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Bacteria are known to cope with environmental changes by using alternative sigma
factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets
to modify transcription regulation in bacteria and to influence production capacities.
In this study, the effect of overexpressing each annotated sigma factor gene in
Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid
system and different IPTG concentrations. It was revealed that growth was severely
decreased when sigD or sigH were overexpressed with IPTG concentrations higher
than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-
colored supernatant. High performance liquid chromatography analysis revealed that
riboflavin was excreted to the medium when sigH was overexpressed and DNA
microarray analysis confirmed increased expression of riboflavin biosynthesis genes.
In addition, genes for enzymes related to the pentose phosphate pathway and for
enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD),
or NADPH as cofactor were upregulated when sigH was overexpressed. To test if
sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD,
the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-
expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved
accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN
(33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion
was not complete and titers were not high. This study revealed that inducible and
gradable overexpression of sigma factor genes is an interesting approach to switch
gene expression profiles and to discover untapped potential of bacteria for chemical
production.

Keywords: Corynebacterium, RNA polymerase sigma factor, sigH, ribA, riboflavin, FMN production

Introduction

The sigma factor is a component of RNA polymerase holoenzyme and is important to recognize
the promoter sequence in transcription initiation (Vassylyev et al., 2002; Feklístov et al., 2014). In
general, a bacterium possesses two or more sigma factor genes and RNA polymerase holoenzymes
with different sigma factors recognize distinct promoter sequences (Paget and Helmann, 2003;
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Staroń et al., 2009). Upon environmental stress the vegetative
sigma factor may be replaced by an alternative sigma factor, a
mechanism wide-spread in bacteria to cope with environmental
changes (Kazmierczak et al., 2005; Sharma and Chatterji, 2010).
This fundamental mechanism of transcriptional regulation has
recently drawn attention as a candidate of metabolic engineering
for global transcriptional engineering (Tripathi et al., 2014).

Corynebacterium glutamicum was isolated as a glutamate-
producing organism in 1956 and has been used for the large scale
production of glutamate and lysine for more than five decades
(Eggeling and Bott, 2005, 2015; Burkovski, 2008; Yukawa and
Inui, 2013). Amino acid producing strains have been developed
based on random mutagenesis and/or rational engineering.
For instance, this bacterium has been engineered to produce
amino acids such as L-serine (Peters-Wendisch et al., 2005),
L-isoleucine (Morbach et al., 1996), L-valine (Radmacher et al.,
2002; Blombach et al., 2007), L-proline (Jensen and Wendisch,
2013), L-tryptophan (Ikeda and Katsumata, 1999), L-citrulline
(Eberhardt et al., 2014), or L-arginine (Park et al., 2014). It
has been also engineered to produce precursors of amino
acids such as 2-ketoisovalerate (Krause et al., 2010) and 2-
ketoisocaproate (Bückle-Vallant et al., 2014; Vogt et al., 2015)
or amino acid-derived compounds such 1,4-diaminobutane
(Schneider and Wendisch, 2010; Schneider et al., 2012) or 1,5-
diaminopentane (Mimitsuka et al., 2007). Metabolic engineering
focused mainly on amino acid biosynthesis, precursor supply,
cofactor regeneration and amino acid transport. Concerning
regulatory engineering, mainly feedback-resistant versions of key
enzymes are in use, however, also transcriptional regulatory
engineering has been applied, e.g., by deletion of the genes
encoding pathway-specific regulators such as LbtR (Bückle-
Vallant et al., 2014) or ArgR (Hwang et al., 2008) or higher order
regulators such as SugR (Blombach et al., 2009). However, global
regulatory engineering using sigma factor genes has not yet been
explored.

C. glutamicum WT possesses seven sigma factor genes
encoded on its chromosome (Kalinowski et al., 2003). These
sigma factors are classified into group 1 (SigA), group 2 (SigB)
and group 4 (SigC, SigD, SigE, SigH, SigM) according to their
conserved structures. C. glutamicum lacks group 3 type sigma
factors (Pátek and Nešvera, 2011). The regulons of some of
these sigma factors have been studied, e.g., for SigA, SigB, SigE,
SigH, and SigM. SigA is the principle sigma factor and related
to the transcription initiation of housekeeping genes (Pfeifer-
Sancar et al., 2013). The gene sigA is essential in C. glutamicum
as well as in other bacteria (Pátek and Nešvera, 2011). SigB
is related to the general stress response and assumed to play
an important role at the transition from the exponential to
the stationary growth phase (Larisch et al., 2007). Analysis
of the sigB deletion mutant revealed that SigB is involved
in glucose metabolism under oxygen deprivation conditions,
thymidylate synthesis and protein secretion (Ehira et al., 2008;
Cho et al., 2012; Watanabe et al., 2013). The functions of
SigC and SigD have not yet been elucidated. SigE is related to
surface stress and its activity is repressed by anti-sigma factor
CseE (Park et al., 2008). SigH is involved in the response to
heat shock, pH stress and disulfide/oxidative stress (Kim et al.,

2005a; Ehira et al., 2008; Barriuso-Iglesias et al., 2013), and its
activity is repressed by anti-sigma factor RshA (Busche et al.,
2012). Recently, SigH-dependent promoters were studied by
ChIP-chip analysis (Toyoda et al., 2015). SigM is involved in
transcription of disulfide stress related genes (Nakunst et al.,
2007).

