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Tissue sensitivity to glucocorticoids is a key factor dictating outcome of their
homeostatic and therapeutic action, whereby liver represents one of the major peripheral
targets. Here, we used pigs carrying a natural gain-of-function glucocorticoid receptor
(GR) variant Ala610Val (GRAla610Val) as a model to identify genes and pathways
related to differential glucocorticoid sensitivity. Animals with different GRAla610Val

genotypes were treated either with saline or two different doses of dexamethasone.
Genome-wide transcriptional responses depending on treatment, genotype, and their
interaction in the liver were investigated using mRNA sequencing. Dexamethasone
induced vast transcriptional responses, with more than 30% of present genes being
affected. Functional annotation of genes differentially expressed due to dexamethasone
treatment suggested that genes related to inflammation respond more sensitively,
despite absence of an immune stimulus. In contrast, genes involved in glucose
metabolism and cancer appeared to be less sensitive. Analysis of genotype and
genotype × treatment interaction revealed that clustered protocadherins, particularly
PCDHB7, are most prominently affected by GRAla610Val, mainly depending on dose.
GRAla610Val influenced also expression of a set of glucose metabolism related genes,
including PPARGC1A and CEBPB, in the absence of dexamethasone though no
differences in basal plasma glucose level were observed. This might represent an
adaptive response, keeping balance between receptor sensitivity, and level of circulating
endogenous glucocorticoids. Administration of low dexamethasone dose changed their
expression pattern and induced higher glucose response in carriers of the hypersensitive
Val receptor. Our findings suggest that GRAla610Val modulates tissue responses to
glucocorticoids dynamically, depending on their circulating level.

Keywords: dexamethasone, glucocorticoid receptor, glucocorticoid sensitivity, liver, protocadherin,
transcriptome

INTRODUCTION

Glucocorticoid receptor (GR) signaling is a subject of intense research because of its vital role in
prenatal development, stress response, and as an important drug target in human and veterinary
medicine, primarily due to its immune-modulatory actions (Kadmiel and Cidlowski, 2013; Wyns
et al., 2013). GR is a ligand activated transcription factor that controls gene expression in
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a mechanistically complex, and context dependent manner
(Weikum et al., 2017). Genomic responses triggered by GR
activation are fine-tuned at multiple, interconnected levels. These
include ligand (i.e., glucocorticoid) production and bioavailabiliy,
alternative processing of GR gene (NR3C1) and protein, and its
interactions with coregulators and with the chromatin landscape
(Sacta et al., 2016; Weikum et al., 2017). Genetic and epigenetic
variation, including GR mutations, may affect each of these
regulatory mechanisms and cause inter-individual differences
in responses to natural glucocorticoids (GC) as well as GC-
based pharmacotherapy (Quax et al., 2013). Knowledge of GR
target genes and networks and better understanding of molecular
mechanisms controlling its genomic actions may thus on one
hand help to develop more targeted GC-therapies (Phuc Le
et al., 2005), but also provide insight into pathobiology of
disorders resulting from dysregulated natural GC signaling
(Kadmiel and Cidlowski, 2013).

Because gene networks governed by GR are largely unknown
in farm animals, the aim of the present study was to explore
genome-wide transcriptome responses to GR activation in the pig
liver using mRNA-seq. Liver is a major target for homeostatic
actions of GR. Regulation of glucose homeostasis is a well-
recognized function of GR in the liver (Patel et al., 2014), but
experiments in model organisms indicate that hepatic GR is also
involved in local and systemic control of inflammatory response,
and feedback control of GC bioavailability (Quinn and Cidlowski,
2016; Jenniskens et al., 2018). So far GR-regulated trancriptome
(Phuc Le et al., 2005; Reddy et al., 2007; Frijters et al., 2010)
and regulatory mechanisms (Grøntved et al., 2013; Lim et al.,
2015) in the liver were studied on a genome-wide scale essentially
only in rodents. We explored the transcriptome GC responses
in the context of a unique natural gain-of-function substitution
Ala610Val in the porcine GR (GRAla610Val) (Murani et al., 2012;
Reyer et al., 2016). Different from GR deficiency or resistance,
GR hypersensitivity has not been well researched yet (Nicolaides
and Charmandari, 2017). We showed previously that animals
carrying the GRAla610Val substitution feature profound reduction
in the activity of the hypothalamus-pituitary-adrenocortical
(HPA) axis and ultimately GC production since early ontogeny
yet are otherwise phenotypically normal under resting conditions
(Muráni et al., 2016). While this observation evidences
compensatory changes at the level of ligand production, it
is not known if, and how, other levels of GR signaling are
influenced by GC hypersensitivity of the mutated receptor. Thus,
the second aim of this study was to obtain better understanding
of the molecular and phenotypic consequences of GRAla610Val,
including its effect on sensitivity to application of exogenous
GC, by examining its transcriptome signature in untreated and
GC-treated animals. To activate GR we treated the animals
with dexamethasone, a synthetic GC widely used as an anti-
inflammatory drug. Dexamethasone is a selective GR agonist,
and is not bound by corticosteroid binding globulin (CBG),
thus triggers specific responses. We administered dexamethasone
at two doses (60 µg/kg as prescribed, and a lower dose of
10 µg/kg live weight), because with increasing doses inter-
individual differences in GC sensitivity and responses diminish
(Chriguer et al., 2005; Muráni et al., 2016). This allowed us to

investigate also dose-sensitivity in the transcriptional responses
to GR activation, which was to our knowledge not examined
previously, at least not in the liver context.

RESULTS

Metabolic Responses to Dexamethasone
Treatment
GRAla610Val genotype showed no significant effect on baseline
levels of any of the metabolic parameters at 0h (Figure 1A).
Treatment had significant effect on BUN (p < 0.001), TG
(p = 0.016), and Glu (p < 0.001) levels at 3 h (Figure 1B).
Genotype showed no significant effect on any of the metabolic
parameters across treatments at 3 h, but we found significant
interaction between genotype and treatment for Glu (p = 0.026).
D10 significantly increased Glu levels in ValVal but not in AlaAla
animals (Figure 1B), which is in line with the expected higher
glucocorticoid sensitivity of the Val variant.

