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Abstract: Alzheimer’s disease (AD), the most common type of dementia in elderly individuals,
slowly and progressively diminishes the cognitive function. Mild cognitive impairment (MCI) is
also a significant risk factor for the onset of AD. Magnetic resonance imaging (MRI) is widely used
for the detection and understanding of the natural progression of AD and other neurodegenerative
disorders. For proper assessment of these diseases, a reliable database of images from cognitively
healthy participants is important. However, differences in magnetic field strength or the sex and
age of participants between a normal database and an evaluation data set can affect the accuracy of
the detection and evaluation of neurodegenerative disorders. We developed a brain segmentation
procedure, based on 30 Japanese brain atlases, and suggest a harmonized Z-score to correct the differ-
ences in field strength and sex and age from a large data set (1235 cognitively healthy participants),
including 1.5 T and 3 T T1-weighted brain images. We evaluated our harmonized Z-score for AD
discriminative power and classification accuracy between stable MCI and progressive MCI. Our
procedure can perform brain segmentation in approximately 30 min. The harmonized Z-score of
the hippocampus achieved high accuracy (AUC = 0.96) for AD detection and moderate accuracy
(AUC = 0.70) to classify stable or progressive MCI. These results show that our method can detect
AD with high accuracy and high generalization capability. Moreover, it may discriminate between
stable and progressive MCI. Our study has some limitations: the age groups in the 1.5 T data set and
3 T data set are significantly different. In this study, we focused on AD, which is primarily a disease
of elderly patients. For other diseases in different age groups, the harmonized Z-score needs to be
recalculated using different data sets.

Keywords: Alzheimer’s disease; MRI; Z-score; harmonized; mild cognitive impairment

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, and it typically
starts with memory impairment at the earliest clinical stage. Mild cognitive impairment
(MCI), a less severe condition than AD, increases the risk of developing AD.

Magnetic resonance imaging (MRI) is an excellent biomarker to quantify AD progres-
sion. The use of MRI in the morphometric or volumetric measurement of brain atrophy,
evaluating parameters such as cortical thickness, hippocampus volume, and whole-brain
volume, improved the diagnostic process. These measurements can also be used to assess
the effectiveness of any applied therapies.

Several established methods exist to analyze cortical and subcortical volume and
to use cortical volume from MRI data as a surrogate biomarker for AD and MCI [1–15].
Especially, a volume measurement pipeline called FreeSurfer [1,2] has been widely used
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for the volume and thickness measurement of anatomical regions of interest (ROI) in brain
imaging clinical research.

Thus, brain atrophy is an important surrogate biomarker for AD. However, brain
atrophy also occurs with age in cognitively normal participants; therefore, it is necessary to
use an index that considers typical age-related atrophy.

Recently, multi-site clinical studies have been expanding worldwide to elucidate AD
mechanisms and establish a useful surrogate biomarker for AD. Some of these studies are
the Open Access Series of Imaging Study (OASIS) [16], The Australian Imaging, Biomarker
& Lifestyle Flagship Study of Ageing (AIBL) [17], the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [18], and the Japanese Alzheimer’s Disease Neuroimaging Initiative
(J-ADNI) [19]. However, measurement bias in MRI data from different scanners has
been reported, and all brain image analysis methods are affected by this bias. MRI data
harmonization is an essential process for multi-site imaging studies to ensure the reliability
of statistical analysis and reduce non-biological bias [20–22].

In this study, we used 30 Japanese brain atlases subdivided into 131 anatomical regions
for the fast and highly accurate segmentation and brain analysis to calculate brain structures
volume. We segmented 1235 normal control (NC) participants (1089 scanned by 3 T MRI
and 146 by 1.5 T MRI).

We propose a harmonized Z-score for each anatomical ROI from the NC group as
a universal reference for brain atrophy, independent of age, gender, and magnetic field
strength. In the harmonized Z-score, we consider several confounding factors (i.e., sex,
scanner field strength, 1.5 T or 3 T, estimated total intracranial volume (eTIV), and age).
After harmonization of the brain structures volume, we can minimize the difference be-
tween subgroups for each covariate (i.e., males and females, 1.5 T and 3 T MRI scanner)
and evaluate brain atrophy correcting for the effects of age and whole-brain volume.