In this study, the effects of graded sigma factor gene
overexpression on C. glutamicum have been characterized.
Based on the finding that sigH overexpression resulted in
riboflavin production, flavin mononucleotide (FMN) producing
C. glutamicum strains have been constructed.

Materials and Methods

Bacterial Strains, Plasmid, and Primer
The strains, plasmids and oligonucleotides used in this work are
listed in Table 1. Plasmids were constructed based on pEKEx3
and pVWEx1, IPTG inducible Escherichia coli – C. glutamicum
shuttle vectors (Peters-Wendisch et al., 2001; Stansen et al.,
2005). The DNA sequence of sigma factor gene was amplified
from genomic DNA of C. glutamicum WT by polymerase
chain reaction (KOD, Novagen, Darmstadt, Germany) with
respective primer pairs in Table 1. The PCR product was inserted
into BamHI-digested pEKEx3 or pVWEx1 plasmid by Gibson
assembly (Gibson et al., 2009). E. coliDH5αwas used for cloning.
E. coli competent cells were transformed by heat shock method
(Sambrook, 2001) or by electroporation method (Nováková et al.,
2014). All cloned DNA fragments were confirmed to be correct by
sequencing. C. glutamicum competent cells were transformed by
electroporation at 2.5 kV, 200 �, and 25 μF (van der Rest et al.,
1999; Eggeling and Bott, 2005).

Medium and Growth Condition
C. glutamicum was precultured in BHI or LB medium overnight,
washed once with CGXII medium (Eggeling and Bott, 2005)
without carbon source and inoculated in CGXII with 222 mM of
glucose at initial OD at 600 nm of 1. The OD was measured with
UV-1202 spectrophotometer (Shimadzu, Duisburg, Germany)
with suitable dilutions. When appropriate, 100 μg/mL of
spectinomycin, 25 μg/mL of kanamycin and IPTG were
added. Growth experiment with Biolector R© cultivation system
(m2pLabs, Baesweiler, Germany) was performed in 1 mL of
CGXII using FlowerPlate R© (m2pLabs, Baesweiler, Germany) at
30◦C, 1,100 rpm. Cell growth was monitored online every 10 min
for 48 h. Maximum growth rate μ (h−1) was calculated from
20 measuring points of arbitrary unit of backscattering light
(620 nm). Plate image was scanned with Perfection V750-M
Pro scanner (Epson, Ludwigshafen am Rhein, Germany). Color
balance of blue against yellow was set to +70.

Riboflavin Production Experiments
Riboflavin production experiments were performed at 30◦C,
120 rpm in 50 mL of GCXII with 222 mM of glucose and
15 μM of IPTG using 500 mL baffled flasks. Supernatant
was separated by centrifugation after 48 h of cultivation.
Riboflavin concentration of cell-free supernatant was analyzed
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TABLE 1 | Bacterial strains, plasmids and oligonucleotides used in this study.

Bacterial strain Relevant characteristic Reference

Escherchia coli

DH5α F-thi-1 endA1 hsdR17(r-, m-) supE44 �lacU169 (�80lacZ�M15) recA1 gyrA96 relA1 Bethesda Research
Laboratories

Corynebacterium glutamicum

WT Wild type, ATCC 13032 ATCC

Plasmid Relevant characteristic Reference

pEKEx3 SpecR; E. coli–C. glutamicum shuttle vector for regulated gene expression (Ptac, lacIq, pBL1 oriVCg) Stansen et al.
(2005)

pVWEx1 KanR; E. coli–C. glutamicum shuttle vector for regulated gene expression (Ptac, lacIq, pCG1 oriVCg) Peters-Wendisch
et al. (2001)

pEKEx3-sigA SpecR, pEKEx3 with sigA from C. glutamicum WT This study

pEKEx3-sigB SpecR, pEKEx3 with sigB from C. glutamicum WT This study

pEKEx3-sigC SpecR, pEKEx3 with sigC from C. glutamicum WT This study

pEKEx3-sigD SpecR, pEKEx3 with sigD from C. glutamicum WT This study

pEKEx3-sigE SpecR, pEKEx3 with sigE from C. glutamicum WT This study

pEKEx3-sigH SpecR, pEKEx3 with sigH from C. glutamicum WT This study

pEKEx3-sigM SpecR, pEKEx3 with sigM from C. glutamicum WT This study

pVWEx1-sigH KanR, pVWEx1 with sigH from C. glutamicum WT This study

pEKEx3-ribF SpecR, pEKEx3 with ribF from C. glutamicum WT This study

pVWEx1-ribF KanR, pVWEx1 with ribF from C. glutamicum WT This study

Oligonucleotide Sequence (5′-3′) Reference

sigA-fwd GCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGATGGTAGAAAACAACGTAGCAAAAAAGACGGTCG This study

sigA-rev CGGTACCCGGGGATCTTAGTCCAGGTAGTCGCGAAGGACCTG This study

sigB-fwd GCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGATGACAGCACCGTCCACGCAG This study

sigB-rev CGGTACCCGGGGATCTTACTGGGCGTACTCACGAAGACGTG This study

sigC-fwd GCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGGTGAAGTCAAAAGAGCGTAACGACGC This study

sigC-rev CGGTACCCGGGGATCCTAACCTTGGGCGGATTTGCCATCTTCG This study

sigD-fwd GCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGTTGGCTGATACTGAGCGCGAGCTC This study

sigD-rev CGGTACCCGGGGATCTTACTTGTTCTCCTGCTGCTCAAGTGTGCTTC This study

sigE-fwd GCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGATGACTTATATGAAAAAGAAGTCCCGAGATGACGCAC This study

sigE-rev CGGTACCCGGGGATCTTAGTGGGTTGGAACCAACAAAGAAACTTCCTCG This study

sigH-fwd GCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGATGGCTGAAAACCGAACCGGCAC This study

sigH-rev CGGTACCCGGGGATCTTATGCCTCCGAATTTTTCTTCATGTCGGGATG This study

sigM-fwd GCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGATGACAGTACTGCCTAAAAACCATGACCTAAGC This study

sigM-rev CGGTACCCGGGGATCTCAGTTGCTTTCGCACTGTATGGAGCC This study

ribF-fwd GCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGGTGGATATTTGGAGTGGACT This study

ribF-rev CGGTACCCGGGGATCTTAAGCGCTGGGCTGGGTGT This study

Underlined sequences represent the overlap region with vector plasmid; sequences in bold italic represent ribosome binding sites; sequences in bold represents the
translational start codons.

using high performance liquid chromatography (HPLC; Agilent
Technologies Sales & Services GmbH & Co. KG, Waldbronn,
Germany). The confirmation and quantification of riboflavin
was performed using diode array detector (DAD). Samples were
separated with a column system consisting of a precolumn
(LiChrospher 100 RP18 EC-5μ (40 mm × 4 mm), CS-
Chromatographie Service GmbH, Langerwehe, Germany) and a
main column (LiChrospher 100 RP18 EC-5μ (125 mm × 4 mm),
CS Chromatographie Service GmbH, Langerwehe, Germany)
with 0.1 M sodium acetate, pH 7.2 supplemented with 0.03%
sodium azide (A) and methanol (B) as the mobile phase. The
following gradient was used at a flow rate of 1.2 mL/min; 0 min

B: 20%, 0.5 min B: 38%, 2.5 min B: 46%, 3.7 min B: 65%, 5.5 min
B: 70%, 6 min B: 75%, 6.2 min B: 85%, 6.7 min B: 20%, 8.9 min B:
20%.

Transcriptome Analysis of sigH
Overexpressing Strain using DNA Microarrays
C. glutamicum strains WT(pEKEx3) and WT(pEKEx3-sigH)
were cultured in BHI medium and inoculated into CGXII
medium with 222 mM of glucose for adaptation. Cells were
cultured overnight and inoculated into 50 mL of CGXII medium
with 222 mM of glucose and 10 or 15 μM of IPTG at the initial
OD of 1. Cells were harvested in the early exponential growth
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phase (OD between 6 and 8) and RNA isolation was performed
as described previously (Wendisch, 2003). The purified RNA was
analyzed by spectrophotometer (NanoDrop) for quantity and
gel electrophoresis for quality. The RNA sample was stored at
−80◦C until further use. cDNA synthesis from total RNA as well
as DNA microarray hybridization were performed as described
previously (Netzer et al., 2004; Polen et al., 2007). Normalization
and evaluation of the microarray data was done with the software
package EMMA 2 (Dondrup et al., 2009). Genes which were
upregulated in WT(pEKEx3-sigH) under both 10 and 15 μM of
IPTG concentration were taken into account for further analysis
(p-value < 0.05,M-value > 1).

Measurement of Glucose-6-Phosphate
1-Dehydrogenase Enzyme Activities
Enzyme activities of glucose-6-phosphate 1-dehydrogenase in
C. glutamicum WT (pEKEx3) and C. glutamicum WT(pEKEx3-
sigH) were measured in cell free crude extracts, which were
prepared as described previously (Stansen et al., 2005) with
some modification. Shortly, cells grown in CGXII medium with
222 mM of glucose and 15 μM of IPTG were harvested in the
exponential growth phase (OD around 6), washed once with
disruption buffer (50 mM Tris-HCl pH 8.5, 10 mM MgCl2,
and 1 mM DTT) and stored at −20◦C until use. Protein
concentrations were determined with the Bradford reagent using
bovin serum albumin as a standard. Enzyme activities were
measured spectrophotometrically following NADPH formation
at 30◦C in final volume of 1 mL. The concomitant formation
of NADPH was measured at 340 nm and absorption coefficient
of 6.3 mM−1 cm−1 at 340 nm was used for calculating enzyme
activities. The assay contained 50 mM Tris-HCl pH 8.5, 10 mM
MgCl2, 100 mMNADP+ and 100 mM glucose-6-phosphate.