Genome-Wide Transcriptional
Responses to Dexamethasone
Treatment
After the filtering step (as outlined in the section “Materials
and Methods”) data on the expression of 14179 genes were
retained for the analysis of differentially expressed (DE)
genes. Figure 2 shows the results of supervised principal
component analysis (SPCA) of the data. This shows that
the largest separation of the individual data was due to D60
treatment. The effect of dexamethasone treatment on liver
transcriptome was analyzed in three pairwise comparisons:
between the D60 and C groups (D60vsC), between the D10 and
C groups (D10vsC), and between the D60 and D10 treatment
groups (D60vsD10), respectively. At the FDR level of q ≤ 0.10
(p ≤ 0.039, 0.027, and 0.032, respectively) the analysis yielded
5558 (2840 up- and 2718 downregulated), 3874 (1988 up-
and 1886 downregulated), and 4540 (2364 up- and 2176
downregulated) DE genes, respectively (results are summarized
in Figure 3 and Supplementary Table S1. Overlap between
the gene lists is summarized in Supplementary Figure S1). To
obtain a comprehensive insight into biological functions and
pathways influenced by dexamethasone treatment in the liver
we first performed functional annotation of DE genes identified
by the D60vsC comparison. The results are summarized in
Supplementary Table S2. At the molecular and cellular level
D60 treatment affected genes involved mainly in the regulation
of cell growth, death, and maintenance, RNA expression, and
macronutrient metabolism. Among these ingenuity pathway
analysis (IPA) predicted negative regulation of various cellular
functions related to homeostasis of blood cells. In line with
the positive effect of GC on hepatic gluconeogenesis, IPA
evidenced increased carbohydrate quantity [z-score = 2.56,
−log(B-H p-value) = 7.43]. Other predicted metabolic
consequences included decreased synthesis of fatty acids [z-
score =−2.09,−log(B-H p-value) = 5.28] and protein breakdown
[z-score =−2.54,−log(B-H p-value) = 8.92]. The transcriptional
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FIGURE 1 | Effect of the GRAla610Val substitution on baseline metabolite levels (A) and on metabolic responses to dexamethasone treatment (B). (A) Baseline
metabolite levels in plasma before treatment (0 h). Each bar represents n = 24 per genotype group. (B) Metabolite levels in plasma 3 h after treatment. The different
groups were treated with saline (C; each bar represents n = 10 per genotype group), 10 µg/kg dexamethasone (D10; each bar represents n = 8 per genotype
group), or 60 µg/kg dexamethasone (D60; each bar represents n = 6 per genotype group), respectively. Results are presented as least-squares means + SEM. Bars
sharing the same superscript are not significantly different at p < 0.05. For Glucose main effect of genotype × treatment interaction was significant at p < 0.05.

FIGURE 2 | Supervised principal component analysis of the mRNA-Seq data (cpm – counts per million; n = 48). Filled symbols indicate AlaAla genotype. Open
symbols indicate ValVal genotype. Red coloring indicates females. Blue males, respectively. Squares indicate control saline treated group (C). Circles indicate
10 µg/kg dexamethasone treated group (D10), and triangles indicate 60 µg/kg dexamethasone treated group (D60).
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FIGURE 3 | Volcano plots illustrating results of pairwise comparisons of gene expression between treatments (C, saline; D10, 10 µg/kg dexamethasone; D60,
60 µg/kg dexamethasone). To visualize the extent of the overall transcriptome changes due to treatment differentially expressed genes significant at q > 0.1 showing
a fold change >2 are highlighted by black dots. The red lines display the respective thresholds on corresponding log scale. Ten most significantly up- or
downregulated genes, respectively, are highlighted by blue dots and annotated with corresponding gene names.

response to dexamethasone showed highly significant association
with liver steatosis [−log(B-H p-value) = 10.1], which is
well-established side effect of GC therapy (Nader et al., 2010;
Kadmiel and Cidlowski, 2013), however, no specific direction
could be deduced (z-score = 0.19). As expected, one of the
top enriched canonical pathways revealed by IPA was the
glucocorticoid signaling pathway [−log(B-H p-value) = 6.26].
In fact, FKBP5, a key member of the pathway participating in
the regulation of GR sensitivity (Kästle et al., 2018), was the
most significant DE gene (q = 3.4E–26E; Figure 3), emphasizing
the importance of tight regulation of glucocorticoid signaling.
Consistent with the deduced molecular and physiological actions
of dexamethasone treatment, IPA predicted i.a. activation of
PPAR [z-score = 2.71, −log(B-H p-value) = 4.9], and inhibition
of AMPK [z-score = −2.29, −log(B-H p-value) = 6.07], NFKB
[z-score = −3.73, −log(B-H p-value) = 4.90], and ERK/MAPK
[z-score = −3.83, −log(B-H p-value) = 4.42] signaling pathways.
Furthermore, IPA correctly identified dexamethasone (and
other GC such as methylprednisolone) as activated upstream
regulator [z-score = 3.02, −log(p-value) = 2.68]. The most
significant transcriptional regulator was the transcription factor
HNF4A [−log(p-value) = 32], which is a pivotal mediator
of glucocorticoid signaling in the liver (Reddy et al., 2007).
Other suggested prominent upstream regulatory events were,
for example, activation of MYC [z-score = 4.68, −log(p-
value) = 3.82] and KRAS [z-score = 2.01, −log(p-value) = 7.95],
and inhibition of TNF [z-score = −3.43, −log(p-value) = 9.18]
or FOXM1 [z-score =−3.30,−log(p-value) = 3.50].

In order to relate the metabolic and transcriptional responses
to dexamethasone application we performed weighted
correlation network analysis (WGCNA) for all DE genes
compared to control (DE in D60vsC or D10vC, respectively;
in total 7030 genes). WGCNA revealed ten modules of co-
expressed genes (Figure 4 and Supplementary Table S1).
The eigenvalues of three modules, designated pink, blue and
purple, correlated negatively with Glu and positively with

TG level. Modules black and yellow showed an opposite
pattern. Only the module greenyellow showed significant
correlation with BUN. For module black, displaying the strongest
positive relationship with Glu, no significantly enriched
canonical pathways could be found using IPA after p-value
(BH) adjustment. Nevertheless, several key GR coregulators
involved in gluconeogenesis belonged to module black, including
HNF4A, FOXO1, FOXO3, FOXA2, CEBPB, and PPARGC1A. In
the module pink, displaying the strongest negative relationship
with Glu, the top enriched canonical pathway was related to
Wnt/β-catenin signaling. Though typically associated with
embryogenesis and development, this pathway is also implicated
in the modulation of hepatic glucose metabolism (Liu et al.,
2011). Pathway annotation of the six modules of co-expressed
gene related to metabolic responses, reaching at least nominal
significance, is summarized in Supplementary Table S3.

Biological Context of Dose-Dependent
Transcriptional Regulation by
Dexamethasone
In the next step we sought to explore which biological
functions and regulatory circuits are associated with
differential glucocorticoid sensitivity at the transcriptional
level. Therefore we categorized genes according to their
sensitivity to dexamethasone treatment indicated by the pattern
of differential expression between the three treatment groups,
and compared functional gene enrichment using IPA. We
focused on two sets of genes; those showing consistent dose-
dependent (DD) transcriptional response to dexamethasone
(significantly differentially expressed in all three pairwise
comparisons, showing consistent direction of expression
changes; in total 867 genes; Supplementary Table S1), and those
with lower sensitivity (LS) responding only to D60 treatment
(consistently differentially expressed in D60vsC and D60vsD10
comparisons, but not in D10vsC, with fold change < 1.1 in
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FIGURE 4 | Modules of co-regulated genes identified using weighted
correlation network analysis (WGCNA). Values in the heatmap show
correlation of module eigenvalues with metabolite levels in plasma 3 h
following dexamethasone treatment. Upper values show Pearson correlation
coefficients and lower values in parenthesis show the corresponding p-values.
BUN, blood urea nitrogen; GLU, glucose; TG, triglycerides.

the latter; in total 1580 genes; Supplementary Table S1). In
Supplementary Figure S2, clustering of samples based on
expression profiles of top 100 DD genes is presented. The
samples cluster according to treatment demonstrating suitability
of DD genes as biomarkers of GC action.

With regards to molecular and cellular functions the most
obvious difference showed genes associated with increased
carbohydrate quantity, which were significantly enriched only in
the LS set [z-score = 3.81,−log(p-value) = 2.56], and with protein
ubiquitination which were significantly enriched solely in the DD
set [z-score = 2.52, −log(p-value) = 2.84] (Supplementary Table
S4). Both sets were enriched for genes involved in homeostasis of
blood cells (leukocytes), but the DD set alone showed significant
evidence for a negative effect [z-score = −2.24, −log(p-
value) = 2.63]. Furthermore, the LS gene set is associated with
inhibition of liver cancer [z-score =−2.8, −log(p-value) = 2.59].
Only genes in the DD set were significantly enriched for
those belonging to canonical GR signaling pathway [−log(B-H
p-value) = 1.3] and were predicted by IPA to be regulated by

dexamethasone [z-score = 2.12, −log(p-value) = 1.79]. Other
canonical pathways significantly enriched exclusively in the
DD set included for example PPAR signaling [z-score = 2.11,
−log(B-H p-value) = 1.3]. Signaling pathways significantly
enriched in the LS set included several growth factors [e.g.,
IGF1; z-score = −2.31, −log(p-value) = 1.53], and immune
response-related pathways [e.g., NFKB; z-score =−1.96,−log(p-
value) = 1.539]. In contrast, IPA predicted inhibition of several
immune response regulators, in particular TNF [z-score =−3.78,
−log(p-value) = 1.49] in the DD set, but not in the LS set. Several
other regulators showing differential activation pattern among
DD and LS genes are involved in cell proliferation and cancer,
e.g., KRAS [z-score = 2.14, −log(p-value) = 3.15] predicted to
be activated in DD, or FOXM1 inhibited in LS [z-score = −3.24,
−log(p-value) = 2.98].

We complemented the IPA analysis of upstream regulators
by analysis of over-represented binding motifs in upstream 2 kb
regions using the oPOSSUM tool. The results are summarized
in Supplementary Table S5. Among motifs emerging only in
one of the gene sets was NFKB1, significantly over-represented
in DD, and HNF1A, significantly over-represented in LS. This
provides additional evidence that DD genes tend to be enriched
for immune-related genes, while the LS set contains genes related
to carbohydrate metabolism. Interestingly, GR (NR3C1) binding
motif had a high (7.76), yet not significant, z-score in LS, but
a very low z-score (0.328) in the DD set. This finding indicates
distinct mode of regulation of genes in the two sets by GR.