2. Materials and Methods
2.1. MRI Acquisition

The three-dimensional (3D) T1-weighted images of the NC data set were obtained
from two different protocols on 3 T MRI scanners at the National Center of Neurology
and Psychiatry: 693 individuals underwent Protocol 1, and the other 438 individuals
underwent Protocol 2. On the other hand, all the AD and MCI patients underwent Protocol
1. Protocol 1: on 3 T MR system (Philips Medical Systems, Best, The Netherlands): repetition
time (TR)/echo time (TE), 7.18 ms/3.46 ms; flip angle, 10 degrees; number of excitations
(NEX), 1; 0.68 × 0.68 mm2 in plane resolution; 0.6 mm effective slice thickness with no
gap; 300 slices; matrix, 384 × 384; field of view (FOV), 261 × 261 mm. Protocol 2: 3 T
MR system (Verio, Siemens, Erlangen, Germany): TR/TE, 1800 ms/2.25 ms; flip angle,
9 degrees; NEX, 1; 0.87 × 0.78 mm2 in plane resolution; 0.8 mm effective slice thickness
with no gap; 224 slices; matrix, 320 × 280; FOV, 250 × 250 mm. All data were collected
after obtaining informed consent from participants, and all methods were carried out in
accordance with relevant guidelines and regulations. This study was approved by the
Institutional Review Board at the National Center of Neurology and Psychiatry (project
identification code: A2020-001, date of approval: 23 Marth 2020), Tokyo, Japan.

We also obtained 1.5 T T1-weighted MR images from the Japanese Alzheimer’s Disease
Neuroimaging Initiative (J-ADNI) data set, which were provided by the National Bioscience
Database Center in Japan (https://humandbs.biosciencedbc.jp/hum0043-v1, accessed on
22 August 2022). Data were acquired using 1.5 T MRI scanners (GE Healthcare, Siemens
and Philips) and preprocessed with non-parametric non-uniform normalization (N3) [23]
and phantom-based distortion correction [24]. We divided the total of 507 participants into
four groups—NC, AD, stable MCI (sMCI), and progressive MCI (pMCI)—based on the
following criteria:

https://humandbs.biosciencedbc.jp/hum0043-v1
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NC participants: Mini-Mental State Examination (MMSE) score 24–30, Clinical Dementia
Rating (CDR) Scale 0, non-depressed, no memory complaint.

AD patients: MMSE score 20–26, CDR 0.5 or 1, and memory complaints.
sMCI patients: MMSE score 24–30, memory complaints (preferably corroborated by

an informant), objective memory loss measured, CDR 0.5, absence of
significant levels of impairment in other cognitive domains, essentially
preserved activities of daily living, diagnosis of MCI for ≥36 months.

pMCI patients: MMSE score 24–30, memory complaints (preferably corroborated by
an informant), objective memory loss measured, CDR 0.5, absence of
significant levels of impairment in other cognitive domains, essentially
preserved activities of daily living, diagnosis of MCI at baseline and
conversion to AD within 6–36 months.

All the J-ADNI participants considered had taken the MMSE, CDR, Alzheimer’s
Disease Assessment Scale (ADAS), and Functional Activity Questionnaire (FAQ) as neu-
ropsychological screening tools. The evaluating MRI data were acquired at the baseline.

Table 1 summarizes the demographics of the participants.

Table 1. Characteristics of the study participants.

Normal Data Base Evaluation Data Set

Source NCNP J-ADNI J-ADNI
Filed Strength 3 T 1.5 T 1.5 T

Category NC NC sMCI pMCI AD
Number of participants 1089 146 102 112 147
Mean Age (SD) 58.5 (14.3) 67.6 (5.66) 72.8 (6.10) 73.0 (5.54) 73.5 (6.60)
Male (Female) 375 (714) 68 (78) 57 (45) 47 (65) 63 (84)

2.2. Image Pre-Processing

All MR images were corrected for intensity inhomogeneity using the B1 correction
algorithm [25] and a non-parametric non-uniformity intensity normalization (N3) algo-
rithm [23]. Subsequently, phantom-based distortion correction [24] was performed to
normalize variations between MRI scanners. Subsequently, we used the Computational
Anatomy Toolbox (CAT12) based on SPM12 for image segmentation of T1-weighted MR
images into three types of brain tissues (GM, WM, and CSF) and background. It is assumed
that the histogram of image intensity follows a Gaussian mixture model. Accordingly, the
existing possibilities of the three tissue types can be calculated for the image intensity at an
arbitrary voxel, p(T|I), using the Bayesian estimation.