FMN and FAD Production Experiments
FMN and FAD production experiment was performed at 30◦C
with 120 rpm in 50 mL of GCXII with 222 mM of glucose using
500 mL baffled flasks. 100 μM of IPTG was added after OD
reached around 10. Supernatant was separated by centrifugation
after 48 h of cultivation. FMN and FAD concentration of cell-
free supernatant was analyzed as described previously with
some modifications (Barile et al., 1997). Shortly, signal was
detected with fluorescent detector (FLD; excitation and emission
wavelengths of 450 and 520 nm, respectively) and samples were
separated with the same column systems used in riboflavin
production experiments with 20 mM potassium phosphate, pH
6.0 (A) andmethanol (B) as the mobile phase. The following ratio
was used at a flow rate of 1.0 mL/min; 0–5 min B: 25%, 5–10 min
B: 50%.

Results

Effect of Overexpressing Sigma Factor Genes
in C. glutamicum
To investigate the influence of overexpressing sigma factor genes
in C. glutamicum, each sigma factor gene (sigA, sigB, sigC, sigD,
sigE, sigH, and sigM) was cloned into IPTG-inducible expression

vector pEKEx3 and transformed into C. glutamicumWT. Growth
of these strains and of a control strain containing the empty
vector pEKEx3 was monitored in the presence of different IPTG
concentrations (0, 5, 15, 50, or 250 μM) in CGXII medium
containing 222 mM of glucose. Growth of the control strains
was not affected by IPTG, while sigma factor gene transformants
grew with lower growth rates at higher IPTG concentrations.
In particular, sigD and sigH transformants exhibited strongly
reduced growth rates with 50 and 250 μM IPTG and did not
reach the stationary phase during 48 h of cultivation (Figure 1A).
Interestingly, the cultures of the sigH transformant with up
to 15 μM IPTG were colored yellow (Figure 1B). Therefore,
the supernatants of all cultures were analyzed by recording
absorbance spectra from 350 to 600 nm (Figure 2). While
absorbance of the different supernatants varied to some degree
when comparing the different transformants, the supernatant
of sigH transformant induced with 10 μM IPTG showed a
strong absorbance centered at about 450 nm. Since the sigH
transformant did not grow when induced with higher IPTG
concentrations, this absorbance peak was not observed under
these conditions.

Overexpression of sigH Resulted in Riboflavin
Secretion
To verify the yellow color phenotype of WT(pEKEx3-sigH) in a
different cultivation setting, this strain was grown in shake flasks
and induced with 15 μM IPTG immediately after inoculation.
The cultures in shake flasks and the supernatants showed
yellow color. Spectrophotometric analysis of the supernatant
from the culture of WT(pEKEx3-sigH) revealed maximal
absorption at 450 nm as well as yellow fluorescence under
UV irradiation (data not shown). Since the spectral properties
of riboflavin fit well to those observed here, the supernatant
and riboflavin as standard were analyzed by HPLC. Co-elution
at around 3.2 min of riboflavin with the compound in the
supernatant of WT(pEKEx3-sigH; Figure 3A) and comparable
absorption spectra (300–550 nm; Figure 3B) revealed that
riboflavin was produced by C. glutamicum WT(pEKEx3-sigH).
No other significant peak was detected. Quantification based on
a series of suitable riboflavin concentrations indicated that the
accumulation of riboflavin in the supernatant of WT(pEKEx3-
sigH) was about seven times as high as that of control strain
WT(pEKEx3), (68.0 ± 1.3 μM and 10.4 ± 1.5 μM, respectively,
biological triplicates). When expression of sigH was induced by
addition of 100 μM of IPTG in the middle of the exponential
growth phase (OD ∼10) about 35 μM riboflavin accumulated
(Figure 4).

Global Gene Expression Changes due to sigH
Overexpression
To determine if sigH overexpression affects riboflavin
biosynthesis genes, DNA microarray experiments with
C. glutamicum WT(pEKEx3-sigH) were performed and global
gene expression at two different IPTG concentrations (10 and
15 μM) was compared to the control strain WT(pEKEx3).
Statistically significant gene expression increases of at least
two fold were observed for 193 and 142 genes, respectively,
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FIGURE 1 | Maximum growth rates of cultivations of C. glutamicum
wild type (WT) transformed with plasmids for overexpression of
various sigma factor genes (A) and images of these cultures taken
after 48 h of cultivation (B). CGXII with 222 mM of glucose was used

as growth medium. The different IPTG concentrations used to induce
sigma factor gene overexpression are indicated. The growth rates (h−1)
depicted in (A) are color-coded from red to blue according to the given
scale.

upon induction with 10 and 15 μM of IPTG (M-value > 1,
p-value < 0.05; Table 2). Fifty genes were considered further
as they were upregulated in both IPTG concentrations. Among
these, genes related to riboflavin synthesis [ribH (cg1797), ribA
(cg1798), ribC (cg1799)] and the pentose phosphate pathway
[zwf (cg1778), opcA (cg1779)] were found. In addition, many
genes encoding NADPH-dependent or FAD/FMN-dependent
oxidoreductases were upregulated upon sigH overexpression
(Table 2)

To confirm the observed gene expression changes of zwf
and opcA, the specific enzyme activity of glucose-6-phosphate
dehydrogenase encoded by zwf and opcA was measured. The
specific activity of glucose-6-phosphate dehydrogenase in the
crude extracts of C. glutamicum WT(pEKEx3-sigH) was three
times as high as in those of C. glutamicumWT(pEKEx3) (117± 7
and 35 ± 4 mU/mg, respectively, biological triplicates). Thus,
sigH overexpression led to increased zwf and opcA mRNA
level and increased specific activity of the encoded glucose-6-
phosphate dehydrogenase.

