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Simple Summary: Radiation-induced hypothyroidism (RIHT) commonly develops in cancer sur-
vivors that receive radiation therapy for cancers in the head and neck region. The state-of-art normal
tissue complication probability (NTCP) models perform satisfactorily; however, they do not use
the whole spectrum of information that can be obtained from imaging techniques. The radiomic
approach offers the ability to efficiently mine features, which are imperceptible to the human eye, but
may provide crucial data about the patient’s condition. We gathered CT images and clinical data
from 98 patients undergoing radiotherapy for head and neck cancers, 27 of whom later developed
RIHT. For them, we created machine-learning models to predict RIHT using automatically extracted
radiomic features and appropriate clinical and dosimetric parameters. We also validated the well-
established external state-of-art NTCP models on our datasets and observed that our radiomic-based
models performed very similarly to them. This shows that automated tools may perform as well as
the current standard but can be theoretically applied faster and be implemented into existing imaging
software used when planning radiotherapy.

Abstract: State-of-art normal tissue complication probability (NTCP) models do not take into account
more complex individual anatomical variations, which can be objectively quantitated and compared
in radiomic analysis. The goal of this project was development of radiomic NTCP model for radiation-
induced hypothyroidism (RIHT) using imaging biomarkers (radiomics). We gathered CT images
and clinical data from 98 patients, who underwent intensity-modulated radiation therapy (IMRT) for
head and neck cancers with a planned total dose of 70.0 Gy (33–35 fractions). During the 28-month
(median) follow-up 27 patients (28%) developed RIHT. For each patient, we extracted 1316 radiomic
features from original and transformed images using manually contoured thyroid masks. Creating
models based on clinical, radiomic features or a combination thereof, we considered 3 variants of data
preprocessing. Based on their performance metrics (sensitivity, specificity), we picked best models
for each variant ((0.8, 0.96), (0.9, 0.93), (0.9, 0.89) variant-wise) and compared them with external
NTCP models ((0.82, 0.88), (0.82, 0.88), (0.76, 0.91)). We showed that radiomic-based models did not
outperform state-of-art NTCP models (p > 0.05). The potential benefit of radiomic-based approach
is that it is dose-independent, and models can be used prior to treatment planning allowing faster
selection of susceptible population.
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1. Introduction

Patients with head and neck cancer (HNC) treated with radiation therapy (RT) may
experience multiple adverse normal tissue effects [1], including hypothyroidism. Radiation-
induced hypothyroidism (RIHT) has been reported in 25–65% of patients and typically
develops during the first 2 years from RT completion. Since the symptoms of RIHT are
non-specific and insufficient levels of thyroid hormones not only negatively impact patients’
quality of life [2], but also mortality [3,4], adequate identification of patients at risk of this
effect is of paramount importance [5–7].

Clinical and dosimetric parameters are typically used in normal tissue complication
probability (NTCP) models to predict RIHT [1]. Recently, we [7] and others [6] have applied
published NTCP models in homogenous cohorts of patients with oropharyngeal cancer
(OPC). We concluded that two models based on thyroid mean dose and volume, published
by Rønjom et al. [8] and by Boomsma et al. [9], performed best in terms of accuracy (84
to 87%), highlighting the feasibility of dose-response models to predict RIHT and their
potential utility in the clinical setting.

Radiomics is a relatively new discipline that aims at deriving biomarkers from medical
images [10]. These biomarkers are features describing shape, intensity or texture of specific
region(s) of interest (ROI), typical an organ or lesion. Radiomics emerged in the field of can-
cer studies where large number of medical images are generated even by routine diagnostic
process. In this context, radiomics can supplement standard radiologic assessment with
localized, quantitative information on interesting structures with low cost and without
any additional burden or discomfort to patients. In recent years, radiomics researchers
community took considerable efforts to standardize methodology aiming at translatability
of radiomic studies that resulted in publication of the first reference manual for image
biomarker studies [11].

Radiomic features were shown to reflect cancer biology in terms of histologic type [12],
overall and progression-free survival [12–14], probability of recurrence [15], activity of bio-
logical pathways [12,16], human papillomavirus infection [17], probability lymph node [18]
or distant metastases [19], CD8 cells infiltration [20]. Some studies extended radiomic anal-
ysis outside tumor volume, including also peritumoral regions for prediction of patients’
survival [21] or adjuvant chemotherapy [22]. Similarly, lymph nodes were sometimes
considered to be ROI in studies that aimed at identifying lymph nodes metastases [23,24].
Some radiomic NTCP models based on computed tomography (CT) were developed, for
instance for prediction of xerostomia after head and neck cancer radiotherapy [25,26],
radiation-induced pneumonitis [27]. Alternatively, radiomic features for radiation-induced
NTCP models could be calculated in 3D dose distribution that was successfully done
for cervical cancer [28], prostate cancer [29] and lung cancer [30]. Given the very good
performance of some NTCP models in predicting RIHT in patients with OPC, the question
whether there would be an added benefit of an in depth radiomic analysis was unresolved
and thus we decided to apply CT-based radiomics in this group of patients and compare
predictive performance with the available models based on dosimetric and clinical features.

2. Materials and Methods
2.1. Patients and CT Images

The studied cohort was a subgroup of patients included in previous study on val-
idation of NTCP models for radiation-induced hypothyroidism by Nowicka et al. [7],
recruited between 1 May 2016 and 31 December 2018 and followed up until February 2020.
In addition to already collected clinical data, for this study we retrieved CT images from
radiotherapy planning with thyroid glands retrospectively contoured by two experienced
radiation oncologists according to the guidelines for organs at risk (OARs), as described
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previously. Patients for whom the CT image was unavailable, thyroid contour was miss-
ing or thyroid region contained CT artifacts, were excluded. Finally, among 108 patients
recruited in 3 centers 98 had complete data and were included in this study (38 from
center A-Copernicus Regional Specialist Hospital in Lodz, Poland; 12 from center B-Radom
Oncology Center and Maria Sklodowska-Curie National Research Institute of Oncology,
Radom, Poland and 48 from center C-Radiotherapy Department, Maria Sklodowska-Curie
National Research Institute of Oncology —branch in Gliwice, Poland); selection of cases is
summarized in Figure 1A.

Figure 1. Summary of patients’ selection and data subsets (A). Outline of the study from image
segmentation to NTPC model derivation (B).

All patients underwent intensity-modulated radiation therapy (IMRT) of OPC before
which their thyroid function was normal. After RT, they were monitored for a median
of 28 months on average (median). During this follow-up period, 27 patients developed
hypothyroidism. To avoid bias, laboratory assessment, contouring, outcome assessments,
statistical and radiomic analysis were performed by independent researchers. Details of
treatment protocol were described previously [7].

For all 98 patients, CT images paired with RT plans and anatomical structure con-
touring files were retrieved from PACS of treating centers. All images were stored in
DICOM format in CT and RTSTRUCT modalities; however, some differences in acquisition
protocol were identified. First, each center used a different CT scanner (center A: Somatom
Sensation Open, Siemens; center B: Optima CT580 RT, GE Healthcare; center C: SOMATOM
Definition AS and Somatom Sensation Open, Siemens). In each center, slice thickness and
pixel spacing were selected by radiotherapist and radiologist so that images were sufficient
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for treatment planning. Summary of selected settings in each center is presented in Table 1
and anonymized raw patients data are in Table S1 in Supplementary Materials.

The study was approved by the Bioethics Committee of the Medical University of
Lodz (KE/7/10, RNN/65/18).

Table 1. Patient, disease and CT images characteristics.

Center A (n = 38) Center B (n = 12) Center C (n = 48)

RIHT NO YES NO YES NO YES
Sex Female 7 7 1 1 5 2

Male 21 3 8 2 29 12
Age Median 62.0 60.0 61.0 57.0 57.5 58.0

IQR 57.0–66.2 56.8–61.8 60.0–68.0 55.5–60.5 53.0–62.0 52.2–66.5
Stage I–II 6 1 2 0 12 1

III–IV 22 9 7 3 22 13

Mean thyroid dose, Dmean (Gy) Median 54.8 57 55.2 57.3 47.2 52.5
IQR 51.9–56.3 52.7–59.3 53.5–56.3 56.2–58.4 43.8–49.5 49.7–56.2

Minimal thyroid dose, Dmin (Gy) Median 42.5 46.5 43 51.8 30.9 44.3
IQR 29.1–46.6 43.3–47.5 41.1–48.2 50.1–54.3 24.6–39.0 32.7–46.9

Median thyroid dose, D50 (Gy) Median 55.0 55.5 54.5 58.5 47.0 52.2
IQR 53.7–56.3 52.9–58.7 53.9–54.9 57.2–59.0 43.8–50.4 50.5–56.4