2.3. Segmentation and Calculation of Brain Structures Volume by Multi-Atlas Fusion

We used a segmentation procedure that incorporates a joint-label fusion method [26,27]
and corrective learning [28] with an automatic selection of five among thirty atlases. Each
atlas included 131 manually traced ROIs based on T1-weighted images. Briefly, the seg-
mentation procedure involves the following algorithms: (1) The target T1-weighted brain
image was divided into 30 large regions by non-linear warping from the large-regions atlas
in MNI space (described by the Montreal Neurological Institute) to the target T1-weighted
image. The large-regions atlas was created by grouping some ROIs into large regions in
the “neuromorphometrics atlas” attached in the CAT (https://neuro-jena.github.io/cat/,
accessed on 22 August 2022), based on prior anatomical knowledge. (2) Five atlases were
automatically selected from 30 manually traced atlases, according to the Pearson correla-
tion between the 30 atlases and the target image for each large region. The Mmanually
traced atlases were created by one Ph.d.PhD researcher outside our researchexternal to our
group, who has been involved in brain imaging research. The qualities quality of manually
tracedthese atlases were checked was assessed by a radiologist (H.M. ) in our study group.
(3) We created a diffeomorphic anatomical registration through exponentiated lie algebra

https://neuro-jena.github.io/cat/
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(DARTEL) template from the five selected atlases and the target image at each large region.
Subsequently, the five atlases were warped to the target image via the large-region DAR-
TEL templates. (4) Using the joint label fusion (JLF) method and SegAdapter, the target
image was segmented into 133 ROIs from the fused selected atlases at each large region.
(5) The volumes of the ROIs are calculated after considering the partial volume effects
by the posterior probability maps based on the CAT12 toolbox. Since the segmentation
procedure can be performed with parallel processing for each large region, the processing
time was reduced.

The segmentation procedure was executed using a multi-core computer system (OS:
CentOS 7.2, CPU: Intel Xeon E5-2600 24 cores, memory: 96 GB), and the processing time
was measured.

2.4. Calculating Process for the Harmonized Z-Score

According to the report of Ma et al. [22], we can model and harmonize the covariates of
no interest (i.e., age, field strength, eTIV, and sex) by a general linear model. In this study, we
focused on the magnetic field strength as the main factor that describes the characteristics
of MRI scanners. Ideally, the MRI scanner model and acquisition parameters should also
be considered; however, but it is not realistic to considerinclude all of these including
variables, which may change newly manufactured in the future, when consideringfor
clinical applications. SoTherefore, we only considered the field strength, which is the most
influential factor in volumetric measurements to increase versatility by using a simpler
model. We defined the structure volume and all the other covariates as follows:

log10Vi,j = β0,j + βXi + εi,j (1)

where Vi,j is the structural volume for the i-th subject and j-th ROI, and Xi is the design
matrix of the covariates, i.e., age, field strength (0: 3 T, 1: 1.5 T), gender (0: female, 1:
male) and log10(eTIV). After removing the effect of the covariates, we can calculate the
harmonized Z-score at each ROIs as:

Zi,j = εi,j/

√(
1 +

1
N

+
(Xi − X̄)T∑ −1(Xi − X̄)

N − 1

)
σ̂j

2 (2)

where σ̂2
j is the unbiased distribution, N is the number of participants, and ∑ is the

covariance matrix of participants.
We calculated the harmonized Z-score for each ROI from 1089 NC participants scanned

by 3 T MRI at NCNP and 146 NC participants scanned by 1.5 T MRI from the J-ADNI
data set. Moreover, we evaluated and excluded the outliers of Z-scores using the Smirnov–
Grubbs test with a 5% significance level; then, we recalculated the Z-scores according to
the same process on Python 3.6.6.

In this article, we selected and presented some covariate combinations to illustrate
scatter plots of age correlations: (a) no harmonization (raw variable); (b) field strength only;
(c) the combination of field strength and eTIV; (d) the combination of field strength, eTIV,
and sex. Therefore, we calculated the efficacy of the harmonized Z-score to distinguish
groups using four different models: (a) age only; (b) the combination of age and field
strength; (c) the combination of age, field strength, and eTIV; (d) the combination of age,
field strength, eTIV, and sex.

2.5. Evaluation of the Harmonization of Different Field Strength and Sex

We used the Kolmogorov–Smirnov test to measure the separation of the Z-score
distributions and quantitatively compare the separation of the sample distributionres,
thus comparing the Z-scores between NC images from 1.5 T and 3 T scanners. If the
harmonization works properly, the difference between the Z-score distribution in subgroups
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with different covariates (i.e., field strength and sex) in NC participants will be smaller than
the non-harmonized difference.