FMN Production by C. glutamicum Established
as Proof-of-Concept based on Overexpression
of Endogenous Genes sigH and ribF
Riboflavin is the precursor of FMN (flavin mononucleotide)
and FAD (flavin adenine dinucleotide), which are biologically
important as redox cofactor for many flavoenzymes and have
an advantage as food additives over riboflavin due to much
higher solubility in water (Kirk-Othmer, 1984). C. glutamicum
possesses one gene, ribF (cg2169), encoding putative bifunctional
riboflavin kinase / FMN adenylyltransferase, which converts
riboflavin to FMN and FAD. In C. glutamicum, ribF is located
about 350 kb downstream of the def2-fmt-fmu-rpe-ribGACH
operon that contains the riboflavin biosynthesis genes ribG,
ribA, ribC, and ribH. Since the ribF mRNA level was not
affected notably by sigH overexpression (Table 2), simultaneous
overexpression of ribF and sigH was tested. However, severely
retarded growth was observed already with only 15 μM IPTG

(data not shown). Therefore, expression of ribF or/and sigH was
induced in the middle of the exponential growth phase (OD∼10)
using two compatible IPTG inducible plasmids, pEKEx3 and
pVWEx1, with 100 μM of IPTG. After 48 h, neither riboflavin,
FMN nor FAD were detected (<5 μM) in the supernatants
of the control strain carrying the empty vectors. Expression
of only ribF from pVWEx1 did not result in accumulation of
riboflavin, FMN nor FAD. When only sigH was overexpressed
from plasmid pEKEx3 riboflavin was secreted to the medium
(32.4 ± 1.8 μM), but neither FMN nor FAD accumulated
(Figure 4). However, when both genes were overexpressed in
C. glutamicum WT(pEKEx3-sigH, pVWEx1-ribF) secretion of
FMN (17.0 ± 0.6 μM) in addition to riboflavin (11.8 ± 0.4 μM)
was detected, while FAD was not detected (<5 μM). To test
if a different gene dosage affects FMN production, sigH was
expressed from low copy number plasmid pVWEx1 and ribF
from medium copy number plasmid pEKEx3. C. glutamicum
WT(pEKEx3-ribF, pVWEx1-sigH) accumulated about two times
higher concentrations of riboflavin (19.8 ± 0.3 μM) and FMN
(33.1 ± 1.8 μM).

Discussion

In this study the potential of overexpressing sigma factor genes
for metabolic engineering of C. glutamicum was tested. Sigma
factors are related to the promoter selectivity during transcription
initiation and are expected to affect expression of larger groups
of genes, e.g., RpoS of E. coli regulates 481 genes under different
growth and stress conditions (Weber et al., 2005). However, there
are examples of sigma factors relevant for expression of only
few genes, e.g., FecI of E. coli that is involved in expression
of only seven genes (Cho et al., 2014). The functions of the
seven sigma factors of C. glutamicum, which for comparison
possesses 127 DNA-binding transcriptional regulators (Brune
et al., 2005), have not been studied in detail although SigB,
SigE, SigH, and SigM have been studied by several groups (Kim
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FIGURE 2 | Absorption spectra of supernatants of cultures of C. glutamicum WT transformed with plasmids for overexpression of various sigma
factor genes. CGXII with 222 mM of glucose was used as growth medium. The IPTG concentrations and the plasmids used for overexpression of sigma factor
genes are indicated. Supernatants were analysed after 48 h of cultivation.
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FIGURE 3 | Analysis of supernatants of C. glutamicum WT(pEKEx3-sigH)
cultures by (A) high performance liquid chromatography (HPLC) and
(B) spectrophotometry. (A) HPLC chromatograms of supernatants of
C. glutamicum WT(pEKEx3) and WT(pEKEx3-sigH) after 48 h in CGXII with
222 mM of glucose. Expression of sigH was induced by addition of 15 μM of

IPTG at the start of the cultivation. A standard of pure riboflavin (70 μM) and a
50%/50% mixture of this standard and the supernatant of the culture of
WT(pEKEx3-sigH) are given for comparison. Absorbance at 450 nm is shown.
(B) Spectra recorded at the retention time of 3.2 min of the HPLC samples of
C. glutamicum WT(pEKEx3-sigH) and the riboflavin standard from (A).

