom-written code. Anatomical T1-scans were processed with 
SPM8 (Penny et al., 2011; RRID: SCR_007037), FreeSurfer 
(RRID: SCR_001847), and HCP's Connectome Workbench 
(RRID: SCR_008750), and MATLAB.

2.3.1  |  MEG preprocessing

MEG data were preprocessed for each session separately. 
First, excessively noisy channels and trials were removed 
from the data by visual inspection, including trials containing 
SQUID jumps and muscle artifacts. Similarly, eye-tracking 
data were inspected to remove trials containing eye blinks 
or saccades in the period [−1, 1] seconds relative to stimulus 
onset. The data were then demeaned and high pass filtered 
at 0.1  Hz using a finite impulse response windowed sinc 
(FIRWS; Widmann, 2006) filter. Additionally, line interfer-
ence at 50 Hz was removed using a discrete Fourier trans-
form (DFT) filter, as well as its harmonics at 100 and 150 Hz. 
Signals related to cardiac activity or eye movements were 
manually identified and removed using independent compo-
nent analysis (ICA) with FastICA (Gävert et al., 1996) and 
visual inspection. This was performed prior to the removal of 
trials containing residual eye movements and blinks. Finally, 
the data were downsampled to 200 Hz. Only those trials that 
contained a valid cue and received a correct response were 
considered for further analyses. All trials 0.5 or 1.5 s duration 
(stimulus onset to stimulus change) were also disregarded 
(i.e., only trials of 1.0 s duration were considered).

2.3.2  |  MRI preprocessing

MRI data were co-registered to the CTF coordinate sys-
tem using the head-positioning coils and the digitized scalp 

surface. Volume conduction models of the head were cre-
ated using a segmentation of the anatomical image, with 
SPM8. Freesurfer and Connectome Workbench were used 
to construct source models, with dipole positions positioned 
on a cortically constrained surface with approximate 6 mm 
spacing, containing 15,684 dipole locations. Subsequently, 
forward models were computed from individuals’ structural 
MR images using a single-shell volume conduction model 
(Nolte, 2003).

2.3.3  |  Time-frequency analysis

Time-frequency resolved power was estimated for the ini-
tial exploration of the data. This was performed separately 
for low (2–30 Hz) and high (30–80 Hz) frequencies. First, 
the data were transformed into synthetic planar gradients 
(Bastiaansen & Knösche, 2000) and padded to 4 s. For low 
frequencies, a Hanning tapered sliding time window of 
500 ms was slid over these data in steps of 100 ms, from −1.0 
to 1.0  s relative to stimulus onset, resulting in a frequency 
resolution of 2 Hz. For high frequencies, DPSS multi-tapers 
were used with a sliding time window equal to five cycles for 
each frequency and 50 ms steps, 4 Hz frequency resolution, 
and frequency-specific smoothing (20% of the frequency 
value). After spectral decomposition synthetic planar gradi-
ents were averaged to form a single spectrum per sensor.

High-frequency time-frequency spectra are plotted rel-
ative to the average power in the baseline. Low-frequency 
time-frequency spectra are plotted as the Attentional 
Modulation Index (AMI), the relative increase in attend left 
versus attend right trials:

The lateralization of the AMI was quantified as the 
Lateralization Index (LI): the difference between selected left 
and right occipital channels (i.e., channels with labels ML/
RO 11, 22, 23, 31, 32, 33), in the [−600 –200] ms, [8 13] Hz 
window:

2.3.4  |  Virtual channel of induced gamma-
band activity

In order to bin data according to the phase, a phase-provid-
ing signal is required. Since gamma power is closely related 
to active stimulus processing (van Es & Schoffelen, 2019; 
Fries,  2015; Schroeder & Lakatos,  2009), the location in 
the brain with the maximum gamma power increase can 
be used as a central location for stimulus processing. In 

(1)AMI = 100% ×

Powerattend left − Powerattend right

Powerattend left + Powerattend right

.

(2)LI = AMIchannels left − AMIchannels right.
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order to estimate this location for each subject individually, 
first the gamma center frequency was estimated as follows. 
A 600  ms window, padded to 1  s, was used to estimate 
the center frequency; right before stimulus onset for the 
baseline estimate, and from 400 to 1,000 ms after stimu-
lus onset for the stimulus-induced estimate (excluding the 
ERF in the first 400 ms). Power was estimated using a fast 
Fourier transform (FFT) and a Hanning taper between 30 
and 100 Hz, with a frequency resolution of 1 Hz. The rela-
tive power increase from baseline was manually inspected 
in order to find the local maximum in posterior channels, 
from which the gamma band was extracted (see Figure S1 
for an example of a representative subject). The amount 
of smoothing was then defined as the range of the gamma 
band divided by two, and the center frequency as the me-
dian of the gamma band.

Another FFT (on the 1  s data) on the subject's individ-
ual gamma center frequency was used to inform a Dynamic 
Imaging of Coherent Sources (DICS) beamformer (Gross 
et al., 2001). The amount of smoothing was tailored to the in-
dividual's bandwidth using DPSS tapers. Spatial filters were 
created for each of the dipole locations in a 3-dimensional 
grid, using the cross-spectral density (CSD) estimated from 
the baseline and stimulus data concatenated, and a regular-
ization of 100% of the mean sensor level power. This was 
performed for attend-left and attend-right trials together, and 
was performed separately for each session, after which sin-
gle-trial power in source space was concatenated over ses-
sions. Next, the two dipole locations (i.e., single points on 
the cortical surface) were selected, one for each hemisphere, 
that showed the largest increase in gamma power relative to 
baseline (i.e., the dipole location with the highest T-value re-
sulting from a t test). Spatial filters for the time domain were 
estimated with a Linearly Constrained Minimum Variance 
(LCMV; Van Veen et  al.,  1997) beamformer for these two 
locations.