2.6. Evaluation of Harmonized Z-Score for AD Detection and Classification of sMCI/pMCI

Finally, we evaluated the accuracy of the harmonized Z-score in the ROIs to detect
differences between the AD and NC groups, and the sMCI and pMCI groups. The harmo-
nized Z-score was analyzed using the receiver operating characteristic (ROC) curves and
the area under the curve (AUC). The ROC curves of each ROI were drawn based on the
trade-off between sensitivity and specificity for discriminating between diagnostic groups.
A higher AUC indicates higher sensitivity and specificity using the harmonized Z-score in
the ROIs.

3. Results

We performed the segmentation procedure on all T1-weighted brain images; most of
the processing procedures were completed within 30 min.

3.1. Evaluation of the Harmonization of Different Field Strength and Sex

Figure 1 shows the correlation between raw and harmonized volumes of a set of
eight ROIs associated with cognitive function for the NC group. The male/female and
1.5 T/3 T data are shown overlapped.

Correlation between the age (x axis) and some selected structure logarithm volumes
(y axis) was shown for the NC group for 1.5 T males (blue), 3 T males (green), 1.5 T females
(violet) and 3 T females (red).

The blue line represents the regression line for age, and the red and green lines are the
95% confidence intervals. An overall negative correlation between age and ROI volumes
within the gray matter was found. The coefficients for the harmonized Z-score calculation
in all ROIs are listed in Additional file 1.

The 95% confidence intervals became narrower after each harmonization and im-
proved particularly when the magnetic field strength and eTIV or all covariates were
corrected. To quantitatively assess the shift of the kernel density estimate function (KDEF)
of the Z-score before and after harmonization, accounting for each covariate, we per-
formed the K-S test between the 1.5 T NC and 3 T NC groups. Before harmonization, in
72/133 ROIs, the null hypothesis (i.e., the two structural volume distributions scanned by
1.5 T MRI and 3 T MRI came from the same population) was rejected. However, it was
correctly not rejected after harmonization.

Figure 2 shows the KDEFs of the harmonized Z-scores in selected structures. The
KDEFs of the Z-scores showed the brain atrophy of AD on these structures compared
to the NC group. When the Z-score shows a negative value, it indicates that the ROI of
participants is atrophied compared to the NC, significantly if the Z-score is lower than −2.

After harmonization, the distribution of Z-scores in the AD and pMCI groups was
shifted leftward in the hippocampus, amygdala, inferior temporal gyrus, parahippocampal
gyrus, and middle temporal gyrus. These results show that the AD detection power using
the Z-score is improved after harmonization including all covariates (field strength, eTIV,
and sex). The statistical parameters for calculating the harmonized Z-score from each brain
ROIs are showed in Table S1.
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Figure 2. The kernel density estimation function of the harmonized Z-score taken from a select few
gray matter structures. Blue line: NC, green line: sMCI, violet line: pMCI, red line: AD.

3.2. Discriminative Power between NC vs. AD and sMCI vs. pMCI

The AUC values of the comparisons of AD vs. NC and pMCI vs. sMCI are shown in
Table 2. The results showed that the Z-score of the hippocampus has high AUC values:
0.96 for the right hippocampus, and 0.95 for the left.



J. Pers. Med. 2022, 12, 1555 8 of 10

Table 2. The area showed the AUC value of 80 or more for NC vs. AD and an AUC value of 60 or
more for sMCI vs. pMCI.

AD vs. NC pMCI vs. sMCI

Region AUC Balanced Accuracy Region AUC Balanced Accuracy

Right Hippocampus 0.96 0.88 Right Hippocampus 0.70 0.68
Left Hippocampus 0.95 0.89 Left Hippocampus 0.68 0.67
Right Amygdala 0.88 0.80 Left Amygdala 0.66 0.63
Left Amygdala 0.86 0.79 Right Amygdala 0.64 0.61

Right ITG 0.82 0.75 Right Entorhinal area 0.60 0.62
Left Thalamus Proper 0.80 0.74 Left PHG 0.60 0.60

Left PHG 0.80 0.76 Right MOrG 0.60 0.59
Right PHG 0.80 0.74
Right MTG 0.80 0.74

PHG, Para Hippocampal Gyrus. MTG, Middle Temporal Gyrus. ITG, Inferior Temporal Gyrus. MOrG, Medial
Orbital Gyrus.

4. