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Abstract   
Two genes are synthetic lethal if mutations in both genes result in impaired cell viability, while mutation of either gene does not affect the 
cell survival. The potential usage of synthetic lethality (SL) in anticancer therapeutics has attracted many researchers to identify synthetic lethal 
gene pairs. To include newly identified SLs and more related knowledge, we present a new version of the SynLethDB database to facilitate the 
discovery of clinically relevant SLs. We extended the first version of SynLethDB database significantly by including new SLs identified through 
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) screening, a knowledge graph about human SLs, a new web interface, 
etc. Over 16   000 new SLs and 26 types of other relationships have been added, encompassing relationships among 14   100 genes, 53 cancers, 
1898 drugs, etc. Moreover, a brand-new web interface has been developed to include modules such as SL query by disease or compound, SL 
partner gene set enrichment analysis and knowledge graph browsing through a dynamic graph viewer. The data can be downloaded directly 
from the website or through the RESTful Application Programming Interfaces (APIs).   

Database URL: https://synlethdb.sist.shanghaitech.edu.cn/v2. 
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Introduction 
Synthetic lethality (SL), initially described in Drosophila as 
recessive lethality (1), is a type of gene–gene interaction such 
that the perturbation of both genes causes the loss of cell via-
bility, while the perturbation of either gene alone will not 
affect the cell viability (2). SL offers a strategy for cancer 
medicine by identifying new antibiotic or therapeutic tar-
gets (3, 4, 5). By inhibiting the SL partner of a gene with 
cancer-specific alteration, we can kill cancer cells and spare 
normal cells, thereby reducing the side effect of the treatment 
(6, 7). To discover SL gene pairs as a gold mine of can-
cer drug targets, researchers have applied various techniques, 
including chemical screening (8), RNA interference (RNAi) 
screening (9, 10, 11, 12, 13), Clustered Regularly Interspaced 
Short Palindromic Repeats (CRISPR) screening (14, 15) and 
bioinformatics methods (16, 17, 18, 19). 

The first version of SynLethDB released in 2016 contains 
34 089 SL gene pairs and is the first comprehensive database 
of SLs (20). It collects SL pairs for human and four model 
species, i.e. mouse, fruit fly, worm and yeast, from biochemical 

assays, public databases (21, 22), computational predictions 
(23) and text mining. In addition, it provides a statistical 
analysis module to evaluate the druggability and efficacy of 
SL pairs upon drug treatments by analyzing the large-scale 
drug sensitivity data. Recently, SynLethDB has been used as 
ground-truth SL data in various studies. For example, Liany 
et al. (26), Cai et al. (25) and Das et al. (26) used SynLethDB 
to train and test their computational SL prediction methods. 
Hu et al. (27) used SynLethDB to evaluate their method for 
de novo identification of synergistic optimal control nodes as 
candidate targets for combination therapy. Wang et al. (28) 
used the SLs in SynLethDB to investigate the link between 
SL interactions and drug sensitivity of cancer cells. Cui et al. 
used the SL data from SynLethDB in their web-based tool 
called siGCD (29) for analysis and visualization of the inter-
actions among genes, cells and drugs associated with survival 
in human cancers. 

Many CRISPR-based screening experiments have been 
conducted after 2015 and generated a large amount of 
data. Combinatorial CRISPR-based screening has been used 
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to study genetic interactions, including the identification 
of SL interactions (14, 15, 30, 31, 32, 33). Computa-
tional methods such as GEMINI (34) were proposed to 
identify SL gene pairs from these screening data. GEM-
INI is a variational Bayesian approach proposed to iden-
tify SLs from combinatorial CRISPR screens. Data-driven 
method ISLE (17) searches in the lab-identified candidate 
SLs by tumor molecular profiles, patient clinical data and 
gene phylogeny relations to find out the clinical SLs. These 
wet-lab experiments and computational methods provided 
further evidence for some existing SLs or discovered new 
SLs that had not been included in the first version of 
SynLethDB. 

