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A B S T R A C T

Introduction: OpenAI’s ChatGPT, a Large Language Model (LLM), is a powerful tool across domains, designed for 
text and code generation, fostering collaboration, especially in public health. Investigating the role of this 
advanced LLM chatbot in assisting public health practitioners in shaping disease transmission models to inform 
infection control strategies, marks a new era in infectious disease epidemiology research. This study used a case 
study to illustrate how ChatGPT collaborates with a public health practitioner in co-designing a mathematical 
transmission model.
Methods: Using natural conversation, the practitioner initiated a dialogue involving an iterative process of code 
generation, refinement, and debugging with ChatGPT to develop a model to fit 10 days of prevalence data to 
estimate two key epidemiological parameters: i) basic reproductive number (Ro) and ii) final epidemic size. 
Verification and validation processes are conducted to ensure the accuracy and functionality of the final model.
Results: ChatGPT developed a validated transmission model which replicated the epidemic curve and gave es-
timates of Ro of 4.19 (95 % CI: 4.13- 4.26) and a final epidemic size of 98.3 % of the population within 60 days. It 
highlighted the advantages of using maximum likelihood estimation with Poisson distribution over least squares 
method.
Conclusion: Integration of LLM in medical research accelerates model development, reducing technical barriers 
for health practitioners, democratizing access to advanced modeling and potentially enhancing pandemic pre-
paredness globally, particularly in resource-constrained populations.

1. Introduction

From the 2003 Severe Acute Respiratory Syndrome epidemic (SARS) 
in Hong Kong to the 2009 influenza pandemic and recent continued 
clusters of Middle-East Respiratory Syndrome (MERS) in the Middle East 
and South Korea, mathematical modelling has become increasingly 
influential in informing infectious diseases transmission mitigation 
strategies in recent years [1–3]. The coronavirus disease 2019 pandemic 
highlighted the widespread adoption of data-driven intervention 

strategies and resources management informed by modelling results 
such as the adoption of non-pharmaceutical interventions and border 
control measures in many populations including United Kingdom [4], 
the United States [5], and Hong Kong [6,7]. Chat Generative Pre-trained 
Transformer (ChatGPT), a large language model (LLM) powered chatbot 
developed by OpenAI, has generated significant interest in the medical 
research community [8–10].

With their sophisticated natural language processing capabilities, 
LLM-powered chatbots can serve as a comprehensive resource for 
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infectious diseases for essential disease-related information [11,12]. 
Aside from understanding and generating natural language, 
LLM-powered chatbots are also adept at creating, refining and debug-
ging computer code spontaneously through natural conversational 
interaction [13]. The naturalistic interaction of LLM-powered chatbots 
accommodate researchers who are less competent in computer pro-
gramming to construct transmission models with fewer technical bar-
riers. Unlike traditional chatbots that rely on predefined rules and 
scripts, LLM-powered chatbots like ChatGPT employ advanced natural 
language processing, machine learning, and deep learning techniques to 
mimic human conversation based on information from its knowledge 
domains [14]. These technologies enable LLM-powered chatbot to 
handle complex queries, engage in context-aware conversations and 
maintain follow-up conversations.

What distinguishes LLM-powered chatbots from other AI-chatbots, 
such as Siri and Alexa, is its profound ability to conduct detailed and 
context-sensitive dialogues across various domains of knowledge. 
Trained on an extensive corpus of text that includes books, articles, and 
websites, ChatGPT can draw from a vast range of contexts, mirroring 
human conversational patterns more closely than ever before. This 
capability allows LLM-powered chatbots to provide nuanced responses 
that include relevant background information, use appropriate termi-
nology, and engage in a way that is contextually appropriate for the 
conversation. As a result, the interactions with ChatGPT are not only 
more natural and human-like but also more engaging and effective in 
delivering information.