Maximal thyroid dose, Dmax (Gy) Median 62.5 69.4 61.7 61.6 60.2 65.1
IQR 57.6–70.1 63.3–71.9 60.8–62.1 59.6–61.8 52.6–68.0 53.6–72.2

Thyroid volume (ml) Median 21.7 11.8 29 12.6 19.1 10.6
IQR 19.0–32.9 7.7–13.9 21.7–37.4 10.6–14.0 14.6–27.6 8.3–13.3

Baseline fT4 (pg/mL) Median 6.5 6.1 9.3 8.2 7.2 8.1
IQR 5.3–7.4 5.1–7.6 8.0–10.1 7.7–10.7 6.3–8.4 7.9–9.9

Baseline TSH (mIU/L) Median 0.5 1.3 0.7 0.4 0.7 1.1
IQR 0.3–0.8 0.8–1.7 0.6–1.2 0.4–0.7 0.5–1.5 0.6–1.2

Mean pituitary dose (Gy) Median 4.0 3.8 4.0 3.8 3.8 3.7
IQR 3.0–4.5 3.0–5.3 3.2–4.8 3.6–3.8 3.0–4.4 3.0–4.8

Time to follow–up (months) Median 29.5 15 22 13 38 19
IQR 26.0–37.2 14.0–15.8 21.0–24.0 12.0–13.5 31.2–41.0 16.0–21.0

Pixel spacing (mm2)

0.98 × 0.98 25 9 0 0 26 11
1.07 × 1.07 1 0 0 0 3 3
1.09 × 1.09 0 0 0 0 1 0
1.11 × 1.11 0 0 0 0 1 0
1.13 × 1.13 0 0 0 0 1 0
1.17 × 1.17 0 0 0 0 1 0
1.27 × 1.27 1 0 9 3 1 0
1.56 × 1.56 1 1 0 0 0 0

Slice thickness (mm)

1.5 1 0 0 0 0 0
2 1 1 0 0 2 1
2.5 0 0 9 3 0 0
3 24 9 0 0 26 9
4 0 0 0 0 6 4
5 2 0 0 0 0 0

2.2. Image Preprocessing and Radiomic Features Calculation

Image processing and radiomic feature extraction were performed with PyRadiomics
v3.0 [31]. Due to diversity of pixel spacing and slice thicknesses, all images and thyroid
masks (generated from contours using dcmrtstruct2nii library [32]) were resampled to
1 × 1 × 1 mm3 isotropic voxels. Default PyRadiomics interpolators were used in resam-
pling: nearest neighbor interpolation for binary thyroid mask and B-spline interpolation
for CT image. At the same time, both image and mask were cropped to thyroid bounding
box with 10 mm padding added to ROI bounding box at each side; the operation is done by
default by PyRadiomics during resampling, but we increased default padding size from 5 to
10 voxels. Then, radiomic features were calculated that in the applied version of the library
included: 14 shape features, 18 first order statistics, 24 gray level cooccurrence matrix-based
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(GLCM) features, 16 gray level run length matrix-based (GLRLM) features, 16 gray level
size zone matrix-based (GLSZM) features, 5 neighborhood gray tone difference matrix-
based (NGTDM) features, 14 gray level dependence matrix-based (GLDM) features (full
list of features in Appendix A). Radiomic features were extracted from original images and
from their filtered versions, applying all filters available in PyRadiomics feature extractor:
square, square root, logarithm, gradient, exponential and 8 wavelet decomposition filters.
Default values of PyRadiomics feature extractor settings were used, including filtration
parameters. Resegmentation was not applied. In total, 1316 features were calculated for
each image (14 shapes features extracted from image mask, 93 intensity-based features for
original images and 13 filtered ones).

The processing of images and NTCP model derivation is summarized in Figure 1B,
while raw radiomic features values are reported in Table S2.

2.3. Stability Assessment

The purpose of stability analysis was to identify features that were unaffected (or
affected only slightly) by minor differences in contouring of thyroid glands. As the
segmentations by multiple radiotherapists or radiologists were not available, we decided to
perform a simulation study. We modelled inaccuracies of contouring as affine deformations
of thyroid mask, consisting of:

• 3 translations by up to 1 mm in either direction along each of the 3 main axes,
• 3 rotations by up to 2° in either direction around each of the 3 main axes,
• 3 zooms by up to 2% of either dimension along each of the 3 main axes.