First, the time domain data were baseline corrected based 
on the 100 ms before stimulus onset. The data from 100 ms 
before to 1,000 ms after stimulus onset were used to estimate 
the covariance, and spatial filters were created using a regu-
larization of 100% of sensor-level power.

2.3.5  |  Brain-wide cortically constrained 
anatomical parcels

Source modeling can be used to increase the signal to noise 
ratio of a particular signal of interest and improve spatial 
consistency over subjects. Without any dimensionality re-
duction, this can lead to inefficiently large search space. 
Therefore, brain-wide time domain data were first modeled 
on cortically constrained meshes of dipole positions using 
an LCMV beamformer and then grouped in 374 parcels 

based on an anatomical atlas (Conte 69 atlas, Van Essen 
et al., 2012), as described in van Es and Schoffelen (2019). 
This was performed separately for each session and concat-
enated afterward.

2.3.6  |  Phase estimation

Phase time courses were estimated from either the virtual 
channel based on the location of maximum gamma power 
increase (see Section 2.3.4) or the anatomically defined cor-
tical parcels. The epoched data were padded to 4 s and for 
each frequency-of-interest, a Hanning tapered sliding time 
window was slid over the data with steps of 5 ms. The time 
window was equal to two cycles of the frequency-of-interest. 
The phase (φ) was estimated by taking the four-quadrant arc-
tangent (tan−1) of the imaginary part and the real part of the 
Fourier coefficients (X):

2.3.7  |  Decoding of stimulus orientation

All decoding analyses were performed separately for the 
attend-left, and attend-right conditions. The goal of the de-
coding analysis was to decode the orientation of the attended 
grating (clockwise or counterclockwise) from the MEG or 
eye tracker data. First, the data were selected from 400 to 
1,000 ms after stimulus onset. The first 400 ms after stimu-
lus onset were discarded in order not to be biased by supe-
rior decoding during the stimulus onset response. All time 
points of interest (i.e., belonging to a particular phase bin, see 
Section 2.3.8) were selected and concatenated, such that each 
time point functioned as an observation. Specifically, each 
time point of every trial was used as an observation and was 
assigned to a phase bin based on the estimated phase time 
course. The data in each phase bin thus acted as an aggregate 
of phase-specific signals within the 400–1,000 ms post-stim-
ulus-onset window.

In order to increase SNR, assuming that the orienta-
tion-specific information in the signals can be general-
ized over observations, groups of five randomly chosen 
observations (i.e., belonging to the same phase bin) with-
out replacement were averaged together to create pseu-
do-observations (Guggenmos et  al.,  2018). The resulting 
data were pre-whitened and reduced in dimensionality, by 
applying singular value decomposition (SVD) to the de-
meaned data, and multiplying the channel-level data with 
those vectors that explain at least 99% of the variance in 
the data. The trials with different orientations (clockwise/
counterclockwise) were then split up and equalized in terms 
of the number of observations. After this preprocessing, 

(3)� = tan−1

(

imag(X)

real(X)

)

.
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a support vector machine (SVM) with a linear kernel and 
5-fold cross-validation was used to distinguish between the 
two stimulus orientations. Note that each observation (i.e., 
trial-time point) was only used for a single pseudo-obser-
vation and in only onefold.

In order to reduce the variance in the accuracy estimate, 
we repeated the procedure 100 times, each time averaging a 
different subset of observations to obtain the pseudo-obser-
vations. In order to obtain a data-driven estimate of change 
accuracy for each of the subjects, we similarly estimated 
the chance accuracy for 100 repetitions of randomly la-
beled data.

In case of assessing whether we could decode orienta-
tion from the MEG data, all data were assigned to the same 
(phase) bin. In case of assessing phasic modulations in de-
coding performance, the approach above was repeated for 
each of 18 phase bins independently. Within a phase bin, 
the SVM was repeated 20 times, where every time different 
subsets of observations were averaged. This was performed 
to reduce the variance in decoding accuracy caused by the 
creation of specific pseudo-observations (analogous to the 
100 repetitions performed for the raw decoding accuracy, 
described in the previous paragraph). The overall decoding 
performance was the average accuracy over folds and tri-
al-averaging repetitions. A null distribution was estimated 
by circularly shifting the phase time courses of every trial at 
random from anything between −2π and 2π before phase bin-
ning the data. This way, the phase binning of the raw data was 
randomized without breaking the temporal (autocorrelation) 
structure within a trial. This was repeated 100 times to cre-
ate a null distribution. Note that in the parcel-wise analysis, 
the procedure described above was repeated for every parcel 
of interest. Importantly, for every parcel decoding relied on 
the same data (i.e., pre-whitened sensor space data), but the 
assignment of each observation to a phase bin relied on the 
parcel's phase time course.

A similar approach was used in a control analysis that 
tested whether above chance MEG decoding was still pos-
sible when taking differences in gaze into account. The 
data were preprocessed as described above and the chan-
nels from the eye tracker were subsequently used in 10-fold 
cross-validation. From the training data in each fold, the 
one trial in each class that was most informative in training 
the SVM was removed, after which another decoding took 
place. These steps were repeated until orientation decod-
ing based on eye tracker data was at chance level (evalu-
ated with a t test over 10-folds vs. scrambled class labels). 
When the performance was at chance level, the same trials 
(i.e., those that were most discriminative in the eye tracker 
data) were removed from the MEG data. The MEG data 
were then used in subsequent decoding, and the accuracy 
was tested against the randomized version with a t test over 
10-folds.

2.3.8  |  Phasic modulation of decoding 
performance

The dependency of decoding performance on the phase of a 
particular frequency was taken as a measure for the strength 
of periodic fluctuations of visual representations. For this, ei-
ther the virtual channels based on maximum gamma power 
increase were used to provide the phase time course, or the 
individual anatomical parcels were used. Based on these 
phase time courses, each data point was assigned to any of 
18 equidistant phase bins. The decoding approach described 
above was applied independently for each bin, resulting in 18 
accuracy scores. To this, a cosine function of one cycle was 
fitted, with amplitude and phase as the two free parameters, 
estimating the strength of the phasic dependence and the op-
timal decoding phase. This procedure was repeated for every 
frequency of interest, each time using the phase time course 
of one particular frequency to bin the data.