To discover SL-based anticancer drug targets and clini-
cal SLs, it is highly desirable to consider the relationships 
among SLs, cancers and drugs. Several studies combined 
SLs with the information about cancers and cancer–drug 
interactions to discover cancer-specific SLs for new cancer 
therapies. SL-BioDP (35) provides an online tool based on 
a data-driven method to predict SL interactions by min-
ing cancer’s genomic and chemical interactions. However, it 
only supports the prediction of SL partners of the 623 genes 
belonging to 10 hallmark cancer pathways and 18 types of 
cancers. Synthetic Lethality Knowledge Graph (SLKG) (36) 
is a knowledge graph that contains seven kinds of relation-
ships among genes, cancers and drugs. Unlike SL-BioDP, 
SLKG collects SL pairs from literature and existing databases 
instead of by prediction. Moreover, SLKG is also used to 
identify the best repurposable drug candidates and drug com-
binations. In addition to the relationships among SLs, drugs 
and cancers, their various features are also useful for dis-
covering SLs and anticancer therapy. Taking the features 
of genes as an example, the co-expression, Gene Ontol-
ogy (GO) semantic similarity and shared pathways between 
genes are commonly used features for predicting SLs (16, 26, 
37, 38, 39). In addition, several tools have been developed 
to curate these features, such as GO terms and pathways 
associated with specific genes, anatomies and symptoms of 
cancers and the side effects and pharmacologic classes of 
drugs. For example, the Hetio package from Hetionet (40) 
provides a way to integrate different resources into a single 
data structure. We are motivated to use these tools to con-
struct an integrative knowledge graph to better describe SL 
pairs. 

In this paper, we present SynLethDB 2.0 to include 
newly discovered SLs and provide more related knowledge 
to help identify clinically relevant SLs (Figure 1). It is a 
significant expansion of the first version by adding 16 781 
new SL gene pairs and integrating a biomedical knowl-
edge graph, including 10 kinds of biomedical entities other 
than gene and 26 kinds of relationships for drug discovery 
other than SL. The 37 341 entities and 1 405 652 relation-
ships were used to create a knowledge graph and stored in 
a graph database. A user-friendly website interface with new 
functionalities for data browsing, visualization and analy-
sis has also been developed for users to browse the data 
and knowledge graph in SynLethDB. For example, users 
can search SLs by a disease or a compound, perform path-
way or GO term enrichment for SL partners of a gene and 
inspect the connections between two genes in an interactive 
viewer. 

Materials and methods 
Data sources 
The new version of SynLethDB contains 50 868 SL pairs 
which include 35 943 of Homo sapiens, 381 of Mus musculus, 
439 of Drosophila melanogaster, 105 of Caenorhabditis ele-
gans and 14 000 of Saccharomyces cerevisiae. The first source 
of the new SL pairs is the research papers on identifying SLs 
via wet-lab experiments. Using the ‘synthetic lethal’ as a key-
word for searching in PubMed, 293 related papers published 
during years from 2015 to 2019 were extracted for further 
manual collection of new SL pairs. The second source is pub-
lic databases containing SL data such as GenomeRNAi (21) 
and BioGRID (22). The third source is the SL pairs predicted 
from wet-lab screen data by computational methods such as 
GEMINI (34). For each SL pair, we annotated its species, ref-
erences to PubMed as supporting evidence, data source type, 
cell lines and confidence score. Synthetic rescue (SR) means 
mutation in one gene rescues the cell from lethality or growth 
defect caused by a mutation in another gene (41). It is related 
to drug resistance (42) and can be seen as the opposite rela-
tionship to SL. We collected 16 207 SR gene pairs and 5798 
non-synthetic lethal (non-SL) gene pairs from the above three 
sources, which can be used as negative samples to train SL 
prediction models. Non-synthetic lethal pairs could be SR or 
other relationships. Some gene pairs show up in both SL and 
non-SL datasets, depending on the different cell lines or cancer 
types. 

In addition to the above three kinds of gene pairs, we 
added 24 types of relationships between genes and other 
entities (e.g. drugs and cancers). These relationships include 
gene–compound associations, gene–cancer associations and 
other features about genes, cancers and drugs. We manually 
obtained a list of 53 cancers and curated these relationships 
from public databases with Python scripts from the open-
source project of Hetionet (40). First, we used the Python 
script from Hetionet to collect the relationships from data 
sources. Hetionet collects the relationships between genes, 
drugs and diseases. We added the relationships among GO 
terms, pathways and SL genes into the dataset. Every type 
of relationship was processed into an independent CSV file 
at first and then integrated into the Neo4j database for persis-
tent storage with the package Py2Neo. Finally, we constructed 
a knowledge graph to describe human SL gene pairs and the 
other 26 types of relationships, named SynLethKG (Synthetic 
Lethality Knowledge Graph). 