We generated 100 such transformations by randomly choosing order and parameters
of the above 9 operations. Then, we applied every transformation to all thyroid masks
in our image data set and used the transformed masks to calculate new sets of radiomic
features. These transformed masks were used solely for the purpose of stability assessment,
while for model development we calculated features using original manual contours of
thyroid glands.

Inter-class correlation coefficient (ICC) served as a measure of agreement between
original features (calculated using unchanged mask) and those calculated using each of
100 transformed masks. Later, 100 ICC values obtained for different transformed masks
were averaged to give single measure of stability for each feature. Stability was classified
as excellent when mean ICC exceeded 0.9, good (ICC between 0.75 and 0.9), moderate (ICC
between 0.5 and 0.75) or poor (ICC not exceeding 0.5).

2.4. Feature Preprocessing and Splitting Data Set

Raw feature values were first scaled to a [−1,1] range, then subjected to Yeo–Johnson
transformation [33] and scaled to [−1,1] range once again to facilitate machine-learning
model derivation. First scaling was performed to avoid exponentiation (included in Yeo–
Johnson transformation) of raw radiomic features with high absolute values, such as
energy that easily reached values at the order of 1010. Second scaling aimed at facilitating
model training by limiting the range of values generated by Yeo–Johnson transforma-
tion. As average values and distributions of features values varied across the samples
(Figure S1) we normalized them dividing each value by sample mean. While performing
normalization, we followed the reasoning common for other high-throughput studies
(transcriptomics, proteomics) that usually only minority of features should be expected
to differ between conditions, thus the distribution of all feature values should not differ
significantly between samples.

We observed that even after normalization, we could still observe batch effect related
to clinics that performed CT scans (Figure S2). Thus, to account for this and check the
impact of batch on NTCP model performance, we decided to implement different variants
of data preprocessing and splitting:

• Variant I without batch effect correction, later referred to as Variant Ia: center A as
training set, centers B and C as validation set as shown in Figure 1A.
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• Variant I with batch effect removed by ComBat [34], referred to also as Variant Ib:
center A as training set, centers B and C as validation set.

• Variant II: no batch effect removal, but data from three centers were joined and subse-
quently divided into training and validation sets (Figure 1A). Training set contained
38 patients including 10 RITH to match the number of patients and proportion of
RITH cases of center A data set so that both variants of splitting data are as comparable
as possible .

2.5. Feature Filtration

Due to the large number of features, we decided to filter them before derivation of
NTCP models. First, only features with excellent or good stability were considered to be
candidates for NTCP model predictors. We used ICC classes from center A for filtration in
Variant I and, analogously ICC classes from training set for Variant II.

Then, to retain only features that actually differentiate patient with and without RIHT
in follow-up, t-tests were performed to compare values of each stable feature between these
group. Benjamini–Hochberg correction was applied to p-values to control false discovery
rate (FDR) in this large set of comparisons. Next, hierarchical clustering of features was
performed with 1 − r (correlation coefficient) as distance measure and average linkage
to identify groups of highly correlated features. These groups of features were extracted
by setting a threshold of 0.3 to distances in the dendrogram. From each such group we
retained a single feature with lowest FDR-corrected p-value (later referred to as FDR) on
the condition that this FDR did not exceed 0.1. Additionally, we kept all features with FDR
< 0.01 even if they were correlated with others. This shortened list of features was the basis
for models’ training that included final model-based feature selection.

2.6. Model Training and Evaluation

Model training was performed with the use of scikit-learn Python library [35]. Model
architectures considered in our analysis included: logistic regression, multilayer perceptron
(MLP), k nearest neighbors classifier, support vector classifier, decision tree, random
forest, AdaBoost classifier, Gaussian process classifier, Gaussian Naive Bayes classifier,
Quadratic discriminant analysis. Whenever possible (in logistic regression, support vector
classifiers, decision trees and random forest) two methods of weighting cases during
training were applied: (1) equal weights of all cases (2) weights inversely proportional to
classes’ frequencies to account for imbalanced data set with less than 1/3 of cases in RIHT
group. Full list of tested model parameters is collected in Table S3.