The adoption of LLMs holds transformative potential for public 
health science by expanding the pool of health practitioners and re-
searchers who can efficiently implement these modelling methods. For 
epidemiologists and clinicians, especially those deeply familiar with 
specific diseases, LLM-powered chatbots offer assistance in building 
practical computational models for disease transmission. For experi-
enced researchers in disease modeling, LLM-powered chatbots can 
accelerate the development process, enabling the rapid construction and 
comparison of diverse model scenarios. The ability to quickly iterate and 
refine models empowers researchers to respond more agilely to 
emerging health crises, optimizing interventions in real-time based on 
evolving data and insights. The integration of LLM-powered chatbot in 
modeling infectious diseases could revolutionize how we manage dis-
ease outbreaks globally.

Our study aims to investigate the potential of LLM-powered chatbots 
in enhancing the process of developing infectious diseases models for 
public health professionals. Specifically, we are interested in their role in 
resource-constrained settings where access to advanced analytical tools 
and expert consultation may be limited. By evaluating these aspects, we 
aim to provide comprehensive insights into the potential benefits and 
challenges of adopting LLM technologies in the field of infectious disease 
management.

2. Method

To assess ChatGPT’s utility in developing disease transmission 
models, we conducted a case study focusing on the collaborative model 
design process between a human health practitioner and ChatGPT. The 
public health practitioner initiated a dialogue with ChatGPT, outlining 
the objective to develop a classic disease transmission model using the 
susceptible-exposed-infected-recovered (SEIR) framework. Using 10 
days of prevalence data which exhibits expoential charcteristics, the 
health practitioner aimed to estimate two important epidemiological 
parameters: i) the basic reproductive number (Ro): the average number 
of secondary cases generated by an infectious individual in a totally 
susceptible population [15] with its 95 % confidence interval (CI) and ii) 
the final epidemic size [16] based on prevalence data from the first ten 
days of an outbreak. Through natural language conversation, the prac-
titioner and ChatGPT engaged in an iterative process of code generation, 
refinement, and debugging to enhance accuracy. This process included 

clarifying the objectives, discussing the fitting methods, refining the 
code structure such as standard variable naming conventions, and 
exploring alternative estimation techniques. The generated codes un-
derwent thorough validation with the prevalence data of influenza 
outbreak in British boarding School in 1978 [17] to ensure technical 
correctness, consistency with epidemiological expectations, and read-
ability. This step was crucial to confirm the reliability of the model 
developed with ChatGPT’s assistance.

3. Result

We have included four application scenarios of a case study 
(Supplementary Material) demonstrating how ChatGPT can be 
employed to assist public health practitioners and researchers in 
developing and validating disease transmission model. In these sce-
narios, the public health practitioner and ChatGPT collaborated in a 
progressive refinement process, with discussions focusing on under-
standing the existing code, seeking clarity on the model development, 
refining the code structure, and exploring alternative fitting techniques. 
In the initial scenario, ChatGPT successfully developed a SEIR trans-
mission model and was then fitted to the prevalence data (Prompt 1.5), 
resulting in an estimated Ro of 4.18. Additionally, the model also pre-
dicted that by the end of the 60-day period, 9836 out of population size 
of 10,000 (approximately 98 %) will have been infected (Prompt 1.6). 
We further examine the epidemiological characteristic of the model 
using the code provided in Prompt 1.7 and adjusting the β values, where 
Ro =

β
γ. This allows us to observe that: when Ro > 1, it triggers the 

exponential growth; Ro = 1 yields a flat epidemic curve, and Ro < 1 
results in a decline in the epidemic curve. Subsequently, we constructed 
plots to depict the time series of individuals in different disease states 
(Prompt 1.8). During the second scenario, the human collaborator and 
ChatGPT engaged in an iterative refinement process to clarify the details 
of the least squares method (LSE) in Scenario 1 along with the newly 
introduced approach by the human practitioner, involving the 
maximum likelihood estimation (MLE) with a Poisson distribution. 
ChatGPT highlighted the shortcomings of LSE and clarified the advan-
tages of the latter approach over the former. The revised code based on 
the latter estimation approach provided a revised but similar R0 estimate 
of 4.19 from the Poisson MLE method (Prompt 2.7). A plot of the 
observed data and the fitted models employing both the least squares 
and Poisson MLE methods suggested that both fitting approaches 
demonstrated good ability to reproduce the prevalence data (Fig. 1B). In 
Scenario 3, we demonstrated how epidemiologists co-work with 
ChatGPT to construct 95 % CI for Ro (4.13- 4.26). In Scenario 4, the 
validation of the model constructed by ChatGPT indicated that our MLE 
estimate of R₀ at 3.78 (Prompt 4.2), based on British boarding school 
influenza outbreak prevalence data, aligned with the estimate reported 
in [18].

4. Discussion

Our exploration of simple disease transmission model development 
with ChatGPT through natural conversation yielded results comparable 
with a small team of health practitioners and researchers with experi-
ence in these techniques working on a problem for several days. LLMs’ 
natural language interface allows public health practitioners and re-
searchers with less experience in computer programming to construct 
transmission models with fewer technical barriers. In this collaborative 
process, LLMs act as co-pilots in assisting public health practitioners, 
epidemiologists and clinicians to swiftly construct functioning initial 
transmission models and potentially develop a wide range of model 
variants for experimentation, selection, and comparison. LLMs drasti-
cally reduce the time required for development of complex models that 
characterize heterogeneous social mixing patterns [19] or utilize 
individual-based approaches [20] , thereby potentially transforming the 
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entire modelling workflow. The integration of LLMs into the public 
health sector plays a pivotal role in bolstering pandemic preparedness. 
Rapid response is crucial when facing potential outbreaks, and LLMs can 
significantly expedite the preliminary analysis and understanding of a 
novel pathogen’s transmission dynamics. By providing instantaneous 
modeling support, these systems allow for real-time scenario analysis, 
facilitating faster and more informed decision-making. Also, the code 
displayed a high level of consistency with our expectations in terms of 
functionality, structure, and included valuable comments. It was 
well-organized and accompanied by explicit explanations of program-
ming logic, ensuring good readability.

Like any new technology, LLMs have limitations. Rigorous verifica-
tion of the technical correctness of the code and information produced 
by LLMs is critical, as bugs or logic errors may have inadvertently crept 
in. Also, while LLMs can provide a variety of technically correct designs 
to any request, human practitioners must be able to understand subtle 
differences between these variations and are ultimately responsible for 
making the final choices. While engaging in interactive conversations 
with LLMs and presenting follow-up questions and/or instructions is an 

effective approach to address uncertainties in the generated results, at 
this stage, human practitioners must also establish a line-by-line un-
derstanding of the results. Somewhat counter-intuitively, user expertise 
in understanding the nuances of alternate transmission models becomes 
even more important to effectively manage the rapid model develop-
ment using LLMs.

The proliferation of LLMs reduces technological and financial bar-
riers across a range of domains, facilitating the localization of modelling, 
particularly in low-income populations. This may have the potential to 
bridge the gap for countries and areas with limited resources, as it de-
mocratizes access to advanced modeling techniques, catering especially 
to healthcare facilities in low-income regions. This approach can also 
apply to mitigating nosocomial transmissions, an area often overlooked 
by researchers due to a scarcity of resources and a dearth of modelling 
expertise. With sufficient safeguards against model misspecification, this 
could potentially promote more equitable preparedness measures and 
responses across diverse populations, ultimately strengthening global 
resilience in the face of future pandemics [21] and prompting us to 
assess potential bias in LLM-independent advanced analytics and 

Fig. 1. A. Daily case incidence (in log scale) under different values of Ro. The model exhibits important epidemiological characteristics: when Ro > 1, it triggers 
exponential growth; Ro = 1 yields a flat epidemic curve, and Ro < 1 results in a decline in the epidemic curve. B. Comparison of two fitting methods: Least Squares 
vs. Poisson Maximum Likelihood Estimation for reproducing observed prevalence data. Both fitting approaches demonstrated good ability to reproduce the prev-
alence data.
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modeling.
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