Data quality improvement 
In addition to collecting the data about SLs, we have also 
improved the annotation quality of SL gene pairs. First, we 
collected the SL entries from different sources into one TSV 
format file to facilitate subsequent unified processing. Second, 
we completed the missing identifiers of the genes. With anno-
tation packages from Bioconductor, which provide genome 
annotations for different species, we completed the missing 
Entrez ID of a gene by its gene symbol or completed the miss-
ing gene symbol by its Entrez ID. Third, we deleted entries that 
still lacked gene IDs or gene symbols. These entries lacked 
gene IDs or gene symbols because they contained incorrect 
gene symbols or IDs, which may be due to recording errors 
from the original sources. After that, we downloaded the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Architecture of SynLethDB 2.0. The bottom layer shows the data sources of SLs and other biomedical knowledge. The middle layer shows the 
data preprocessing steps, database storage and web server. The top layer shows the main functional modules of the user interface. 

latest version of the gene annotations from the Gene Entrez 
database (43) on the National Center for Biotechnology Infor-
mation (NCBI) FTP site and then deleted the SL entries that 
contain genes deprecated by the current NCBI Gene Entrez 
database. Lastly, we removed duplicate SL entries that have 
the same genes and PubMed IDs. The SL entries that contain 
the gene SL pair but were from different sources are merged 
into one entry. 

Furthermore, unlike in the first version of the database 
where SLs were stored in the form of records in a table, in 
the new graph database SLs are stored as undirected edges 
between two gene nodes. Hence, only one SL entry can be 
stored between a pair of genes. The species, references to 
PubMed, supporting evidence, cell lines and other relevant 
information about an SL entry are stored as properties of the 
edge, and the gene annotation information is stored as the 
node properties. 

Construction of graph database 
In the previous version of SynLethDB, we used the relational 
database management system, MySQL, to store the data. In 
this version, we chose to use a graph database system, Neo4j, 
to store SL pairs and related biomedical knowledge. Graph 
database is more suitable for many-to-many relationships. 
The relational database computes the relationships at query 

time through expensive operations such as JOIN. By contrast, 
the graph database stores the relationships as edges which 
processes and queries the relationships more efficiently. We 
used the Java framework of Spring Data Neo4j, as middle-
ware for object-graph mapping and data persistence. All the 
queries are accessible to users through the front-end interface 
in the form of Representational State Transfer (REST) API 
using Hypertext Application Language as the media type. 

The front end of SynLethDB is a single-page application 
built using VueJS and Element UI. When changing the tabs, 
only the required content is updated instead of the whole 
page, enabling faster responses. It allows us to cache search-
ing queries from users and create a better user experience until 
the web session is updated. Interactive and expandable graph 
viewers are developed with the ECharts JavaScript library 
to visualize the query results as connections in the graph 
database. 

We used Nginx as a reverse proxy to hide the real host 
of SynLethDB for web security. In the deployment of Syn-
LethDB, we followed the microservices architecture to get 
a higher scalability and reduce downtime through fault iso-
lation. The database, web interface and web server are all 
hosted in independent docker containers and arranged by 
Docker Compose. These services can be easily migrated, auto-
matically deployed and quickly restored, which ensures high 
accessibility of SynLethDB. 



 

  

 
 

 

  

  
  

  
  
  

 

 
 

 
     

 

 

 

      
       

    

 

 

 

 

 

   
 

 
 

 

   

 

 
  

     
   

    
   

  

 

 

 

 

  
  

  
  
  

 

 
 

 
    

 

 

 

      
       

    

 

 

 

 

 

  
 

 
 

 

   

 

 
  

     
   
   

   
  

 

 

 

 

Table 1. Quantitative Scores Assigned to SLs According to Experimental 
Methods.   

Method   Score   

CRISPR interference 0.85 
Drug inhibition 0.75 
RNAi 0.75 
Low throughput 0.80 
High throughput 0.50 

Confidence scores of SL pairs 
The SLs in our database were collected from different sources, 
including manually checked publications, existing databases, 
computational predictions and text mining. According to 
the types of sources, we took two steps, i.e. quantifica-
tion and integration, to calculate the final confidence scores, 
following the strategy of SynLethDB 1.0 (20). The main 
differences from the previous version are in the individual 
scores in the quantification step and the weight factors in the 
integration step. 

In the quantification step, since an SL gene pair could be 
identified by using different experimental or computational 
methods, an individual quantitative score is assigned to each 
type of evidence. In this new version, to incorporate the new 
source of CRISPR screening, we reset the individual scores as 
shown in Table 1. If there are multiple pieces of evidence of 
the same type supporting an SL record, we adopted the prob-
ability disjunction formula to combine the individual scores 
as follows: 

𝑛 
𝑠 = 1 − ∏(1 − 𝑝𝑖) , (1) 

𝑖=1 

where pi is the individual score for the ith evidence and s is 
the combined quantitative score of a specific type of source as 
listed in Table 1. 