Models were derived using three feature sets: (1) only clinical and dosimetric fea-
tures (clinical model), (2) only radiomic features (radiomic model), (3) radiomic, clinical
and dosimetric features (radiomic+clinical model). Final set of input features for each
model was determined by forward method of Sequential Feature Selector from mlxtend
library [36]. Feature selector used area under the ROC curve (AUC) as a measure of models’
performance and was allowed to choose from 2 to 5 features.

All models were first derived using training data and then their performance was
tested on validation data. AUC, accuracy, sensitivity, specificity and F-score were calculated
for each model. The analysis was performed for Variants Ia, Ib and II of clinical and
radiomic features derivation. Models with the highest F-score were selected for each
variant of analysis and input feature set. Finally, ensembles of best clinical and radiomic
models were considered that combined them in following ways:

• logical conjunction (AND): positive prediction only when both models predicted RIHT,
• logical disjunction (OR): positive prediction when any of the two models predicted RIHT,
• averaged probability (PROBA): probability (raw output) of two models were averaged

and new decision threshold selected using ROC curve for training set.
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3. Results
3.1. Feature Stability Analysis

Results of feature stability analysis differed slightly between variant I and II. In variant
I, where all images were acquired in the same center, we identified more features as highly
stable (ICC > 0.9) than in variant II (721, Figure 2A vs. 621 features, Figure 2B). In line
with this observation, lowest stability class was assigned to 211 in variant II and only to
138 features in variant I (stability analysis was performed before batch correction, thus at
this stage variant Ia and Ib are not distinguished). Independently of the variant, all shape
features were excellently stable even though our test consisted essentially in disturbing
thyroid mask shape. Excellent or good stability was observed for majority of first order,
GLCM, GLRLM, and GLDM features, while for GLSZM and NGTDM the fraction of
unstable features was higher. In majority, stable features overlapped between variants I
and II (Figure 2C). Stability of features depended also on the applied filter (Figure 2D), with
exponential and gradient filter ensuring on average higher stability than square, square
root, logarithm and some wavelet filters.

In further analysis, we included all features with excellent and good stability: 926 in
variant I and 869 in variant II. Stability classes for all features are reported in Table S4.

Figure 2. Results of feature stability assessment. Number of features in each group classified to different stability categories
for variant I (A) and II (B). Overlap of features with at least good stability between variant I and II (C). Average stability of
all radiomic features with respect to applied image filter (D, shown mean with 95% confidence interval).

3.2. Feature Processing and Filtration

Before filtration, features were scaled, normalized (Figure S1) and in variant Ib batch
effect was corrected (Figure S2). First stage of filtration consisted of exclusion of features
that in univariate analysis did not differentiate patients who did or did not develop RIHT
(detailed results of this analysis in Table S5). It resulted in selection of 165 radiomic
features in variant I and 166 in variant II, among which 153 were common to both variants
(Figure 3A). Having a limited number of patients, we decided to reduce these numbers
further before model development by elimination of highly correlated features. Selection
of representatives from each group of such related variables left 67 features in variant Ia, 68
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in variant Ib and 66 in variant II (lists of features in Table S6). Again, the overlap between
variants, consisting of 61 radiomic features, greatly outnumbered distinct variables for each
variant (Figure 3C). At both stages of filtration, features from original image and the one
with exponential filter applied were preferred over other groups (Figure 3B,D).

Figure 3. Features with FDR < 0.1 in univariate analysis grouped by radiomics category (A) and by image filter (B). Features
selected for model grouped by radiomics category (C) and by image filter (D).

3.3. Models

The training of all the considered models on the reduced set of features and their
validation resulted in selection of top 9 models, one for each variant and a feature set. Their
names, along with the features they were built upon, are presented in Table 2, while details
of all analyzed models can be found in Table S7.

For all the variants, when considering models derived only with clinical features,
Gaussian process classifier was chosen. Likewise, the same set of features was selected, i.e.,
mean of thyroid dose, median of thyroid dose and volume of the thyroid. For radiomic
and clinical+radiomic feature sets, the selected models were logistic regression without
regularization, with equal class weights and excluded intercept for variant Ia and multilayer
perceptron with 4 and 2 hidden neurons for variants Ib and II, respectively. For those
feature sets, selected features were more diverse.

In all variants of analysis, radiomic models performed similarly to clinical models
(Figure 4A–C); comparisons of ROC AUC by DeLong test never showed superiority of
models using radiomic features vs clinical/dosimetric model (Table 3). Slight improvement
of radiomic models is observed after batch effect correction (variant Ib). The statistical
measures (sensitivity, specificity, accuracy and f-score) for each of the selected models
and the ensembles of clinical and radiomic models were calculated (Figure 4D–I). Ra-
diomic+clinical model was not included in ensembles, because it contained a very similar
feature set to radiomic and clinical models taken together. Based on those measures, we
picked clinical, radiomic and OR models for the comparison with the external NTCP
models for radiation-induced hypothyroidism [8,9,37–39].
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Table 2. Model architectures and features selected for each of the variants and feature sets.

VARIANT Ia VARIANT Ib VARIANT II
Model Features Model Features Model Features

clinical
(same for Ia and Ib) GPC

Dmean
D50
Vthyroid

GPC
Dmean
D50
Vthyroid

GPC
Dmean
D50
Vthyroid

radiomic LRE

wavelet HHH GLSZM
zone percentage

logarithm NGTDM
coarseness

MLP4

original NGTDM
coarseness

wavelet LLL NGTDM
coarseness

exponential GLDM
small dependence
low gray level emphasis

logarithm NGTDM
coarseness

MLP4

exponential GLDM
small dependence
low gray level emphasis

logarithm NGTDM
coarseness

clinical+radiomic MLP2

sex
original shape

least axis length
exponential GLRLM

run percentage
exponential GLDM

small dependence
low gray level emphasis

logarithm NGTDM
coarseness

MLP4

original NGTDM
coarseness

wavelet LLL NGTDM
coarseness

exponential GLDM
small dependence
low gray level emphasis

logarithm NGTDM
coarseness

MLP2

sex
original shape

least axis length
exponential GLRLM

run percentage
exponential GLDM

small dependence
low gray level emphasis

logarithm NGTDM
coarseness

GPC–Gaussian process classifier, LRE–logistic regression with equal cases weights, MLPn–MLP network with n neurons in single hidden layer.
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Table 3. Comparison between best models with and without radiomic features.

VARIANT Ia VARIANT Ib VARIANT II

Model AUC ± SE p AUC ± SE p AUC ± SE p
clinical 0.90 ± 0.07 - 0.90 ± 0.07 - 0.95 ± 0.05 -
radiomic 0.89 ± 0.07 0.9196 0.94 ± 0.05 0.6471 0.91 ± 0.07 0.6263
radiomic+clinical 0.95 ± 0.05 0.5549 0.94 ± 0.05 0.6471 0.92 ± 0.06 0.8286
PROBA 0.90 ± 0.07 1.0000 0.95 ± 0.05 0.5549 0.93 ± 0.06 0.7940

p-values for comparison of each model with radiomic features vs clinical model.

Compared with previous examples (Figure 5), our models tend to be slightly less
sensitive, but more specific and accurate. Models by Cella et al. and Vogelious et al.
significantly overestimate risk of RIHT, declaring all or almost all patients as having high
risk of this complication. The model by Ronjom et al. seemed comparable to our models.

Radiomic features included in the final models came from original, logarithm, expo-
nential and wavelet (LLL, HHH) images. Majority of these features measured nonunifor-
mity of the thyroid region (e.g., coarseness, zone percentage) and were higher in patients
who developed RIHT (Figure 6). The only feature lower in these patients was least axis
length of thyroid (Figure S3).

Figure 4. AUC ROC of the selected models (clinical, radiomic, radiomic+clinical) and their ensembles for the training set
(A–C). Comparison of statistical measures for the selected model architectures of the considered feature sets and ensembles
of those models: training (D–F) and validation (G–I).
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Figure 5. Comparison of quality measures between external NTCP models (cool colors, 5 bars from the left) and our top
model selections (warm colors, 3 bars from the right), validation data.
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Figure 6. Transformed (normalized and scaled) values of features retained in radiomic models. A: variant Ia, B: variant: Ib,
C: variant II.

4. Discussion

Here, using data from 98 patients with OPC treated with definite RT, we identified
radiomic features predicting the occurrence of RIHT in 2-year follow-up and contrasted
our radiomic-based model with published NTCP models based on clinical and dosimetric
parameters. Our model performed comparably to models published by Rønjom et al. [8]
and by Boomsma et al. [9] and better than three other external models [37–39]. Since
predictions based on CT-derived radiomic features are agnostic to dose distribution, they
reflect the baseline susceptibility of individual thyroid glands to damage inflicted by
radiation doses typical for head and neck cancer RT. They may be therefore leveraged
to identify patients in whom close attention should be paid to minimize radiation to the
thyroid and the risk of RIHT; alternatively, dosimetric/clinical and radiomic models can be
combined to improve prediction accuracy.