Differential Transcriptome Profiles
Associated With GRAla610Val Depending
on Treatment
To explore the impact of GRAla610Val on baseline liver
transcriptome we analyzed DE genes due to genotype in
the C group. A total of 251 genes (GinC set) was differentially
expressed between AlaAla and ValVal at p < 0.05 (111 up-
and 140 downregulated; Supplementary Table S6). Only one
gene, PCDHB7, showed significant genotype effect after p-value
adjustment [q = 0.004, −log(p-value) = 6.58]. To identify genes
affected by genotype × treatment interaction we first compared
expression changes induced by dexamethasone treatment
between genotypes [difference D60 (or D10, respectively) vs. C in
ValVal compared to D60 (or D10, respectively) vs. C in AlaAla].
Among genes showing differential response to treatment based
on genotype (at p < 0.05) we further selected those differentially
expressed between AlaAla and ValVal at p < 0.05 in either
D10 or D60 and C group, respectively (Supplementary Table
S6; GinD10 and GinD60, respectively). Using these criteria
we found a total of 299 genes showing evidence (at p < 0.05)
for genotype × treatment interaction for D10 (GxD10 set),
and 326 for D60 (GxD60 set), respectively (Supplementary
Table S6). About 50% of the genotype associated DE genes
displayed also dexamethasone responsiveness (Supplementary
Figure S3). Taken together, these data suggest, that GRAla610Val
influences a subset of GR target genes, rather than inducing a
general shift in GC responsiveness. Functional gene annotation
using IPA (Supplementary Table S7) did not reveal significant
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enrichment after BH adjustment because of a relatively
small number of DE genes. At nominal significance level
top molecular and cellular functions enriched in the G set
were primarily related to metabolism, including carbohydrate
metabolism (23 genes). In the GxD60 and GxD10 sets in turn,
cellular function and maintenance were the top functional
themes (Supplementary Table S7). Remarkably, besides
PCDHB7 additional four protocadherins (PCDHB5, PCDHGA7,
PCDHGB4, and PCDHGB7) were affected by genotype or
genotype× treatment interaction.

qPCR Validation of mRNA-Seq Results
To validate mRNA-Seq results we analyzed expression of three
key GC response genes (FKBP5, TSC22D3, and DUSP1) and
nine genes influenced by GRAla610Val genotype (CEBPB, FOSL2,
PCDHB7, PFKFB3, PPARGC1A, SCARA5, FAXDC2, GCK, and
SLC17A3) using qPCR. The qPCR expression patterns are
presented in Supplementary Figure S4. For all genes the two
data sets showed significant [−log(p-value) > 3) correlation
with correlation coefficients ranging from r = 0.474 (FAXDC2)
to 0.946 (FKBP5) (r = 0.850, 0.782, 0.503, 0.684, 0.668, 0.928,
0.705, 0.728, 0.679, and 0.485 for TSC22D3, DUSP1, CEBPB,
FOSL2, PCDHB7, PFKFB3, PPARGC1A, SCARA5, GCK, and
SLC17A3, respectively). A comparison of results for the effects
of genotype and genotype× treatment interaction is presented in
Table 1. For PCDHB7, SCARA5, and GCK significant genotype
or genotype × treatment interaction were confirmed while
for PFKFB, PPARGC1A, and FAXDC2 similar tendency was
observed. Overall these results demonstrate reliability of the
mRNA-Seq analysis. The magnitude of the expression changes
(on average ∼1.5 fold) corresponds with the changes in HPA
axis activity, including glucocorticoid production, triggered by
GRAla610Val (Muráni et al., 2016).

We further independently validated the genotype effect on
baseline hepatic expression of four genes of interest in a set of
80 liver samples from our previous study (Muráni et al., 2016).
Results are presented in Table 2. For PCDHB7 and PPARGC1A
significant upregulation due to GRAla610Val was confirmed. For
SCARA5 GRAla610Val genotype showed opposite tendency. This
might be related to the observation that GRAla610Val effect on
SCARA5 is depending on GC level, which in this set was elevated
due to the sampling procedure. Expression of PFKFB3 tended to
be reduced by GRAla610Val, as found in the main experiment, but
only numerically.

DISCUSSION

Glucocorticoid Responsive Genes and
Physiological Pathways in Porcine Liver
Biology of stress resilience is receiving increasing attention due to
the serious consequences for patients and society resulting from
stress-related disorders (Pfau and Russo, 2015). The interest in
the concept of stress resilience is growing also in farm animals
because it addresses preservation of health as well as performance
(Colditz and Hine, 2016). In this regard hepatic GR, by the virtue
of integrating metabolic, endocrine and immune stress responses,

is ideally situated to promote stress resilience. To provide
knowledge base about the function and signaling of hepatic GR in
farm animals we analyzed genome-wide transcriptome responses
to dexamethasone treatment in the porcine liver. The overall
picture of biological functions influenced by dexamethasone
(D60vsC) corresponds with previously reported GC responses
in mice (Phuc Le et al., 2005; Frijters et al., 2010). However,
there were some notable differences. For instance, as shown
by SPCA in Figure 2, other than in mice (e.g., Frijters et al.,
2010), the effect of sex was less pronounced compared to the
effect of dexamethasone. One factor that might have contributed
to this difference is that pigs used in the present study were
not sexually mature. Another striking finding in our study was
downregulation of PCK1 expression in dexamethasone treated
pigs (by both doses). PCK1 encodes PEPCK, a rate-limiting
enzyme in gluconeogenesis. Due to its key role in this process,
regulation of PCK1 is well studied, particularly in rodents.
Expression of PCK1 is reportedly activated by GR, both directly
and by recruiting other coregulators involved in gluconeogenesis
(Vegiopoulos and Herzig, 2007; Sacta et al., 2016). Species
specific regulation of PCK1 provides one likely explanation
for the conflicting findings (Niu et al., 2018). Nevertheless we
cannot exclude contribution of other factors like differences in
the treatment (in the study of Frijters et al. (2010) mice were
treated using a less potent GC methylprednisolone) and feeding
state of the animals (see below). Different from PCK1, other
genes encoding key enzymes involved in gluconeogenesis (G6PC
and PC) were upregulated by dexamethasone (D60), evidencing
a different mode of their regulation in this specific context.
Several transcription factors and cofactors playing important
role in gluconeogenesis (e.g., HNF4A, KLF15, FOXO1, FOXO3,
FOXA2, CEBPB, and PPARGC1A) (Goldstein and Hager, 2015;
Sacta et al., 2016) were upregulated by dexamethasone as well.
However, similar to G6PC and PC, most of them (apart from
HNF4A and FOXO3) were significantly induced only by D60.
This, together with the functional annotation of DD and LS
genes, points to lower dexamethasone sensitivity of genes related
to glucose metabolism. One factor that might have contributed
to this lower sensitivity is feeding state (all pigs were fed
ad libitum during the experiment), and accordingly signaling
of insulin, glucagon, and of glucose itself that modulate GR
action on gluconeogenic genes (Meyer et al., 1991; Pierreux et al.,
1999; Vegiopoulos and Herzig, 2007). In fact, a recent study by
Kalvisa et al. (2018) demonstrated that the impact of feeding
on hepatic gene expression is depending on cooperate action of
GR and insulin signaling pathways. The authors showed that
feeding significantly reduces occupancy of chromatin by GR.
While this is partly due to reduced glucocorticoid concentration
following feeding, only a subset of feeding repressed genes was
activated by preprandial dexamethasone application (Kalvisa
et al., 2018), evidencing that insulin indeed interferes with GR
signaling to some extent.