FIGURE 4 | Analysis of supernatants of C. glutamicum WT(pEKEx3-sigH,
pVWEx1-ribF) cultures by HPLC (A) and riboflavin and FMN
concentrations in supernatants of various strains (B). (A) HPLC
chromatograms of supernatants of C. glutamicum WT(pEKEx3-sigH,
pVWEx1-ribF ) after 48 h in CGXII with 222 mM of glucose. Expression of sigH
was induced by addition of 100 μM of IPTG in the middle of the exponential

growth phase (OD ∼10). Standards of commercial preparations of riboflavin,
FMN and FAD are given for comparison. Absorbance at 450 nm is shown.
(B) Concentrations of riboflavin and FMN in supernatants of cultures of
C. glutamicum WT transformed with the indicated plasmids. FAD was not
detectable (<5 μM) in the analyzed supernatants. ∗<5 indicates that riboflavin
or FMN in these supernatants were below 5 μM. Biological triplicates.

et al., 2005a; Larisch et al., 2007; Nakunst et al., 2007; Ehira
et al., 2008, 2009; Park et al., 2008; Pátek and Nešvera, 2011;
Busche et al., 2012; Holátko et al., 2012; Toyoda et al., 2015).
Here, we have determined the growth response of C. glutamicum
to sigma factor gene overexpression. Overexpression of every
sigma factor gene slowed growth in glucose minimal medium,
however, the effects varied. The smallest effects were found when
the general sigma factor genes sigA and sigB or the genes for
SigE and SigM were overexpressed (Figure 1). Overexpression

of sigC in glucose minimal medium with 250 μM IPTG
reduced the growth rate by about one third (Figure 1). The
growth was severely inhibited (about half-maximal inhibition
with IPTG concentrations as low as 15 μM) as consequence
of overexpressing sigD or sigH. The functions and promoter
selectivities of SigC and SigD remain to be studied, however,
it is known that deletion of sigD retarded growth under
microaerobic conditions (Ikeda et al., 2009). The observed
growth inhibitory effects of overexpressing sigD or sigC described
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TABLE 2 | DNA microarray analysis of genes differentially expressed upon sigH overexpression.

M-valueb P-valuec

Gene IDa Gene namea Function of proteina 10 µM 15 µM 10 µM 15 µM

cg0184 Conserved hypothetical protein 1.9 1.2 1.6E-2 2.6E-2

cg0186 Putative methylated-DNA-protein-cysteine methyltransferase 1.3 1.1 4.3E-4 3.8E-3

cg0614 Hypothetical protein 2.9 2.2 2.1E-3 5.6E-3

cg0616 fdhD Putative formate dehydrogenase, FdhD-family 2.7 3.4 4.8E-4 1.1E-2

cg0617 Hypothetical protein 2.1 2.6 3.2E-4 8.8E-4

cg0876 sigH RNA polymerase sigma factor, ECF-family 4.1 4.4 1.4E-5 6.0E-4

cg1081 ABC-type putative daunorubicin transporter, ATPase subunit 1.2 1.4 1.6E-2 2.9E-2

cg1127 Putative mycothiol S-conjugate amidase 1.3 2.6 1.3E-3 2.7E-3

cg1386 fixA Putative electron transfer flavoprotein, beta subunit 1.1 2.0 1.7E-3 1.4E-2

cg1397 trmU tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase 1.5 1.7 6.6E-4 4.8E-3

cg1398 Conserved hypothetical protein 1.7 2.4 1.9E-2 2.3E-2

cg1432 ilvD Dihydroxy-acid dehydratase 1.9 1.9 2.0E-4 6.7E-4

cg1628 Putative hydrolase, alpha/beta superfamily 2.5 1.9 4.8E-2 9.1E-3

cg1671 Putative membrane-associated GTPase 1.7 1.3 3.9E-2 1.4E-2

cg1687 Putative transcriptional regulatory protein 1.4 1.3 1.9E-2 9.7E-3

cg1688 Putative proteasome component 2.2 2.2 2.0E-4 7.9E-3

cg1689 Conserved hypothetical protein 2.3 3.0 9.5E-4 1.4E-2

cg1709 mshC Putative 1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside-L-cysteine ligase 2.9 1.9 1.2E-4 1.5E-3

cg1764 sufB FeS assembly membrane protein, SufB-family 1.2 1.0 1.8E-3 9.1E-3

cg1776 tal Transaldolase 1.0 1.7 1.6E-2 1.2E-3

cg1778 zwf Glucose-6-phosphate 1-dehydrogenase 1.2 2.0 4.1E-3 4.6E-3

cg1779 opcA Glucose-6-phosphate 1-dehydrogenase subunit 1.6 1.2 1.5E-3 5.0E-2

cg1796 ribX Conserved putative membrane protein, RibX-like 1.2 1.7 6.7E-3 3.5E-3

cg1797 ribH Riboflavin synthase, beta chain 1.7 1.3 6.4E-5 1.7E-3

cg1798 ribA Putative GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphatesynthase 2.0 1.0 4.6E-5 8.0E-3

cg1799 ribC Riboflavin synthase, alpha chain 1.9 3.0 8.8E-4 2.7E-2

cg2078 Peptide methionine sulfoxide reductase 3.3 2.8 4.4E-5 4.2E-5

cg2079 Conserved hypothetical protein 1.4 1.1 2.2E-3 7.7E-3

cg2106 Conserved hypothetical protein 2.7 5.0 3.1E-3 4.5E-3

cg2127 Hypothetical protein 1.1 1.8 8.7E-3 3.5E-2

cg2194 mtr Putative NADPH-dependent mycothiol reductase 3.1 2.9 2.9E-8 2.2E-3

cg2206 ispG 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase 1.3 1.2 7.5E-3 2.7E-2

cg2247 Hypothetical protein 1.8 2.0 2.4E-5 3.1E-4

cg2296 hisI Phosphoribosyl-AMP cyclohydrolase 1.2 1.1 3.1E-3 8.4E-3

cg2297 hisF Imidazole glycerol phosphate synthase subunit HisF 1.4 1.4 1.6E-2 9.7E-4

cg2411 Conserved hypothetical protein, HesB/YadR/YfhF family 2.1 2.8 4.0E-4 4.2E-4

cg2423 lipA Lipoyl synthetase 1.6 1.7 1.9E-4 8.5E-3

cg2538 Alkanal monooxygenase (FMN-linked) 3.3 4.2 7.9E-4 1.6E-5

cg2644 clpP2 Endopeptidase Clp, proteolytic subunit 1.1 1.1 7.6E-4 9.4E-5

cg2661 Putative dithiol-disulfide isomerase 1.5 1.9 1.1E-4 4.7E-3

cg2665 Hypothetical protein 1.4 1.4 4.6E-3 7.8E-3

cg2762 murI Glutamate racemase 2.0 2.4 5.0E-2 2.4E-2

cg2835 Putative acetyltransferase 1.0 3.3 4.7E-2 2.6E-2

cg2838 Putative dithiol-disulfide isomerase 3.6 3.2 3.9E-6 2.9E-3

cg3236 msrA Protein-methionine-S-oxide reductase 1.4 3.4 3.4E-3 1.1E-2

cg3372 Conserved hypothetical protein 1.1 1.3 2.5E-5 4.2E-2

cg3405 NADPH:quinone reductase Zn-dependent oxidoreductase 2.6 2.8 7.8E-4 1.7E-2

cg3422 trxB Thioredoxin reductase 1.8 2.2 3.1E-4 1.8E-4

cg3423 trxC Thioredoxin 1.5 2.1 4.1E-4 6.8E-5

cg3424 cwlM N-acetylmuramoyl-L-alanine amidase 1.3 1.7 8.2E-3 1.4E-2

aGene ID, gene name and function of proteins are given according to CoryneRegNet (http://coryneregnet.de/). bRelative RNA levels in a strain overexpressing sigH as
compared to the empty vector control are shown as log 2 values (M-values). To induce sigH overexpression either 10 or 15 μM IPTG were added. cP-values were
determined by Student’s t-test.
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in this study suggested that these sigma factors are not negligible
and proper expression levels of those sigma factors are important
for expression of genes required for fast growth in glucose
minimal medium.

Analysis of the supernatants of C. glutamicum overexpressing
sigma factor genes (Figure 2) revealed that only sigH
overexpression led to the production of a colored compound,
which was identified to be riboflavin (Figure 3). Moreover,
sigH overexpression slowed growth (Figure 1). Regulation by
SigH in C. glutamicum is known to some detail. The alternative
sigma factor SigH is controlled by anti-sigma factor RshA,
which possibly shuts down the SigH-dependent stress response
after the cells have overcome the stress condition (Busche
et al., 2012). SigH has been shown to be involved in expression
of trxB encoding thioredoxin reductase (Kim et al., 2005a),
whcE encoding transcriptional regulator WhiB (Kim et al.,
2005b), sigM (Nakunst et al., 2007), small antisense RNA gene
arnA (Zemanová et al., 2008), the F0F1-ATP synthase operon
atpBEFHAGDC (Barriuso-Iglesias et al., 2013), mycothiol
peroxidase gene mpx (Si et al., 2015a), mycothiol S-conjugate
amidase gene mca (Si et al., 2014), and methionine sulfoxide
reductase A gene msrA (Si et al., 2015b). In addition, promoter
selectivity of SigH has been studied using an in vitro transcription
system (Holátko et al., 2012). Moreover, the SigH regulon has
been studied by DNA microarray and ChIP-chip analyses
involving deletion and overexpression of sigH as well as deletion
of the anti-sigma factor gene rshA (Ehira et al., 2009; Busche
et al., 2012; Toyoda et al., 2015). The strong growth inhibition as
a result of overexpression of sigH shown here is commensurate
with the described functions of SigH. In our DNA microarray
analysis, 50 genes were upregulated when sigH overexpression
was induced with 10 and 15 μM IPTG (Table 2). These data
generally agree with previous data on control by SigH (Ehira
et al., 2009; Busche et al., 2012; Toyoda et al., 2015). Notably,
overexpression of sigH in the wild type, i.e., in the presence of
its anti-sigma factor RshA, elicited similar expression changes
as deletion of rshA, i.e., 43 out of 50 genes upregulated as
consequence of sigH overexpression were also upregulated in
the absence of anti-sigma factor RshA (Busche et al., 2012).
A motif search with the 50 upregulated genes (Table 2) using
UniProt database (http://www.uniprot.org/) identified putative
iron sulfur cluster-containing proteins encoded by cg0616
(fdhD), cg1432 (ilvD), cg2206 (ispG) and cg2423 (lipA), proteins
predicted to contain NAD(P)H binding sites encoded by cg0184,
cg0616 (fdhD), cg1778 (zwf ), cg2194 (mtr), and cg3405, and
proteins with predicted FMN/FAD binding sites encoded by
cg0616 (fdhD), cg1386 (fixA), cg2194 (mtr), cg2538 and cg3422
(trxB). Iron sulfur clusters are sensitive to oxidative stress and
NAD(P)H, FMN, FAD are important electron donor/acceptors.
Upregulation of genes related to riboflavin synthesis under sigH
overexpression observed here (Table 2) was consistent with a
very recent ChIP-chip data on SigH-dependent promoters in
C. glutamicum R (Toyoda et al., 2015).