Most features in our radiomic model were calculated in filtered CT images and
described nonuniformity or coarseness of thyroid region, sometimes emphasizing low
gray levels. Invariably higher values of these features, indicating greater non-homogeneity,
especially of darker (lower Hounsfield units) regions of thyroid, were characteristic for
patients who later developed RIHT.

It must be noted that several articles reported that attenuation and size of an otherwise
normal-appearing thyroid might serve as an imaging biomarker for hypothyroidism.
Noteworthy, this phenomenon was described for both diagnostic [40] and low dose CT [41].
Approximately 25% of the body iodine is accumulated in the thyroid gland [42]. This
results in hyperdense appearance on the CT scan. Older works postulated that decreased
density may be related to disturbances in iodine accumulation and/or processing e.g.,
inflammation [43,44]. Providing biological rationale behind the signal from radiomic
features is beyond the scope of our study; however, we can speculate that our radiomic
pipeline might detect even more subtle differences in the signal from thyroid gland. Such
disturbances may reflect subclinical thyroid insufficiency which makes the gland more
susceptible and/or less prone to regeneration.
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Differences in performance between our models and external ones as well as those
between different external models likely stem from differences in patient cohort charac-
teristics and chosen treatment protocols, which has already been discussed in detail in a
previous study by Nowicka et al. [7] that used data from the same cohort of patients.

An important contribution of our study is analytical pipeline that adds to the recom-
mendations from first reference manual for image biomarker studies [11] and Radiomic
Quality Score (RQS) [45]. Addressing criteria from RQS, we reported imaging proto-
cols from participating institutions and verified the stability of features by segmentation
perturbation, reducing the number of features and applying multiple comparisons cor-
rection. Our simulation study showed that some features are unstable with respect to
inaccuracies in thyroid contouring; however, we identified a subset of relatively stable
features, corresponding with the results of study on robustness of radiomic features by
Zwanenburg et al. [46]. Then, we scaled and normalized the features and performed batch
effect correction in one variant of the analysis. This pipeline may be reused and extended
for similar projects requiring combining data from many institutions or imaging machines.

We included non-radiomic patient characteristics in the study, reported models’ quality
statistics and validated models. Patients were recruited prospectively in 3 clinics for the
study by Nowicka et al. with the same endpoint of RIHT [7]; however, radiomic analysis
was included in the protocol at the later stage. In the place of validation against “golden
standard”, which is not established for prediction of RIHT, we compared our models with
those by other authors. As reported by reviews of radiomic studies [47,48], full adherence
to the guidelines is rarely achieved; however even partial compliance improves the quality
of research.” A TRIPOD guidelines checklist that describes the critical aspects of our work
has been provided in the supplementary materials (Table S8).

Our study has several limitations inherent to radiomic studies. The observed batch
effects of radiomic features related to oncologic centers (possibly due to use of different
CT machines or their settings) may be, for research purposes, solved by batch effect re-
moval tools developed for other high-throughput studies [34,49]. However, such procedure
complicates the translation of results and has not been extensively validated in terms of
preserving data integrity. Furthermore, our data set has a relatively small sample size with
respect to number of features and the developed models require further validation before
they can be applied in the clinical setting. Although the validation groups were sufficiently
numbered to detect statistically significant differences exceeding 13% of accuracy it would
mandate a larger study to confirm true non-interiority or equivalence of the radiomic and
NTCP models, but owing to the presented results planning such an endeavor is possible.
Estimating the sample size, if we were to achieve significant difference between AUC
of clinical and radiomic models, keeping the current ratio of patient with the complica-
tions, we would have to collect data from at least 179 patients who developed RIHT after
radiotherapy and from 500 patients, who did not.

An additional benefit of validation in external cohort, ideally from different pop-
ulation, is verification whether the models are not overfitted to our study population.
Testing of models developed using data from center A (variant I) on data from center B
and C did not indicate significant overfitting. However, this might be also the result of
similarity of studied patient groups that all recruited from Polish population that is quite
uniform ethnically.