Noticeably, in our study CREB1, a key transcription
factor in gluconeogenesis mediating glucagon action, was
downregulated by both dexamethasone doses. Goldstein et al.
(2017) demonstrated that whereas GR and CREB1 synergize
on PCK1 promoter, CREB1 binding is not augmented by GR
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TABLE 1 | Comparison of estimated genotype and genotype × treatment interaction effects of the GRAla610Val substitution on the expression of selected genes.

Genotype (GinC)1 Genotype × D10 (G × D10)2 Genotype × D60 (G × D60)3

Gene Ensembl ID Method log2 FC4 p-value log2 FC4 p-value log2 FC4 p-value

CEBPB ENSSSCG00000034207 RNA-seq 0.298 0.027 0.084 0.645 −0.024 0.921

qPCR 0.117 0.760 −0.207 0.718 0.073 0.907

FOSL2 ENSSSCG00000032527 RNA-seq 0.438 0.003 −0.532 0.010 −0.296 0.226

qPCR 0.181 0.340 0.039 0.890 −0.106 0.731

PCDHB7 ENSSSCG00000036961 RNA-seq 2.777 <0.001 −0.019 0.976 −2.526 0.006

qPCR 0.934 0.011 −0.089 0.866 −1.091 0.063

PFKFB3 ENSSSCG00000011133 RNA-seq −1.028 0.006 1.298 0.011 0.368 0.600

qPCR −0.844 0.065 1.177 0.085 0.411 0.575

PPARGC1A ENSSSCG00000029275 RNA-seq 0.351 0.013 −0.344 0.075 −0.302 0.206

qPCR 0.278 0.300 −0.159 0.691 −0.278 0.524

SCARA5 ENSSSCG00000009672 RNA-seq 0.492 0.038 −0.900 0.008 −0.757 0.059

qPCR 0.742 0.006 −0.993 0.013 −1.134 0.010

FAXDC2 ENSSSCG00000017068 RNA-seq −0.599 0.016 0.948 0.006 1.149 0.010

qPCR −0.595 0.151 0.941 0.091 0.893 0.139

GCK ENSSSCG00000016751 RNA-seq −1.102 0.012 1.225 0.041 -0.030 0.968

qPCR −1.233 0.043 1.414 0.077 0.779 0.365

SLC17A3 ENSSSCG00000037547 RNA-seq 0.476 0.046 −1.142 0.001 −1.018 0.055

qPCR 0.291 0.443 −0.576 0.231 −0.611 0.243

1Genotype (ValVal vs. AlaAla) effect on baseline expression estimated in the saline control (C) group. 2Genotype × treatment interaction estimated by contrasting
D10 treatment (10 µg/kg dexamethasone) effects between the genotype groups (expression change between D10 vs. C in ValVal compared to D10 vs. C in AlaAla).
3Genotype× treatment interaction estimated by contrasting D60 treatment (60 µg/kg dexamethasone) effects between the genotype groups (expression change between
D60 vs. C in ValVal compared to D60 vs. C in AlaAla). 4Log2 fold change differences between ValVal vs. AlaAla. Bold values highlight p < 0.05.

TABLE 2 | Effect of the GRAla610Val substitution on baseline hepatic expression of selected genes in an independent cohort.

LSM ± SE1

AlaAla AlaVal ValVal

Gene ENSEMBL_ID n = 18 n = 41 n = 21 p-value2

PCDHB7 ENSSSCG00000036961 8.01a
± 0.16 8.31a,b

± 0.10 8.55b
± 0.15 0.042

PFKFB3 ENSSSCG00000011133 11.81 ± 0.29 11.86 ± 0.19 11.69 ± 0.28 0.886

PPARGC1A ENSSSCG00000029275 12.80a
± 0.17 13.13a,b

± 0.11 13.43b
± 0.16 0.031

SCARA5 ENSSSCG00000009672 12.09 ± 0.19 11.63 ± 0.12 11.61 ± 0.18 0.109

1Estimated least square means ± standard error of estimate; log2 transformed expression values. 2p-value of the main effect of genotype. Significant differences between
LSM are indicated by different superscript within a row (a,b,c and p ≤ 0.05). Bold values highlight p < 0.05.

on G6PC promoter in mice, providing potential explanation
for different responses of PCK1, and G6PC observed here.
Unfortunately, previous expression studies focused on mice
(Phuc Le et al., 2005; Frijters et al., 2010; Kalvisa et al., 2018) and
thus information about the impact of dexamethasone on hepatic
CREB1 expression in other species is limited.

Another biological and therapeutic function of
dexamethasone that seems to require higher doses is suppression
of cell proliferation and cancer. Accordingly, IPA predicted
inhibition of FOXM1 signaling in LS genes. Aberrant expression
of FOXM1 plays an essential role in hepatocellular carcinoma
(Yu et al., 2016), however, FOXM1 itself was only numerically
reduced by D60, implying either post-transcriptional regulation
or indirect involvement of FOXM1.

In contrast to glucose metabolism or cancer-related pathways,
our results suggested higher dexamethasone sensitivity of

immune related pathways, and despite absence of an immune
stimulus. Indeed, key anti-inflammatory mediators induced by
GR, such as DUSP1 and TSC22D3 (GILZ) (Coutinho and
Chapman, 2011), were among the top DD genes.