In C. glutamicum, riboflavin biosynthesis was shown to be
dependent on ribA-encoded bifunctional GTP cyclohydrolase
II/3,4-dihydroxy-2-butanone 4-phosphate synthase, since in
its absence efficient growth required supplemental riboflavin

(Takemoto et al., 2014). Uptake of supplemental riboflavin occurs
via the transporter RibM (Vogl et al., 2007) and both RibM
protein levels and ribM mRNA were reduced in FMN-rich cells
due to the FMN-riboswitch (Takemoto et al., 2014). The FMN-
riboswitch has been observed in an RNAseq-based analysis of
the transcriptional landscape of C. glutamicum (Pfeifer-Sancar
et al., 2013) and control by the FMN-riboswitch was shown to
involve Rho and RNase E/G (Takemoto et al., 2015). However,
riboflavin biosynthesis appears not to be controlled by the FMN-
riboswitch. Instead, transcription of the riboflavin biosynthesis
operon depends on SigH and deletion of rshA and overexpression
of sigH resulted in riboflavin secretion as recently reported
in the rshA deletion mutant (Figure 3; Toyoda et al., 2015).
Neither FMN nor FAD accumulated under these conditions,
which may be explained by the fact that ribF expression has
not been found to be influenced by deletion of rshA and
overexpression of sigH (Busche et al., 2012; Toyoda et al., 2015)
(Table 2).

Riboflavin concentrations in supernatants of wild-type
C. glutamicum cultures were low, but traces may be present
(Figure 3). Eremothecium ashbyii and Ashbya gossypii are
known as natural producers of riboflavin (Osman and Soliman,
1963; Kato and Park, 2011) and Bacillus subtilis, E. coli,
and Corynebacterium ammoniagenes were selected and/or
metabolically engineered to overproduce riboflavin (Koizumi
et al., 2000; Stahmann et al., 2000; Lin et al., 2014). The role of
extracellular riboflavin is still unclear. However, iron limitation
resulted in riboflavin secretion by Candida guilliermondii and
other organisms (Enari and Kauppinen, 1961; Neilands, 2014)
and it has been suggested that excreted riboflavin may play an
important role for ferric iron reduction and iron acquisition
(Worst et al., 1998; Crossley et al., 2007). A riboflavin export
system is currently unknown.

This study showed that FMN overproduction by
C. glutamicum is possible. Simultaneous overexpression of sigH
and ribF resulted in the secretion of riboflavin and FMN into
the medium, while FAD was not detected (Figure 4). Currently,
FMN is synthesized chemically involving phosphorylation of
riboflavin. However, FMN preparations typically contain ∼25%
impurities such as isomeric riboflavin phosphates, riboflavin
cyclophosphates, and riboflavin bisphosphates, which can
act as antimetabolites and thus be toxic (Abbas and Sibirny,
2011). Enzyme-catalyzed biotransformation of riboflavin
and metaphosphate using a crude enzyme preparation from
genetically engineered C. ammoniagenes yielded 40 μM of FMN
without concomitant FAD formation (Nakagawa et al., 1995).
Fermentative production of 0.5 mM of FMN using genetically
engineered Candida famata has also been reported (Yatsyshyn
et al., 2010). Although conversion from riboflavin to FMN
in the present study was not complete and titers were not
high, a proof-of-principle demonstration of fermentative FMN
production by C. glutamicum could be shown. Future work will
address conversion of FMN to FAD and strain development to
improve riboflavin, FMN and FAD yields and productivities.

This and work by others (Toyoda et al., 2015) showed
that analysis of sigma factor gene overexpression in
C. glutamicum wild type helped discover the potential of this
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bacterium for riboflavin production. In Synechocystis sp. PCC
6803, overexpression of sigE activated expression of sugar
catabolic genes and increased polyhydroxybutyrate (PHB) during
nitrogen starvation (Osanai et al., 2011, 2013). SigE from
Synechocystis sp. PCC 6803 and SigB from C. glutamicum
belong to group 2 sigma factors and SigB from C. glutamicum
positively regulates glucose catabolism genes (Ehira et al.,
2008). Overexpression of SigF in Mycobacterium smegmatis
enhanced carotenoid biosynthesis by upregulating the carotenoid
biosynthesis operon (Kumar et al., 2015), however,C. glutamicum
does not possess the same type of sigma factor. Future studies
will have to establish if and to what extent the approach of

sigma factor gene overexpression is transferable to classically
obtained or metabolically engineered C. glutamicum strains
and/or to other bacteria. This may also pertain to “awakening”
silent or orphan gene clusters relevant for secondary metabolite
production, e.g., silent antibiotic biosynthesis gene clusters.
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