In the integration step, we integrated the scores of differ-
ent types of sources into a normalized confidence score for 
every SL pair. Different weights were assigned according to the 
source types. The integration formula for the final confidence 
score of an SL pair is 

𝑤𝑚𝑠𝑚 + 𝑤𝑑𝑠𝑑 + 𝑤𝑝𝑠𝑝 + 𝑤𝑡𝑠𝑡 𝑆𝑐 = , (2)
𝑤𝑚 + 𝑤𝑑 + 𝑤𝑝 + 𝑤𝑡 

where the default values of wm, wd , w and wt were set top 
0.8, 0.5, 0.3 and 0.2, as the weight factors of biochemical 
experiment, existing databases, computational prediction and 
text mining, respectively. Note that users can customize these 
weight values according to their own experience or preference 
when querying and ranking the SLs on the web interface. 

Gene set enrichment analysis 
Given a gene g, let G denote the set of all SL partner genes of g. 
The enrichment analysis is to find out the pathways and GO 
terms from each of the three ontologies (i.e. biological pro-
cess, molecular function and cellular component) that occur 
significantly more frequently than randomly in the gene set G. 
We implemented two enrichment analysis methods based on 
the degree information and P-value, respectively. 

Degree-based gene set enrichment analysis 
An SLPR (Synthetic Lethality PageRank) score inspired by 
PageRank (44) was computed for each pathway or GO term 
associated with the gene set G. The pathways and GO terms 
can be ranked based on their SLPR scores. A larger SLPR score 
means that a pathway or GO term is more closely associated 
with the gene set. The SLPR score is defined as: 

|𝐿| 

𝑆𝐿𝑃𝑅 = (1 − 𝑑) + 𝑑 × ∑[(1 − 𝑞) + 𝑞 × 𝑆𝑐(𝑔, 𝑙) × 𝑑𝑒𝑔𝑟𝑒𝑒(𝑙)𝑤)], 
𝑙∈𝐿 

(3) 
where d is a damping factor set to 0.85, q is another damp-
ing factor set to 0.8 and w is set to −1 to reflect a negative 
correlation. For a specific pathway or GO term, L represents 
the subset of genes in set G that are directly connected with 
it. Given a gene 𝑙 ∈ 𝐿, 𝑆𝑐(𝑔, 𝑙) is the confidence score of the SL 
pair (g, l), degree(l) is the number of pathways or GO terms 
associated with l. 

P-value-based gene set enrichment analysis 
Assume that M is the number of genes in G and N is the num-
ber of genes having SL partners in the whole database. Given 
a specific pathway or GO term, n is the total number of genes 
associated with it and m is the number of genes in G associ-
ated with it. To show the enrichment of the gene set G with 
the pathway or GO term, we calculate a P-value as follows 
(45): 

( 𝑀 )( 𝑁 − 𝑀 
𝑚−1 )𝑖 𝑛 − 𝑖 

𝑃 = 1 − ∑ . (4) 
( 𝑁 𝑖=0 

𝑛 ) 

Thus, we attain a list of pathways or GO terms sorted in 
order of the P-values. A smaller P-value means that G is more 
enriched with the given pathway or GO term. 

SynLethDB 2.0 portal 
A user-friendly web interface has been developed for Syn-
LethDB to facilitate data visualization, analysis and inter-
pretation. Compared with SynLethDB 1.0, SynLethDB 2.0 
provides more ways for searching and browsing SLs. For 
example, users may wish to start with a type of cancer to find 
SLs associated with the cancer. Thus, in SynLethDB 2.0, in 
addition to searching by genes, users can also search SLs by 
a disease name. SynLethDB 2.0 also allows users to browse 
the part of knowledge graph related to an SL gene pair with 
a graph viewer to help understand the mechanism underlying 
the SL. Besides, it allows users to customize the integration 
weights of confidence scores so that those SLs more reliable 
or interesting to users would be prioritized at the top of the 
list of query results. In addition to the enrichment analysis 
tool based on P-values, SynLethDB 2.0 also provides a gene 
set enrichment analysis tool based on the graph degree, which 
ranks pathways and GO terms by their relevance to a gene 
set inferred based on the network topology of the knowledge 
graph. 

On the home page of the website of SynLethDB, we provide 
a general introduction to the database, as well as the search 
bar for looking up SLs by gene symbols or gene IDs. Other 
functionalities of SynLethDB can be accessed by menu tabs 
on the website as follows. 



 

  

     
   

   
   

     
   

   
   

   

 

  
    

  
  

   
   
    

 

 
 

 

 

 

 

  

  
   

  
   

   
   

  
  

  
   

  
  

  
  

  
  

   
   

  
   

   
   

   
   

   
  

  

 

    

    
     

     
    

    
    

    
    
    

    
    

 
 

 

 

 

  

     
   

   
   

     
   

   
   

   

 

  
    

  
  

   
   
    

 

 
 

 

 

 

 

  

  
   

  
   

   
   

  
  

  
   

  
  

  
  

  
  

   
   

  
   

   
   

   
   

   
  

  

 

    

    
     

     
    

    
    

    
    
    

    
    

 
 

 

 

Table 2. Comparison of Statistics Between Two Versions of SynLethDB. 