It is interesting to note that the analysis of transcription
factor binding sites in 5′ flanking regions pointed to direct
regulation of genes with lower dexamethasone sensitivity by
GR, whereas genes responding dose-dependently appear to
lack canonical GR binding sites (GRE). King et al. (2013)
demonstrated that inflammatory genes regulated (repressed) by
GR indirectly, were more potently repressed by dexamethasone
compared to genes regulated by GR directly. High resolution
mapping of GR binding sites using ChIP-exo in mice revealed
that exogenous pharmacologic GC cause redistribution of GR
in the liver from monomeric sites, occupied under physiological
conditions, to dimeric binding sites. The gained dimeric sites
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are enriched for loci involved in glucose metabolism (Lim
et al., 2015). Thus DD genes might be preferentially regulated
by GR monomers in cooperation with other cofactors, while
for LS genes binding of GR dimers to canonical GREs
might be more common.

Transcriptional Signature of GRAla610Val
in the Liver
Our previous molecular and phenotypic characterization of
GRAla610Val clearly demonstrated that the substitution causes
hypersensitivity at the receptor level (Murani et al., 2012; Reyer
et al., 2016). In addition, ex-vivo dexamethasone treatment
of mitogen stimulated peripheral blood mononuclear cells
(PBMC) indicated higher tissue GC sensitivity of GRAla610Val
carriers (Muráni et al., 2016). Here we tested for the first time
the hypothesis that GRAla610Val carriers are more sensitive to
exogenous GC in vivo. The observation, that D10 significantly
increased Glu levels only in ValVal animals, supports this
notion. However, the fact, that at D60 no significant differences
were observed illustrates difficulty to uncover and explore GC
hypersensitivity in vivo. This implies that diagnosis of GC
hypersensitivity requires testing of a wider range of different
doses. A further limitation is that GR action is highly context
specific, thus GC hypersensitivity may manifest only for a specific
tissue or in a specific physiological state.

While GRAla610Val apparently influenced GC sensitivity of
the liver, its transcriptome signature was rather modest, and
involves only a subset of GR target genes. Strikingly, although
basal Glu levels are not significantly affected by GRAla610Val, we
found several DE genes involved in carbohydrate metabolism in
untreated animals. These include i.a. PPARGC1A and CEBPB.
As mentioned above, both represent important coregulators of
GR in the liver, and are themselves GC-responsive. In line
with the evidence for higher GC sensitivity in GRAla610Val
carriers, PPARGC1A has been shown to potently enhance
transcriptional response mediated by GR (Knutti et al., 2000).
We hypothesize that because GRAla610Val causes pronounced
compensatory reduction in cortisol production, upregulation of
PPARGC1A and CEBPB might represent a counterregulatory
response, facilitating adequate glucose production under basal
conditions, particularly at the nadir of the circadian rhythm
when cortisol levels are lowest. Administration of low dose
exogenous GC might tip the balance between available GC
and response, and lead to excess production of glucose in
GRAla610Val carriers. This might be further potentiated by
genotype × treatment interactions. Out of the 23 DE genes
involved in carbohydrate metabolism at basal condition, eight
(PFKFB3, GCK, CHGA, SLC17A3, PLA2G7, DUSP9, MFN2, and
MMP9) showed evidence for genotype × treatment interaction
at D10. On the other hand, at higher dexamethasone doses,
the genotype differences might be overridden by the vast
transcriptional responses.

The most significant DE gene between Ala and Val was
PCDHB7. PCDHB7 belongs to a large family of protocadherins
(50–60 genes in mammals), which are arranged in tandem
in three closely linked gene clusters (designated alpha, beta,

and gamma) (Mountoufaris et al., 2018). Besides PCDHB7,
GRAla610Val affected, though less significantly, also expression
of other members of this gene cluster including PCDHB5,
PCDHGA7, PCDHGB4, and PCDHGB7. Unfortunately, in the
pig the protocadherin cluster is not annotated and characterized
to that extent (19 genes annotated, of which 13 were
expressed in the liver) as in humans or mice, so that it
is not possible to assess effect of GRAla610Val on the entire
cluster. Clustered protocadherins are cell-cell adhesion proteins
implicated mainly in neural circuit formation (Peek et al.,
2017). While their function in neural development and related
disorders, such as autism, is well studied (Mountoufaris et al.,
2018), there is a lack of knowledge about their function in
non-neural tissues. Outside of the nervous system clustered
protocadherins might be involved in cell proliferation and
cell death (El Hajj et al., 2017). Therefore, it is difficult to
predict the phenotypic consequence of differential expression
of PCDHB7 and of the other clustered protocadherins in liver.
Nevertheless, hepatic nervous system is involved in metabolic
regulation (Jensen et al., 2013) and represents an additional
potential candidate mechanism how GRAla610Val could influence
liver function, also via dexamethasone action in the brain
(Mizuno and Ueno, 2017). Differential expression of FOSL2,
a marker of neuronal activation (Herdegen and Leah, 1998),
might be an indication that GRAla610Val in fact altered the
hepatic innervation.

Much research on clustered protocadherins was attracted
by the observation that their expression is epigenetically
modulated (El Hajj et al., 2017), for example by early life
insults (Suderman et al., 2012). Glucocorticoids are well
known for their involvement in environmental modulation
of the epigenome, particularly during early life (Moisiadis
and Matthews, 2014). We have shown previously that
GRAla610Val downregulates HPA axis activity and glucocorticoid
production in early ontogeny (Muráni et al., 2016). While
epigenetic modulation of the clustered protocadherins
by GRAla610Val is conceivable, our results show that their
expression is not persistently altered by the mutation, but
rather dynamically modulated, demonstrated by the finding
that they were mainly influenced by genotype depending on
dexamethasone treatment.

It should be noted that GRAla610Val is a natural variant acting in
an outbred genetic background. To reduce the impact of genetic
background on the analyses we used alternatively homozygous
sib pairs for the experiment. Furthermore, for selected genes of
interest (e.g., PCDHB7 and PPARGC1A) we validated the effect
of GRAla610Val in an independent cohort. Considerable linkage
disequilibium typically spreads less than 20–30 kbp in pigs (Du
et al., 2007). The GR locus NR3C1 is about 130 kbp large, so
that indirect responsibility of polymorphisms in linked genes
for genotype differences in gene expression observed here is
unlikely. This includes also potential regulatory polymorphisms
of NR3C1, because similar to our previous studies NR3C1 showed
no significant differences between Ala and Val here.