2.3.9  |  Phasic modulation of behavioral 
performance

We assessed whether behavioral performance, as quantified 
by the reaction time, depended on the phase of a particular 
frequency at the moment just before the stimulus change (to 
which the subjects had to respond) occurred. First, we esti-
mated the phase based on a window with the size of two cy-
cles and centered on the time point one cycle before stimulus 
change (i.e., target onset), such that it was not affected by the 
stimulus change. We then binned phase angles into 18 phase 
bins and computed the average reaction time across all trials 
within a 90° window centered on every phase bin (similar to 
Helfrich et al., 2018). Finally, a cosine function was fitted to 
the set of average reaction time as a function of phase bin, 
of which the amplitude indicated the strength of the phasic 
modulation. This was performed for every frequency of in-
terest and using every anatomical parcel's time course as a 
phase-providing signal. In order to create a null distribution 
of cosine fit amplitude scores, the same approach was re-
peated 100 times after shuffling the reaction time over trials.

2.4  |  Statistical analysis

2.4.1  |  Decoding of stimulus orientation

The average decoding accuracy over 100 estimated for the 
observed data (i.e., in which in every estimate different sub-
sets of trials were combined into pseudo-observations to 
increase SNR) was compared with the average decoding ac-
curacy of 100 accuracy estimates including the randomiza-
tion of class labels. These were subjected to a nonparametric 
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permutation test at the group level, with 1,024 permutations, 
and an alpha of 0.05, corrected for the number of contrasts 
(attend left trials, attend right trials, decode attended stimu-
lus, decode unattended stimulus).

2.4.2  |  Phasic modulation

The amplitude of the cosine fit for observed data and for the 
100 first-level random permutations (i.e., in which phase-
binning was randomized) was subjected to second-level 
non-parametric permutation tests with clustering across fre-
quencies at the group level (based on 1,000 permutations; 
Maris & Oostenveld, 2007). In short, a null distribution of 
amplitudes was created for every frequency by averaging 
one sample from the first-level random permutation distri-
bution over subjects. From this distribution, a threshold is 
established based on the critical alpha level (0.05). The test 
statistic (i.e., cosine-fit amplitude) of neighboring frequen-
cies that exceed the threshold are clustered and their statistic 
is summed. This is performed both for the observed data and 
for all random permutations. A p-value is derived by compar-
ing the largest summed statistic from the observed and ran-
dom data, and counting the occasions in which the observed 
test statistic was larger than the random statistic. In case of 
testing phasic modulation on brain-parcels, statistical evalu-
ation was restricted to a total of 36 parcels, spanning the left 
and right FEF and parietal cortex (Figure 2). Note that in this 
case the p-values were corrected for multiple comparisons 
for both frequency and parcels, but clusters were only formed 
over frequencies, not over space.

2.4.3  |  Post hoc Bayesian statistics

The explorative nature of the current study and the small sam-
ple size (N = 10) on which the results are based, make interpre-
tation of (non-) significant findings difficult. Non-significant 
results, in particular, are hard to interpret, because they do not 
distinguish between absence of evidence and evidence of ab-
sence. Therefore, we computed post hoc Bayes factors (BF) 
for statistically non-significant results. The Bayes factor is a 
ratio of the evidence in favor of H1 over the evidence in favor 
of H0. Bayes factors larger than 1 provide evidence in favor of 
H1, with values up to 3, between 3 and 10, and larger than 10 
providing anecdotal, moderate, and strong evidence. Similarly, 
the inverse scale applies to evidence in favor of H0 (Lee & 
Wagenmakers, 2013). Bayes factors were based on the vari-
ables or cluster-averages that resulted from the (cluster-based) 
permutation tests, using flat priors. Note that this results in in-
flated BFs, because they are based on a selection of the data in 
which the difference is largest.

3  |   RESULTS

Ten human participants were cued to covertly attend to one of 
the two gratings presented in each hemifield, while fixating 
on a cross in the middle of the projection screen (Figure 1). 
The subjects had to indicate the direction of change in the 
grating's orientation with a button press. The number of com-
pleted 1-s trials was 1956 on average (SD = 18.8).

Invalidly cued trials and trials containing artifacts were 
excluded, as well as one session from one subject, where be-
havioral performance was at chance level (i.e., 50%). This left 
on average 1,420 trials (SD = 207) for further analysis. The 
average behavioral performance in these remaining trials was 
87% (SD = 3.6%, CI = 85%–89%). The behavioral perfor-
mance of one subject was higher than average (95%) because 
the performance threshold was set at ~90% during the exper-
iment, instead of the usual 80%. Excluding incorrect trials, 
1,235 (SD = 186) trials were considered for further analysis.

As expected, behavioral performance for trials with a valid 
attentional cue was higher than on trials with an invalid cue 
(M ± SD = 76 ± 13%; CI = 67%–84%, t9 = 3.1, p = .013). 
There was no difference in reaction times (RT) between cor-
rect valid (M ± SD = 630 ± 96 ms, CI = 570–689 ms), and 
invalid (M ± SD = 623 ± 96 ms, CI = 564–683 ms) trials (t9 
= 1.9, p = .093).