SynLethDB 1.0 SynLethDB 2.0 

# Human SLs 19 952 35 943 
# Mouse SLs 366 381 
# Fly SLs 423 439 
# Worm SLs 105 105 
# Yeast SLs 13 241 14 000 
KG No Yes 
Annotation SLs only Yes 
Offline dataset Yes Yes 
RESTful APIs No Yes 

Table 3. Statistics About the Knowledge Graph SynLethKG 

# genes 9856 
Human SLs # interactions 35 943 

Density 0.07% 
# entity types 11 

SynLethKG # relationship types 27 
# nodes 37 341 
# edges 1 405 652 

Searching and browsing the SLs 
In the first version of SynLethDB, users could only search 
for SLs by genes. In this new version, we collected 14 116 
gene–cancer relationships and 56 921 gene–compound rela-
tionships for those genes involved in SLs from DisGeNET 
(46), DrugBank (47) and BindingDB (48). Based on these new 
data, we offer two new options for searching, namely, ‘search 
SL by disease’ and ‘search SL by compound’, and provide the 
autocomplete function to the list of all available cancers or 
compounds in SynLethDB. The searching results are shown 
in a table viewer. 

Customizable confidence scores for SLs 
A confidence score reflects an SL’s credibility based on its 
sources, which can be used to rank SLs. As mentioned ear-
lier, we use a two-step scoring procedure (i.e. quantification 
and integration) to assign a confidence score based on the 
sources of the SL. In the quantification step, we assigned the 
quantitative scores to SL pairs according to their experimental 
methods as shown in Table 1. In the integration step, we pro-
vide default values for the weight factors but allow users to 
customize these weights to facilitate them to extract the SLs 
of a certain type of source that they are most interested in. 
When searching and browsing SLs by genes, users can adjust 
the weight factors of source types and rank results by the 
confidence scores. 

Searching and browsing the knowledge graph SynLethKG 
SynLethKG contains relationships that describe various fea-
tures for genes, cancers and drugs. With the ‘Inspect SL’ 
functionality, all these relationships are categorized by their 
node types and can be browsed through an interactive graph 
viewer. Starting with SL genes to be inspected, users only need 
to click on the node they are about to inspect, and the graph 
viewer can fetch and visualize the results. The type of relation-
ships and the number of edges to be displayed can be specified 
by the users. Properties of the nodes and edges, such as data 

Table 4. Numbers of the Relationships in SynLethKG. 

Type # Edges 

(Anatomy, downregulates, Gene) 31 
(Anatomy, expresses, Gene) 358 005 
(Anatomy, upregulates, Gene) 26 
(Compound, binds, Gene) 11 453 
(Compound, causes, Side Effect) 135 063 
(Compound, downregulates, Gene) 17 506 
(Compound, palliates, Cancer) 42 
(Compound, resembles, Compound) 5500 
(Compound, treats, Cancer) 282 
(Compound, upregulates, Gene) 13 573 
(Cancer, associates, Gene) 7708 
(Cancer, downregulates, Gene) 988 
(Cancer, localizes, Anatomy) 1444 
(Cancer, presents, Symptom) 1048 
(Cancer, resembles, Cancer) 106 
(Cancer, upregulates, Gene) 1263 
(Gene, covaries, Gene) 16 985 
(Gene, interacts, Gene) 87 103 
(Gene, non-synthetic lethal, Gene) 2831 
(Gene, participates, Biological Process) 393 049 
(Gene, participates, Cellular Component) 59 054 
(Gene, participates, Molecular Function) 65 207 
(Gene, participates, Pathway) 41 790 
(Gene, regulates, Gene) 147 639 
(Gene, synthetic lethal, Gene) 35 943 
(Gene, synthetic rescue, Gene) 895 
(Pharmacologic Class, includes, Compound) 1118 

Table 5. Statistics About the Entities in SynLethKG. 

Labels (n) Size Avg_Anna Avg_Relb 

SideEffect 5664 5.00 23.85 
Gene 14 100 8.00 112.99 
BiologicalProcess 12 141 5.00 32.37 
Compound 1898 7.00 100.12 
MolecularFunction 3012 5.00 21.65 
Anatomy 390 6.64 921.81 
CellularComponent 1619 5.00 36.48 
Pathway 2069 5.00 20.63 
Symptom 325 5.00 3.224 
PharmacologicClass 357 6.00 3.13 
Cancer 53 5.00 245.04 

aThe average number of annotations of each type of nodes. 
bThe average number of relationships of each type of nodes. 

sources and entity IDs, can also be viewed through an infobox 
in the upper right corner. 