In conclusion, in the present study, we performed the
first comprehensive analysis of transcriptome responses to
dexamethasone using mRNA-Seq. Our results provide novel
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general insights into biology and genetics of differential GC
sensitivity. This knowledge may help to interpret future
expression studies in farm animals, and also provide functional
candidate genes to investigate, and eventually modulate,
individual sensitivity to GC therapy. One important aspect
addressed here was the impact of the Ala610Val substitution on
GR signaling in peripheral tissues. Our results suggest adaptive
changes in the regulation of glucose homeostasis in the liver,
and point to PPARGC1A and CEBPB as important mediators.
Moreover, our results highlight clustered protocadherins as
major targets of GRAla610Val, suggesting that GR hypersensitivity
may influence tissue responses to GC also by changes in
neuronal circuit architecture. Overall, our findings indicate that
in contrast to systemic GC production, which is persistently
altered, GRAla610Val modulates tissue GC responses dynamically,
depending on level of circulating GC.

MATERIALS AND METHODS

Animals, Treatment, and Sample
Collection
A total of 48 purebred German Landrace piglets (each 24
alternative homozygotes AlaAla or ValVal of GRAla610Val,
respectively, with equal numbers of males and females per
genotype) were used in the experiment. These were selected from
12 different litters (1–3 alternatively homozygous sib-pairs per
litter) produced by mating heterozygous parents (4 sires and 10
dams). At the time of the experiment the piglets were 7-weeks
old (weaned at 4-weeks post natum) and weighed on average
13.7 kg. During the experiment the piglets had free access to
feed (Trede and von Pein, Itzehoe, Germany) and water. Before
treatment (0 h), a blood sample (10 ml) was obtained from
each animal by rapid (≤30 s) anterior vena cava puncture in a
supine position, and collected into pre-chilled EDTA-containing
tubes. Subsequently, a bolus injection of either dexamethasone
(Dexatat; aniMedica, Senden, Germany) or sterile saline was
administered intramuscularly into the neck muscle. Twenty
piglets received saline (group C; five males and five females
per each genotype), sixteen piglets were treated with 10 µg/kg
dexamethasone (group D10; four males and four females per
each genotype), and twelve piglets were treated with 60 µg/kg
dexamethasone (group D60; three males and three females
per each genotype). For an overview of sample distribution
according to treatment, sex, and genotype please see Table 3.
The initial 0 h blood sample collection and treatment took place
at 10:00 to 12:00 AM. Three hours after the treatment (13:00
to 15:00 AM) an additional blood sample (3 h) was collected
to monitor the physiological responses. After that the animals
were anesthetized by an intravenous (i.v.) administration of a
combination of ketamine (Ursotamin; Serum-Werk Bernburg,
Bernburg, Germany) and azaperone (Stresnil; Janssen-Cilag,
Neuss, Germany), and euthanized by an i.v. administration of
T61 (Intervet, Unterschleißheim, Germany). Tissue samples were
quickly dissected, frozen in liquid nitrogen, and stored at−80◦C.
The whole procedure from blood sampling to tissue preservation
lasted∼ 15 min.

TABLE 3 | Summary of the study design.

Treatment C D10 D60

Genotype Sex Male Female Male Female Male Female

AlaAla 5 5 4 4 3 3

ValVal 5 5 4 4 3 3

The piglets were raised, and all animal experiments were
performed, at the experimental pig farm (EAS) of the Leibniz
Institute for Farm Animal Biology in Dummerstorf (Germany),
equipped with a surgery room where tissue collection was
performed. Animal care, handling, and sample collection
followed the guidelines of the German Law of Animal Protection.

Genotyping
For genotyping of the GRAla610Val substitution (SNP NR3C1
c.1829C > T, rs335303636) a new KASP (Kompetitive allele
specific PCR) assay has been designed (LGC Genomics,
Hoddesdon, United Kingdom). DNA was extracted from tissue
samples using KAPA Express Extract Kit (VWR International,
Darmstadt, Germany). The KASP assay was performed using
KASP V4.0 2X Mastermix Low ROX (LGC Genomics) on a
LightCycler 480 System (Roche, Mannheim, Germany) according
to manufacturer’s instructions.

Measurement of Metabolic Parameters
Plasma was prepared by centrifugation for 20 min at 4◦C and
2000 × g and stored at −80◦C until use. Glucose (Glu), blood
urea nitrogen (BUN), and triglyceride (TG) levels were measured
using a Fuji DriChem 4000i clinical chemistry analyzer (Scil,
Viernheim, Germany). These three parameters were chosen to
characterize dexamethasone effect on glucose, protein, and fat
metabolism, respectively.