3.1  |  Stimulus-induced power changes

In order to assess whether the experimental manipulation 
led to expected changes in brain activity, we conducted a 

F I G U R E  2   The regions of interest for the phasic modulation of 
decoding performance and reaction times included parcels in the left 
and right frontal eye fields (FEF) and parietal cortex 
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time-frequency analysis of power in channel space. In the 
low-frequency range (1–30 Hz), we expected differences in 
posterior alpha power (8–13 Hz) induced by the spatial at-
tention cue. Since alpha power is a proxy for the amount of 
inhibition in a brain region, it is expected to increase in the 
hemisphere ipsilateral to the attended hemifield, and to de-
crease contralateral to the attended hemifield. Figure 3 shows 
this as the attentional modulation index (AMI, i.e., the rela-
tive power difference between attend-left and attend-right 
trials), with B showing the topography of the alpha band, 
pre-stimulus onset AMI, and A and C showing the AMI 
over selected left/right posterior channels on the left and 
right panels, respectively. Indeed, during the presentation of 
the spatial cue (i.e., before the onset of the grating stimu-
lus), there is a hemispherical lateralization, with a relative 
increase in ipsilateral alpha power with respect to the cued 
hemifield and a decrease in contralateral alpha power. The 

Lateralization Index (see Methods 2.3.3) was calculated on 
the [−600 –200] ms and [8 13] Hz window, and was on av-
erage 10.4 (SD = 5.5, CI = 7.0–14). This lateralization was 
higher than chance, supported by a post hoc group analysis 
using a nonparametric permutation test (p < .001). Together 
with the superior behavioral performance in attended trials, 
this indicates that subjects successfully deployed covert spa-
tial attention to the cued hemifield.

In the high-frequency range (30–90  Hz), we observed 
an increase in band-limited gamma power, induced by the 
grating stimuli (Figure  3): a sharp rise in gamma power 
right after stimulus onset (0–200  ms) in occipital channels 
(M ± SD = 9.4 ± 8.5%, CI = 4.1%–15%; Figure 3d), with 
a sustained power increase (200–100  ms) of 1.4  ±  1.4% 
(M  ±  SD, CI  =  5.7%–23%) after 200  ms in the 45–65  Hz 
band (Figure  3e). Source modeling based on individual 
gamma center frequency (range 47–60  Hz) confirmed that 

F I G U R E  3   Stimulus induced changes. (a, c) Spatial cue (presented at −0.8 ms) induced attentional modulation in posterior alpha power, 
as indicated by the attentional modulation index (AMI). The AMI over frequency and time was averaged over selected left and right posterior 
magnetoencephalographic (MEG) sensors, respectively. (b) The topography of the AMI in the alpha band, in the pre-stimulus onset window. (d) 
The topography of the stimulus-induced gamma response; (e) the time-frequency response, averaged over selected occipital MEG channels 
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the induced gamma power increase originated in posterior 
brain areas, and the maximum induced gamma power was in 
the occipital cortex in all subjects (Figure 4).

3.2  |  Stimulus orientation can be decoded 
from the MEG signal

The accuracy of decoding stimulus information from the 
MEG signal is known to be the largest in the 0 to 250–
400  ms interval; i.e., when the event-related fields are 
strongest (ERF; Cichy et  al.,  2015; Pantazis et  al.,  2018; 
Ramkumar et  al.,  2013). This high decodability is most 
likely due to the stimulus onset locked transients, and be-
cause these transients are also highly phase-locked, they 
could confound our analysis of a phasic modulation of 
decoding accuracy. For this reason, all subsequent decod-
ing analyses excluded data in the time window of the main 
ERF components, and we only used data from interval 400–
1,000 ms after the onset of the stimuli. In order to test if 
these data were usable to test our hypothesis (which would 
rely on subsets of these data), we first decoded the stimulus 
orientation from the full 600 ms interval. As in all decoding 
analyses, this was performed separately for attend-left and 
attend-right trials. We could reliably decode the orientation 
of the attended stimulus from the MEG data (Figure 5) with 
an accuracy of 70% (SD = 1.8%, CI = 68.8%–71.1%) for 
attend-left trials, which is higher than expected by chance 
(non-parametric permutation test for observed vs. shuffled 
condition labels, p < .001). The mean accuracy for attend-
right trials was also 70% (SD = 1.8%, CI = 68.9%–71.2%, 
p <  .001). The orientation of unattended trials could reli-
ably be decoded too (unattend-left: accuracy = 70 ± 2.7%, 
CI = 67.9%–70.5%, p < .001; unattend-right: accuracy = 69 
± 2.1%, CI = 68.6%–72.0%, p < .001).

We ascribe these effects to the difference in the cortical 
processing of gratings with different orientations. However, 
an alternative explanation could be subtle, yet systematic 
differences in eye position and/or eye movements between 
conditions. This is because eye movements affect the MEG 
signal, and above chance, decoding could thus be a trivial 
result of eye movements (Thielen et  al.,  2019). Indeed, we 
were able to decode stimulus orientation with above-chance 
accuracy from just the eye tracker data (Figure 5), but the ac-
curacy was much lower than for the MEG data. The average 
accuracy was 53% for attend-left (SD = 1.8%, CI = 52.3%–
54.5%, p < .001) and 52% for attend-right trials (SD = 1.3%, 
CI = 51.4%–52.9%, p < .001). This indicates that there is a 
bias in gaze depending on the stimulus orientation. We con-
ducted a control analysis in order to exclude the possibility 
that the above-chance decoding of MEG data was exclusively 
a result of either eye movement induced artifacts, or because 
the visual stimulus ended up in different parts of the retino-
topic visual cortex as a consequence of differences in gaze. 
We trained an SVM to distinguish orientation based on only 
the eye tracker data and evaluated this at the single-subject 
level. Next, two pseudo-observations (i.e., average of five tri-
al-time points, see Section 2.3.7), one for each class, with the 
largest distance from the decision boundary, were removed. 
This was performed separately for each fold. After this, the 
remaining data were repartitioned into training/test data. This 
procedure was repeated until the accuracy over 10-folds did 
not surpass the chance level five times in a row. On average, 
the percentage of pseudo-observations that had to be removed 
from the data in order for the accuracy to drop to chance level 
was 3.3% (SD = 2.7%). The same trials were then discarded 
from the MEG data, which were subsequently used in another 
decoding analysis. The average decoding accuracy from the 
MEG data remained at 70% (SD = 2%) for both attend-left 
and attend-right trials, and did not statistically differ from the 