Gene set enrichment analysis of SL partners 
We developed two methods for gene set enrichment analy-
sis based on P-values and node degrees, respectively. Both 
methods take a gene symbol as input and conduct gene set 
enrichment analysis for the SL partners of this gene. The 
output includes the rank of the pathways and GO terms sepa-
rately. A higher ranking of a pathway or a GO term indicates 
that the SL partners of this gene are more enriched with this 
pathway or GO term. The P-value-based enrichment analysis 
tool ranks the results by P-value calculated in Equation (4), 
and a lower P-value corresponds to higher ranking. Mean-
while, the degree-based enrichment analysis tool ranks the 



 

 

 

 
 

 

 

 
 

 

 

 

 

 
 

 
 

 
  

 

 

 

 
 

 

 

 
 

 

 

 

 

 
 

 
 

 
  

Figure 2. SLs and drugs in SynLethKG for driver genes of 32 cancers and pan-caner. The bar chart shows the numbers of cancer driver genes in 
SynLethKG. In the left figure, the line chart represents the numbers of SLs containing the cancer driver genes in SynLethKG, and in the right figure, the 
line chart represents the numbers of drugs associated with the driver genes in SynLethKG. 

pathways and GO terms based on the SLPR score as calcu-
lated in Equation (3), and a higher SLPR score corresponds to 
a higher ranking. 

Data access and download 
We provide a download page to make it easy for users to 
retrieve a large amount of data. All the SL gene pairs are 
classified by species and can be downloaded in either CSV or 
JSON format. We provide the files of SynLethKG in the for-
mats of CSV, JSON and GraphML for users to download. In 
particular, the datasets in GraphML format can be imported 
to other software tools such as Gephi and Cytoscape for anal-
ysis and visualization. For users who prefer the triplet format, 
we also provide a CSV file that contains all the relationships 
in the format (source, relationship, target). All the data can be 
freely accessed and downloaded without a login requirement. 
RESTful Application Programming Interfaces (APIs) are also 
provided for users to access and analyze the data by run-
ning the scripts in programming languages such as Python 
and R. 

User manual 
To lower the learning curve for new users of SynLethDB, 
we offer a web page containing a user manual, which gives 
an introduction to every functionality of SynLethDB, as well 
as examples of using the web interface, RESTful APIs and 
SynLethKG. 

Results 
Comparison with other databases 
In this section, we compare SynLethDB 2.0 with existing 
databases of SL. SLKG (36) is a knowledge graph about 
SL, and it focuses on drug repositioning for tumor-specific 
treatments based on the concepts of SL and synthetic dosage 
lethality (SDL). It contains the relationships among genes, 
drugs and cancers. There are 19 987 SLs and 3039 SDLs in 
SLKG. Compared with SLKG, SynLethKG is focused on col-
lecting existing SLs and related knowledge, and it includes 
more types of relationships and a more comprehensive list of 

SLs. SynLethDB 2.0 contains 35 943 human SLs and, in addi-
tion to relationships among genes, drugs and cancer types, it 
contains the relationships between genes and pathways, drugs 
and pharmacologic classes and so on. SynLethDB 1.0 is the 
first comprehensive database of SL. Based on that, SynLethDB 
2.0 is even more comprehensive and user-friendly, as we have 
made extensive and important updates to the database in the 
following aspects. 

Firstly, SynLethDB 2.0 is arguably the most up-to-date and 
most comprehensive database for SL. It contains 50 868 SL 
pairs in total, almost doubling the number of SL pairs in Syn-
LethDB 1.0. In particular, SynLethDB 2.0 contains 35 943 
human SLs, 381 mouse SLs, 439 fly SLs, 14 000 yeast SLs and 
105 worm SLs as shown in Table 2. The number of human SLs 
in SynLethDB 2.0 is almost 1.8 times that in SynLethDB 1.0. 
Consistent with SynLethDB 1.0, we also provide the HUGO 
Gene Nomenclature Committee gene symbols, Entrez gene 
IDs, PubMed IDs of its original publications, types of sources 
and the confidence score calculated according to the sources 
for each SL pair in SynLethDB 2.0. Note that we updated 
the confidence scores by considering new sources of SLs 
such as CRISPR screening and allowing user-defined weight 
factors. 