mRNA-Seq
Total RNA was isolated from liver samples using TRI reagent
(Sigma-Aldrich, Taufkirchen, Germany). DNA traces were
removed by DNaseI-treatment (Baseline-Zero DNase; Biozym,
Hessisch Oldendorf, Germany), and the RNA was cleaned-up
using the RNA Clean&Concentrator-25 Kit (Zymo Research,
Freiburg, Germany). RNA quantity was determined using
a Qubit fluorometer (Thermo Fisher Scientific, Germany),
and integrity was checked on an Agilent 2100 Bioanalyzer
using an Agilent RNA 6000 Nano kit (Agilent Technologies,
Santa Clara, CA, United States). The latter showed that all
isolated RNA samples had a RIN value > 9, indicating good
quality. Library preparation was performed using a TruSeq
Stranded mRNA Sample Preparation kit according to the
manufacture’s protocol (Illumina). The DNA libraries were
quality-control assessed for fragment-size distribution using an
Agilent Technologies 2100 Bioanalyzer and Agilent DNA-1000
Chip kit. DNA library concentration was quantified using a
KAPA qPCR Library Quantification kit (KAPA-Biosystems).
Normalized multiplexed DNA libraries of 18 pM with 0.5%
spiked-in PhiX control were clonally cluster amplified on
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the surface of a sequencing flow-cell using the cBot system
and paired-end sequenced for 2 × 101 bp using the high-
output mode on a HiSeq2500 (Illumina) at the sequencing
facility of the Genome Biology Institute, Leibniz Institute for
Farm Animal Biology (FBN), Dummerstorf, Germany. The
raw sequencing reads (fastq-formatted) were quality-checked
using FastQC (version 0.11.51) and were pre-processed by
filtering out low quality reads with a mean Q-score < 20
and trimming adapter-like sequences using in-house scripts.
This yielded on average 50.6M reads per sample. High
quality paired-end reads were then aligned to the reference
genome Ssrofa11.1 (Ensembl release 93) using Hisat2 version
2.1.0 (Pertea et al., 2016) resulting in 90.6% reads aligned
concordantly exactly 1 time. The number of reads uniquely
mapped to each gene was extracted from the HISAT2
mapping results (SAM formatted) using HTSeq version 0.8.0
(Anders et al., 2015). On average 25.96M fragments per
sample were counted.

qPCR
For quantitative real time PCR (qPCR) cDNA was synthesized
using SuperScript III MMLV reverse transcriptase (Invitrogen,
Karlsruhe, Germany) in a reaction containing a mixture of
500 ng random hexamers (Promega, Mannheim, Germany),
500 ng of oligo (dT)11 VN primer, and 1 µg total RNA. The
qPCR reaction was performed in duplicate on a LightCycler
480 System using the LightCycler FastStart DNA Master
SYBRplus Green I (Roche) kit. Specificity of the reaction
was verified by melting curve analysis and agarose gel
electrophoresis of amplification products. Copy numbers
of target genes were calculated based on a standard curve
generated by amplification of a serial dilution of a PCR
fragment (107

−102 copies) and were normalized using
the expression of RPL32, B2M, and TSC22D2 as reference
genes. Information on primers and amplicons is summarized
in Supplementary Table S8.

Identification and Functional Annotation
of Differentially Expresses Genes
Genome-wide analysis of differential gene expression was
performed based on count data obtained from mRNA-Seq using
the R packages edgeR (Robinson et al., 2010) and LIMMA
(Liu et al., 2015; Law et al., 2016). First, weakly expressed
genes were excluded from the analysis by keeping genes
represented by more than 5 counts in at least 6 samples,
and then scale normalization was applied using the TMM
method. Supervised principal component analysis (Bair et al.,
2006) was performed on normalized counts per million
(cpm) using the R package dimreduce (Piironen and Vehtari,
2018). For the analysis of the effect of treatment on gene
expression the linear model implemented in LIMMA included
the effect of treatment (C, D10, and D60), and to adjust
for individual variation also the effects of sex (male and
female), and GRAla610Val genotype (AlaAla and ValVal).
The effect of genotype and of the genotype × treatment

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

interaction on gene expression was analyzed using linear
contrasts comparing genotype groups within treatment, and
by comparing the treatment effects between the genotype
groups (each dexamethasone dose vs. control within ValVal or
AlaAla), respectively. Functional annotation of differentially
expressed genes was performed using Ingenuity Pathway
Analysis (IPA; Ingenuity Systems, Redwood City, CA,
United States).Venn diagrams were drawn using the web
tool Venny 2.12. Heatmap was created using the web tool
ClustVIs3 (Metsalu and Vilo, 2015).

Weighted correlation network analysis (Langfelder and
Horvath, 2008) was performed using the R package WGCNA
(version 1.66).To perform co-expression analysis normalized
counts per million of all differentially expressed genes due to
treatment were used. To cluster/group genes within modules
based on their expression profiles, the soft-thresholding power
value of 4 was auto-detected using a scale free model fit
threshold of 0.9. Furthermore, modules were created with a
minimum module size of 50 and a minimum dissimilarity
threshold between module eigengenes of 0.2. Finally, the Pearson
correlation was calculated between module eigengenes and
the metabolic data.

Upstream 2 kp sequences of selected sets of differentially
expressed genes were retrieved from the ENSEMBL database
and analyzed for over-represented regulators/binding sites using
the oPOSSUM v3.0 Single Site Analysis (Kwon et al., 2012).
A matched set of background sequences was generated using
oPOSSUM v3.0. Motifs with z-score > 10 and a Fisher-
score > 2.996 (p < 0.05) were considered significantly
over-represented.

Statistical Analysis
The effect of GRAla610Val genotype on baseline concentration
of the metabolic parameters at 0h was analyzed using a linear
model (GLM procedure, SAS 9.4 Software, SAS Inc., Cary,
NC, United States). Besides GRAla610Val genotype (AlaAla
and ValVal), the model included also sex (male, female) as
a fixed effect. The effect of dexamethasone treatment on
metabolic responses depending on GRAla610Val was analyzed
using a linear model (GLM procedure) including the fixed
effects of treatment (C, D10, and D60), sex (male and
female), GRAla610Val genotype (AlaAla and ValVal), and
genotype × treatment interaction, respectively. In addition,
levels of the corresponding physiological parameter at 0h
were included as a covariate to account for individual
baseline differences. Correlation between expression data
generated using mRNA-Seq (normalized CPM) and qPCR
was calculated using Proc CORR (SAS 9.4). In addition, to
validate treatment and genotype effects using qPCR data (log2
transformed as for mRNA-Seq data analysis) similar linear
models and contrasts as described for mRNA-Seq data analysis
were fitted (Mixed procedure, SAS 9.4 Software, SAS Inc.,
Cary, NC, United States). For the analysis of the previously

2http://bioinfogp.cnb.csic.es/tools/venny
3https://biit.cs.ut.ee/clustvis
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published dataset the linear model included, besides genotype
and sex, also sampling order as covariate.
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