F I G U R E  4   Source of induced gamma 
activity. Stimulus-induced gamma power 
increase originated from occipital areas, 
mostly in V1–V2, and close to the midline. 
Maximum power increase for all subjects is 
denoted by white circles 

   | van ES Et al. 3199

www.wileyonlinelibrary.com


accuracy level before the removal of pseudo-observations. 
Table 1 in the Supporting Information lists the decoding per-
formance at the single-subject level. These results show that 
even when discarding the trials that are most discriminating 
based on eye movements, it is still possible to decode stim-
ulus orientation from MEG data with high accuracy. This 
indicates that the successful decoding of stimulus orienta-
tion in our data does not rely on differences in gaze or eye 
movements.

3.3  |  Visual representations are not 
periodically modulated by oscillatory activity 
in the visual cortex

Now that we established that it is possible to decode stim-
ulus orientation information from the MEG signal, we can 
look into fluctuations in decoding accuracy. Specifically, 
we hypothesized that decoding accuracy depends on the 
theta/alpha phase of ongoing activity in relevant brain areas. 
Specifically, we expected that the phase of brain activity in 
the regions where the stimulus is actively processed would 
influence decoding performance. Since gamma synchroniza-
tion is a proxy for stimulus processing, we used the location 
of the maximum increase in induced gamma power to pro-
vide the frequency-specific phase signal that might modulate 
decoding performance. All data (i.e., from either attend-left 
or attend-right trials) were binned according to 18 phase bins, 
and the orientation of the attended stimulus was decoded 
from the MEG data separately for each phase bin. This was 

performed independently for frequencies in the theta, alpha, 
and beta band (4–30 Hz), in steps of 1 Hz. Resulting from 
this analysis were 18 accuracy scores, one for each phase 
bin. A cosine function was fit to these scores to estimate the 
strength of phasic modulation (Figure 6a). This was tested 
against a permutation distribution in which the phases within 
a trial were shifted randomly, while keeping the autocorrela-
tion structure intact (see Section 2.3.7). In contrast to our hy-
pothesis, the phasic modulation in the observed data was not 
significantly larger than that of the permutation distribution. 
The largest effect in attend-left trials was present at 4  Hz, 
with an average modulation strength of 0.98% (SD = 0.43%, 
CI  =  0.71%–1.3%, p  =  .33, uncorrected, BF  =  0.36). 
There was also a peak at 11 Hz (M ± SD = 0.89 ± 0.52%, 
CI = 0.56–1.2; Figure 6b). The largest effect in attend-right 
trials was 0.93% (SD = 0.38%, CI = 0.69%–1.2%, p = .85, 
uncorrected, BF = 0.47) at 9 Hz (Figure 6c). Although the 
spectral shape of the modulation depth showed a peak in the 
alpha band in both conditions, the observed peaks were not 
statistically significant, and post hoc computed Bayes factors 
revealed anecdotal evidence in favor of H0, even when BFs 
are inflated because of the selection of the data in the cluster-
permutation test (see Section 2.4.3).

3.4  |  Activity in the frontoparietal network 
periodically modulates visual representations

While the phasic modulation in the previous results showed 
a peak in the alpha band, it was not significantly larger than 
that of the permutation distribution. The phasic modulation 
was estimated based on the phase in visual brain areas. It 
is still possible that visual representations are phasically 
modulated, but that the modulatory signal has a different 
origin. Some previous reports suggest that the modulatory 
effect of theta/alpha phase on behavior originates from 
areas in the frontoparietal attention network, especially 
the frontal eye fields (FEF) and parietal cortex (Busch 
et al., 2009; Fiebelkorn et al., 2018; Gaillard et al., 2020; 
Helfrich et al., 2018). To investigate this, we performed an 
additional set of analyses, now using as phase-defining sig-
nal source reconstructed activity from anatomically defined 
cortical parcels from FEF and parietal cortex, resulting in 
36 brain parcels (Figure 2) in 17 frequency bins (4–20 Hz). 
We explored whether the phase of the signals from these 
parcels and frequencies modulated decoding performance. 
Thus, the analysis strategy used before was now repeated, 
independently for each parcel and frequency, i.e., the phase 
time course was estimated on a single parcel and used for 
subsequent binning in the decoding procedure. We found 
that phasic modulation was higher than expected by chance 
in both attend-left and attend-right trials. In attend-left tri-
als, the right FEF most contributed to this difference at 

F I G U R E  5   Stimulus information of the attended stimulus can 
reliably be decoded from magnetoencephalographic (MEG) data (red) 
and, to a lesser extent, eye-tracking data (blue). Decoding was done 
separately for attend-left and attend-right trials. Violin plots display 
the probability density over subjects. The horizontal line denotes the 
group mean and the dots denote the individual subject accuracies. The 
semitransparent gray line shows the empirical chance level 

|   van ES Et al.3200

www.wileyonlinelibrary.com


17–20 Hz (M ± SD = 1.0 ± 0.42%, CI = 0.74% – 1.3%, 
cluster-corrected p = .002; Figure 7c). We made sure this 
was not driven particularly by the subject with the above-
average behavioral performance (i.e., due to a technical 
error, see Section  3.1), by repeating the group analysis 
while leaving out the subject in question. The results re-
mained significant.