Secondly, SynLethDB 2.0 provides more types of biomedi-
cal knowledge. SynLethDB 1.0 comprises mainly the SL rela-
tionships between genes. By adding the knowledge graph Syn-
LethKG, SynLethDB 2.0 contains much more types of entities 
and relationships, including biological processes, pathways, 
molecule functions and cellular components for genes, phar-
macologic classes and side effects for drugs, symptoms and 
anatomies for cancers. Overall, there are 37 341 entities 
(nodes) and 1 405 652 relationships (edges) in SynLethKG 
as shown in Table 3. The types of relationships and their 
numbers are listed in Table 4. In addition, SynLethDB 2.0 
retains the annotations of SLs from SynLethDB 1.0 and cor-
rects them. It also adds annotations to the nodes and edges 
in SynLethKG, such as the name of entity, the data source 
and the link to entity in the original data source, and other 
annotations such as the organisms of genes and the thresholds 
used when extracting the relationships. Therefore, SynLethDB 



 

 

 

 
 

 

 

  

 

 

 

 

 
 

 

 

  

 

 

Figure 3. A case study on BRCA1 in breast cancer. Using ‘Search SL by disease’, the SL genes associated with the disease will be shown. BRCA1 is a 
gene that has SL partners and is downregulated in breast cancer. Click the ‘Search SL’ button, and it shows that PARP2 is an SL partner of BRCA1 with a 
high confidence score (0.87). Inspecting this pair of SL genes, we notice that BRCA1 and PARP2 are both associated with the ‘ovarian cancer’ and 
‘breast cancer’ diseases, and BRCA1 participates in the ‘DNA Damage Response’ pathway. The infobox at the upper right corner shows the annotations 
of the SL. The synthetic lethal relationship between BRCA1 and PARP2 has been reported in the literature on human cancer and cell lines including 
A549, PC3 and MDA468. The result that breast cancer downregulates BRCA1 and PARP2 is an SL partner of BRCA1 indicates that PARP2 is a drug 
target for breast cancer. Rucaparib, Talazoparib, Niraparib and Olaparib all bind with PARP2. Using ‘Search SL by compound’, we also identify PARP2 as a 
potential drug target of Rucaparib, Talazoparib, Niraparib and Olaparib. 

2.0 can provide users with more comprehensive annotations 
for the entries and relationships. Table 5 shows the number 
of each type of entities in SynLethKG and the average num-
bers of annotations and relationships of each kind of entities. 
The average number of relationships for each type of nodes 
was counted by adding the numbers of incident edges among 
all the nodes and dividing the sum by the total number of 
nodes. 

Thirdly, SynLethDB 2.0 provides additional ways to access 
the data. In SynLethDB 1.0, users can only access the SLs by 
searching a gene name as the query. In SynLethDB 2.0, users 
can search by names of drugs or cancers. In addition to search-
ing from the web interface, users can also download the raw 
dataset from the website. Besides, SynLethDB 2.0 provides 
RESTful APIs which allow users to access the data through 
different programming languages like Python and R as well 
as command line. 

SynLethKG for cancer driver genes 
In SynLethKG, we collected various relationships for the genes 
involved in the SL pairs, including gene–gene relationships 
(gene expression covariation, gene interaction and gene reg-
ulation), GO annotations and pathways as shown in Table 4. 
In particular, SynLethKG has 14 100 genes, 12 141 biological 
processes, 3012 molecular functions, 1619 cellular compo-
nents, 2026 pathways, etc. as nodes and their relationships as 
edges in Table 5. 

Moreover, SynLethKG also contains 9959 relationships 
between the genes and 53 cancers from DisGeNET database 
(46) and 42 532 relationships between the genes and 1898 
compounds from DrugBank database (47). For cancers, 325 
symptoms and 390 anatomies are included as entities to 
describe the cancer features. For drugs, 357 pharmacologic 
classes and 5664 side effects are included as entities to describe 
drug features. Based on the same strategy as in SL-BioDP 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

(35), we counted the numbers of cancer driver genes and 
genes from hallmark cancer pathways in 32 cancer types from 
The Cancer Genome Atlas (TCGA) contained in SynLethKG, 
as well as the numbers of their SL partners and related 
drugs. 

Figure 2 shows the numbers of cancer driver genes, their 
SL partners and related drugs. We can observe that several 
cancers have quite a few SL pairs and drugs related to their 
driver genes, including BLCA (Bladder urothelial carcinoma), 
BRCA (Breast invasive carcinoma), CESC (Cervical squamous 
cell carcinoma and endocervical adenocarcinoma), COAD-
READ (Colorectal adenocarcinoma), HNSC (Head and neck 
squamous cell carcinoma), LGG (Brain lower grade glioma), 
LIHC (Liver hepatocellular carcinoma), SKCM (Skin cuta-
neous melanoma) and UCEC (Uterine corpus endometrial 
carcinoma). Figure 2 demonstrates that our database contains 
useful information about many genes, SLs and drugs related 
to cancers, making it a powerful tool for data-driven discovery 
and analysis of anticancer drug targets. 