5. Conclusions

Radiomic models reliant on CT scans showed a similar or better ability to predict
RIHT in OPC patients compared with the best currently used NTCP models. Additionally,
radiomic models are independent from treatment planning and readily deployable across
different imaging data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13215584/s1, Figure S1: Normalization and scaling of radiomic features, Figure S2:
Batch effect correction, Figure S3: Distribution of radiomic features included in models, Table S1: Raw

https://www.mdpi.com/article/10.3390/cancers13215584/s1
https://www.mdpi.com/article/10.3390/cancers13215584/s1
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patients’ data, Table S2: Raw values of radiomic features, Table S3: Parameters of analyzed models’
architectures, Table S4: Stability of radiomic features, Table S5: Univariate analysis and filtration
of radiomic features, Table S6: List of radiomic features selected after univariate analysis, Table S7:
Quality metrics for all analyzed models, Table S8: Tripod checklist for our study.
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Abbreviations

The following abbreviations are used in this manuscript:
AUC area under curve
CT computed tomography
FDR false discovery rate
GLCM gray level cooccurrence matrix
GLDM gray level dependence matrix
GLRLM gray level run length matrix
GLSZM gray level size zone matrix
GPC Gaussian process classifier
HNG head and neck cancer
ICC inter-class correlation coefficient
IMRT intensity-modulated radiation therapy
MLP multilayer perceptron
NGTDM neighborhood gray tone difference matrix
NTCP normal tissue complication probability
OAR organ at risk
OPC oropharyngeal cancer
PACS picture archiving and communication system
ROI region of interest
RT radiation therapy
RIHT radiation-induced hypothyroidism

Appendix A. List of Calculated Radiomic Features

Shape features

• elongation



Cancers 2021, 13, 5584 15 of 19

• flatness
• least axis length
• major axis length
• maximum 2D diameter column
• maximum 2D diameter row
• maximum 2D diameter slice
• maximum 3D diameter
• mesh volume
• minor axis length
• sphericity
• surface area
• surface volume ratio
• voxel volume

First order features

• 10. percentile
• 90. percentile
• energy
• entropy
• interquartile range
• kurtosis
• maximum
• mean absolute deviation
• mean
• median
• minimum
• range
• robust mean absolute deviation
• root mean squared
• skewness
• total energy
• uniformity
• variance

Gray level cooccurrence matrix-based (GLCM) features

• autocorrelation
• cluster prominence
• cluster shade
• cluster tendency
• contrast
• correlation
• difference average
• difference entropy
• difference variance
• inverse difference (ID), homogeneity 1
• inverse difference moment (IDM), homogeneity 2
• inverse difference moment normalized (IDMN)
• inverse difference normalized (IDN)
• informational measure of correlation 1 (IMC1)
• informational measure of correlation 2 (IMC2)
• inverse variance
• joint average
• joint energy
• joint entropy
• maximal correlation coefficient (MCC)
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• maximum probability
• sum average
• sum entropy
• sum squares

Gray level dependence matrix-based (GLDM) features

• dependence entropy
• dependence nonuniformity
• dependence nonuniformity normalized
• dependence variance
• gray level nonuniformity
• gray level variance
• high gray level emphasis
• large dependence emphasis
• large dependence high gray level emphasis
• large dependence low gray level emphasis
• low gray level emphasis
• small dependence emphasis
• small dependence high gray level emphasis
• small dependence low gray level emphasis

Gray level run length matrix-based (GLRLM) features

• gray level nonuniformity
• gray level nonuniformity normalized
• gray level variance
• high gray level run emphasis
• long run emphasis
• long run high gray level emphasis
• long run low gray level emphasis
• low gray level run emphasis
• run entropy
• run length nonuniformity
• run length nonuniformity normalized
• run percentage
• run variance
• short run emphasis
• short run high gray level emphasis
• short run low gray level emphasis

Gray level size zone matrix-based (GLSZM) features

• gray level nonuniformity
• gray level nonuniformity normalized
• gray level variance
• high gray level zone emphasis
• large area emphasis
• large area high gray level emphasis
• large area low gray level emphasis
• low gray level zone emphasis
• size zone nonuniformity
• size zone nonuniformity normalized
• small area emphasis
• small area high gray level emphasis
• small area low gray level emphasis
• zone entropy
• zone percentage
• zone variance
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Neighborhood gray tone difference matrix-based (NGTDM) features

• busyness
• coarseness
• complexity
• contrast
• strength
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