Upon the exploration of the data, the mean modulation 
strength was found to be highest in the right FEF at theta fre-
quency (4 Hz, Figure 7a; M ± SD = 1.3 ± 0.67, CI = 0.92%–
1.7%), and in the right parietal cortex in the alpha band 
(8–11  Hz; Figure  7b; at 9  Hz, M  ±  SD = 1.0  ±  0.48%, 
CI = 0.70%–1.3%). In attend-right trials a cluster in the left 
FEF at 10–18 Hz mostly contributed to the significant differ-
ence (M ± SD = 0.98 ± 0.45%, CI = 0.36%–1.6%, p < .001; 

Figure  7e). The mean modulation strength was also rela-
tively high in the left parietal cortex in the theta band (4 Hz, 
Figure 7d; M ± SD = 1.4 ± 0.70, CI = 0.97%–1.8%) and alpha 
band (8–12 Hz; Figure 7f; at 10 Hz, M ± SD = 1.0 ± 0.53, 
CI = 0.7%–1.4%). The optimal phases for decoding differed 
between subjects, but were to a large part consistent over 
parcels and frequencies (see Figures S2 and S3). Note that 
phase polarities are ambiguous: bimodal distributions with 
a 180-degree phase difference between adjacent parcels can 
occur due to the polarity ambiguity in the principal com-
ponent analysis (PCA) in the construction of parcel time 
courses (see Methods 2.3.5). The subjects with the largest 
modulation effects (Figure 7) seem to have a more consistent 
optimal phase within neighboring parcels and frequencies 
(for example, compare the modulation strength of subjects 

F I G U R E  6   Phasic modulation of decoding performance. (a) Schematic of the phasic modulation depth, i.e. the amplitude of a cosine fitted 
to the decoding performance over phase bins. (b and c) Modulation depth as a function of frequency for attend-left (b) and attend-right (c) trials. 
Observed data in red; random data in grayscale (mean and standard deviation over subjects). Individual effect sizes at the spectral peak are shown 
on the right of the spectrogram, with the group average in black
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S1 (“good” subject) and S4 (“bad” subject) in Figure 7d and 
their phase distributions in Figure S3a), which makes it less 
likely that phasic modulation in these regions is purely noise.

3.5  |  No support for behavioral relevance of 
phasically modulated visual representations

Having established that the phase of ongoing theta/alpha 
activity in FEF and parietal cortex modulates the strength 
of cortical stimulus representation, we next investigated 

whether the phase of these signals modulates behavioral 
performance as well. This has been reported in other studies 
(Helfrich et  al.,  2018). Specifically, we tested whether the 
phase in these areas at the moment before stimulus change 
(i.e., to which subjects had to respond) affected reaction 
times. A cluster-based permutation test within the same ROIs 
as before revealed no statistically significant phasic modula-
tion of reaction times: for attend-left trials, p = .19 (corrected; 
M ± SD = 10.6 ± 5.1 ms, CI = 7.4–14 ms; BF = 3.5); for at-
tend-right trials, p = .48 (corrected; M ± SD = 9.0 ± 4.7 ms, 
CI = 6.0–12 ms; BF = 2.1). Again, note that the post hoc 

F I G U R E  7   Phasic modulation of decoding performance in the frontoparietal network. The phasic modulation in attend-left trials (a–c), and in 
attend-right trials (d–f) is shown for all parcels, but only the parcels in the ROIs were tested statistically (see Figure 2) as described in Section 2.4.2. 
In a the anterior (A) to posterior (P) axis and left (L) and right (R) hemispheres are denoted. Spectrograms show the group-average modulation 
strength in the selected parcel in the green circle (red) and the average expected by chance (black). Shading reflects SD across subjects. Individual 
effect sizes at the spectral peak are shown on the right of the spectrogram, with the group-average in black 
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BFs are inflated because they are based on a selection of the 
data in which the difference is strongest. Upon the explora-
tion of the data, the following observations were made (see 
Figure 8). In attend-left trials, the mean phasic modulation 
showed a peak in the alpha band in a right parietal parcel 
(at 9 Hz), with a mean modulation strength over subjects of 
9.8 ms (SD = 4.7 ms, CI = 6.9–13 ms; Figure 8a, left), and 
in the left FEF (at 13 Hz), with a mean modulation strength 
of 11.3 ms (SD = 5.7 ms, CI = 7.7–15 ms; Figure 8a, right). 
In attend-right trials, the modulation strength did not show 
clear peaks, but was highest in the right parietal cortex in the 
alpha band (13 Hz), with a mean modulation strength over 
subjects of 9.2 ms (SD = 4.9 ms, CI = 6.2–12 ms; Figure 8b). 
An additional post hoc analysis revealed no statistically sig-
nificant phasic modulation on behavioral accuracy (for attend 
left trials: M ± SD = 2.3 ± 1.1%, CI = 1.6%–3.0%, p = .75; 
BF  =  3.5, and attend right trials: M  ±  SD  =  1.9  ±  0.9%, 
CI = 1.3%–2.5%, p = .46; BF = 1.3).

Our results provide first, moderate evidence that stimulus 
information can be decoded with higher accuracy at particular 
phases of the theta/alpha rhythm in the frontoparietal network 
contralateral to the attended hemifield. This is consistent with 
the idea that visual perception is not continuous but to some 
extent discrete. The relevance of this phase for behavior (i.e., 
the response speed) was not supported by the current data.