Case study 
To demonstrate how to use SynLethDB 2.0 to discover drug 
targets, let us do a case study of searching SL partner genes of 
BRCA1 in breast cancer through the web interface as shown 
in Figure 3. First, with the ‘Search SL by disease’ module, we 
choose ‘breast cancer’ as the disease and select the relation-
ship ‘Disease Associates Gene’. Then, the first line of the results 
shows that breast cancer is associated with breast cancer asso-
ciated gene 1 (BRCA1). By clicking the ‘Search SL’ button in 
the ‘Function’ column, we searched for the SL partner genes of 
BRCA1. The result shows that poly (ADP-ribose) polymerase 
2 (PARP2) is an SL partner of BRCA1 with a high confidence 
score (0.87). Hence we choose this SL pair for further inspec-
tion. By clicking the ‘Inspect’ button in the ‘Function’ column, 
we can browse more knowledge about this SL pair. Different 
types of biomedical relationships can be browsed by clicking 
the nodes in the graph. For example, we can see that both 
BRCA1 and PARP2 are associated with the ‘ovarian cancer’ 
and ‘breast cancer’ diseases, and BRCA1 participates in the 
‘DNA Damage Response’ pathway, consistent with the litera-
ture. The annotations of any node or edge can be viewed in the 
infobox at the upper right corner by hovering the mouse over 
the node or edge. We hovered the mouse over the edge between 
‘BRCA1’ and ‘PARP2’, and the infobox displayed the annota-
tions of the SL relationship between ‘BRCA1’ and ‘PARP2’. 
The ‘pubmed_id’ attribute shows the PubMed IDs of papers 
which reported this SL; ‘cell_line’ shows the cell lines or can-
cer types in which this SL has been verified; ‘statistic_score’ 
is the confidence score of the SL; ‘unbiased’ indicates whether 
a relationship is bidirectional (when its value is true) or uni-
directional (when its value is false); ‘source’ shows that this 
SL is collected from the Decipher project and Syn-Lethality 
database. As BRCA1 is known to be downregulated in breast 
cancer and PARP2 is an SL partner gene of BRCA1, we 
searched for compounds that downregulate PARP2 as can-
didate drugs for breast cancer. As shown in the knowledge 
graph at the lower left corner of Figure 3, Rucaparib, Tala-
zoparib, Niraparib and Olaparib all bind to PARP2. On the 
other hand, we can also search for SLs related to Rucaparib, 
Talazoparib, Niraparib and Olaparib using the ‘Search SL by 
compound’ option. In this way, we can find that PARP2 is 
indeed a drug target, as shown in the right half of Figure 3. 

Through this case study, we can see how to use the basic func-
tionalities of SynLethDB 2.0 through the web interface, which 
can be used to explore potential anticancer drug targets based 
on SL or analyze biological mechanisms behind SLs. 

Discussion and conclusion 
With the development of RNAi and CRISPR screening tech-
nologies, data about SL have increased rapidly in the past 
few years. We have been continuously collecting SL data, inte-
grating them into SynLethDB and improving the annotation 
quality. In this version, we have integrated more biomedical 
knowledge about human SLs into a knowledge graph called 
SynLethKG. The additional knowledge can provide more fea-
tures for SL prediction and improve the performance of the 
predictive model. A similar procedure can be applied to pre-
dicting drugs based on SLs. We also provided a new web 
interface with online services for data browsing, visualization 
and analysis. For instance, ‘Search SL by disease’ can facilitate 
SL-based cancer drug discovery. The ‘SL inspect’ functional-
ity displays relationships between a pair of SL genes from 
multiple sources in one intuitive graph. Enrichment analysis 
tools help analyze the most relevant pathways and GO of 
a gene’s SL partners. SynLethDB has been used as a source 
of training or testing datasets by many computational meth-
ods for SL prediction, and this new version of SynLethDB 
provides a larger and more comprehensive dataset for these 
methods. In addition, we realize that the data in SynLethDB 
are enriched with SLs of some hub genes, such as Kirsten ras 
proto-oncogene, because they are more experimentally stud-
ied. This kind of data skewness may introduce some bias, 
which makes a model learn superficial patterns and achieve 
inflated performance. 

The overall goal of SynLethDB is to increase the under-
standing of SL mechanisms and to facilitate drug discovery. 
In the future, we will continue to collect new SLs and enhance 
the functionalities of the database. For instance, we will add 
genomics data and cell line annotations to make SLs more 
context-specific. In addition, we can create more efficient path 
queries based on the graph database to find the pathways 
shared between SL pairs and interactions between SLs and 
drugs. 
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