4  |   DISCUSSION

In this study, we investigated the presence of rhythmicity 
in visual representations during sustained spatial attention. 
Psychophysical and neural evidence suggest that (visual) per-
ception is not continuous but discrete, as a consequence of 
discrete rhythmic attentional sampling. We reasoned that if 
this is the case, neural representations are also expected to 
fluctuate, i.e., the strength of a neural representation should 
depend on the phase of ongoing activity. This was tested by 
decoding stimulus orientation from human brain signals, as 
a function of the phase of the ongoing activity. We found 
that oscillatory activity in the visual cortex does not phasi-
cally modulate decoding accuracy. However, the frontal 
eye fields (FEF) and parietal cortex contralateral to the at-
tended stimulus did phasically modulate decoding accuracy 
in the theta and alpha bands. The phasic modulation of visual 
representations is in line with discrete perceptual sampling 
during attention, though it is unclear at which step of visual 
processing occurs. The behavioral relevance of the phase 
of ongoing activity in this network was not confirmed, but 
trends in the phasic modulation of reaction times were in line 
with such modulatory effect. The current study was of lim-
ited sample size (N = 10), which could have affected the re-
sults. Therefore, both significant and nonsignificant p-values 

F I G U R E  8   Similar to Figure 7, but now showing the phasic modulation of reaction times. (a) Two peaks in the modulation strength 
for attend-left trials, in the right parietal cortex in the alpha band (left), and the left frontal eye fields (FEF) in the alpha band (right). (b) The 
modulation strength for attend-right trials was highest in the right parietal cortex in the alpha band. Note that these results did not survive multiple 
comparison correction
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should be interpreted with caution, and these results should 
be confirmed in a study with larger sample size.

The phasic modulation of decoding performance was 
mostly present in the theta and alpha bands. These effects 
were band-limited and in no occasion did the effect extend 
to the entire investigated frequency range. This suggests that 
the above chance modulation effects were not a consequence 
of a bias in the permutation test or of other confounding ef-
fects. Effects in these frequency bands are also in line with 
the perceptual sampling literature in which found correla-
tions between behavioral performance and the phase of ongo-
ing activity were found. Busch et al. (2009) showed that the 
phase of the frontal theta/alpha rhythm (6–12  Hz) predicts 
whether a threshold stimulus is perceived or not. Similarly, 
Fiebelkorn et  al.  (2018) and Helfrich et  al.  (2018) showed 
that perceptual outcome depends on the theta phase in the 
frontoparietal network (including FEF and parietal areas) and 
that this is accompanied by increases in cortical excitability 
during “good” theta phases. From the current study, it is not 
clear whether phasic modulation in the theta and alpha band 
reflect the same or different neural processes, but evidence 
from the phasic modulation of behavioral performance sug-
gests the presence of either rhythm might be task-dependent 
and rely on the number of objects that have to be monitored 
(Fiebelkorn et al., 2013; Holcombe & Chen, 2013; Landau 
& Fries,  2012). This would mean that the theta and alpha 
band effects are not necessarily related to different processes 
per se, but rather to temporal limits of attentional selec-
tion. Alternatively, Fiebelkorn and Kastner and colleagues 
(Fiebelkorn & Kastner,  2019; Fiebelkorn et  al.,  2018) pro-
posed that the two frequency bands do represent different 
processes. In short, frontal theta organizes two rhythmically 
alternating attentional states, one state with enhanced visual 
processing, accompanied by an FEF dominated beta increase 
and a LIP dominated gamma increase, and one state with at-
tenuated sensory processing, possibly in the anticipation of an 
attentional shift. This second state would be accompanied by 
an increase in alpha activity in LIP and a decrease in gamma 
activity. The FEF might thus specifically be involved in (the 
attenuation of) exploration of space, while the parietal cor-
tex modulates processing at the attended location. Gaillard 
et  al.  (2020) found support for this in a study with a cued 
target-detection task in macaques. They successfully decoded 
the location of the attentional spotlight from the prefrontal 
cortex (PFC) and observed that decoding accuracy fluctuated 
with 7–12 Hz rhythmicity.

While based on the current study alone we cannot disen-
tangle the task-dependent involvement of theta and/or alpha 
rhythms for attentional processes, we did observe slight dif-
ferences in the spatial locations of the theta and alpha ef-
fects. In attend-left trials, phasic modulation was strongest 
in the FEF in the theta band, and in the parietal cortex in the 
alpha band, in line with the proposed model by Fiebelkorn 

and colleagues. In attend-right trials, phasic modulation was 
strongest in the parietal cortex in the theta band, and parietal 
cortex and FEF in the alpha band, which fit their predictions.

Future research should thus disentangle the different con-
tributions of the frontal and parietal cortex in rhythmic sam-
pling. For example, one could conceive of an experiment in 
which the setup of the Gaillard et al. is combined with the 
approach in the current study. If it is possible to decode stim-
ulus information and the position of the attentional spotlight 
on the same trial, we would expect both to be modulated by 
theta/alpha phase, but they would rely on different origins 
(e.g., parietal vs. prefrontal cortex) or have different optimal 
phases.

We did not observe a phase-dependent modulatory 
effect when using visual cortical activity as the phase 
delivering signal, which is at odds with the previous lit-
erature. Landau et al. (2015) found that that the sampling 
of two behaviorally relevant stationary grating stimuli oc-
curred at 4 Hz each and that this modulation was present 
at cortical locations with maximal visually induced gam-
ma-band activity. The current study used a very similar 
experimental paradigm (albeit with drifting instead of 
stationary gratings, and a different attentional manipula-
tion), and it is likely that the distributed activity in early 
visual areas played a major part in successfully decoding 
stimulus orientation. Primary visual cortex is most sensi-
tive to local contrast differences like oriented lines (Hubel 
& Wiesel, 1962), and empirical and modeling work from 
Cichy et  al.  (2015) confirmed it is likely that orientation 
information is decoded from this region with MEG (Stokes 
et  al.,  2015). The discrepancy in the locus of the phasic 
modulatory signal requires further investigation. It should 
especially be studied whether perceptual sampling in visual 
areas is always under control of the frontoparietal atten-
tion network, or whether it can be controlled locally. Some 
evidence for the former comes from Popov et  al.  (2017), 
who found that processing in the visual cortex (as mea-
sured by gamma power) was a function of the attentional 
modulation of posterior alpha power, while the latter was 
Granger caused by the FEF. Activity in the FEF itself was 
not modulated by attention. Consequently, in the current 
study as well, visual processing might be modulated by the 
FEF without clear changes in spectral power in that region 
(Figure 2). There are a number of potential reasons why the 
relationship between theta/alpha phase and decoding accu-
racy was not observed from a source in the visual cortex. 
It could be that the induced visual cortical activity reflects 
multiple generators of oscillatory activity with heteroge-
neous phase relationships (Maris et  al.,  2016), thus pro-
hibiting the estimated phase values to actually reflect the 
physiologically relevant phase. This possible explanation 
is supported by the presence of multiple generators of pos-
terior alpha with different sensitivities to different visual 
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locations (Popov et al., 2019). Another option is that visual 
representations might not be modulated in the early visual 
cortex, but in downstream visual areas. This is in line with 
evidence from fMRI studies: Sprague and Serences (2013) 
showed that attention increases the amplitude of stimulus 
representations especially in higher visual areas. Moreover, 
orientation-selective representations are not only present in 
visual areas, but also in parietal and frontal areas includ-
ing the FEF, and these areas are all modulated by attention 
(Ester et al., 2016).

We did not find any significant modulatory effects of 
neural oscillatory phase on behavior, in contrast to earlier 
findings. Studies relating behavioral performance to the 
phase of ongoing activity typically use binary performance 
measures, e.g., hits versus misses (Busch et  al.,  2009; 
Busch & VanRullen, 2010; Fiebelkorn et al., 2018; Helfrich 
et  al.,  2018). Perhaps modulatory effects in these perfor-
mance measures can be detected with higher sensitivity 
than a continuous variable like reaction time. Yet, previous 
studies have reported positive outcomes relating the alpha 
phase to reaction times (Callaway & Yeager, 1960; Drewes 
& VanRullen, 2011; Lansing, 1957). These studies did use 
easier tasks, as indicated by a lower mean reaction time, 
and the latter study showed that in a more demanding task 
and more cognitive responses the effect of phase was less 
pronounced. Thus, it is possible we did not find an effect 
because the effect size is too small in our task. Still, our 
study is not the first to find a negative outcome in relating 
the theta/alpha phase to behavioral performance (Benwell 
et  al.,  2017; Ruzzoli et  al.,  2019). If the phasic modula-
tion of visual representations is not behaviorally relevant, 
it questions the validity of this potential attentional mech-
anism. Future studies should therefore explore the limits 
of phasic effects on reaction times and other behavioral 
measures.

Multivariate pattern analysis (MVPA) has been used 
before to investigate how neural representations might be 
related to the alpha rhythm (Foster, Bsales, et al., 2017; 
Foster et al., 2016; Foster, Sutterer, et al., 2017; van 
Moorselaar et  al.,  2018; Samaha et  al.,  2016). In those 
studies, neural representations of the locus of spatial at-
tention were decoded from the topographical distribution 
of spectral power. The location could be decoded specifi-
cally from alpha band power, both during attention selec-
tion and working memory (WM) maintenance, even when 
the spatial position was irrelevant to the WM task. This 
shows that there is a link between the spatial distribution 
of alpha-band activity and the representation of space, and 
one might ask whether and how this is related to the mod-
ulation of neural representations by the alpha phase in the 
current study. We also used a covert spatial attention task, 
and the attentional modulation index (AMI) showed lat-
eralization in posterior alpha power as a function of the 

direction of spatial attention (Figure 3), which confirms a 
link between alpha activity and the locus of spatial atten-
tion. However, the stimulus feature (i.e., orientation from 
the attended stimulus) we decoded from the MEG data was 
independent of its spatial location (i.e., only the orientation 
of the attended stimuli were compared when the attended 
stimulus was in the same hemifield). In fact, all attend-left 
and all attend-right trials were analyzed separately in order 
to ensure that the decoding of stimulus orientation was not 
confounded by spatial attention. Furthermore, the topo-
graphical distribution of alpha activity did not play any 
part in the decoding analysis, since the phase binning was 
based on a single and the same alpha source for both ori-
entations. Therefore, it is unlikely that the representation 
of space in a signature pattern of alpha-band activity con-
tributed to, or confounded, the phasic modulation of neural 
representations.

Recently, a number of studies have demonstrated con-
founding effects of eye movements on decoding performance 
from the M/EEG data (Mostert et al., 2018; Quax et al., 2019; 
Thielen et al., 2019). Because eye movements affect the MEG 
signals, a systematic difference in gaze position between con-
ditions could result in above-chance decoding performance 
independent of differences in the true underlying neural rep-
resentation. We found that it is possible to decode stimulus 
orientation reliably from the eye tracker data only, which re-
inforces this concern. In order to make sure that the MEG 
decoding was not a trivial result of eye movements or gaze 
position, we investigated whether orientation could still be 
decoded from the MEG data after the removal of the trials 
that could distinguish orientation based on gaze. Removal of 
these trials resulted in chance level accuracy based on the 
eye-tracker data, but did not affect the accuracy based on 
the MEG data, which remained highly above chance level. 
Another concern could be the contamination of the decoding 
performance by evoked activity. Temporal MEG decoding 
performance is highest at the peak of evoked activity Cichy 
et al., 2015; Pantazis et al., 2018; Ramkumar et al., 2013). At 
the same time, these peaks trivially have a consistent phase 
over trials, which could lead to a trivial phasic modulation in 
decoding performance. We ensured that evoked activity did 
not affect estimates of phasic modulation effects in decoding 
by only using the data for the decoding analysis after the off-
set of the evoked activity, which was not phase-locked (data 
not shown).

Overall, this exploratory study shows that visual represen-
tations are modulated by the phase of ongoing activity. In 
particular, it indicates that the representation of visual input 
is not constant over time, but depends on the phase of the 
theta/alpha rhythm in the frontoparietal attention network. 
Further research should investigate the potentially differen-
tial roles of the frontal and parietal parts of this network, the 
different roles of frequencies in the theta and alpha band, and 
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the behavioral relevance of such modulatory effects on neu-
ronal representations.
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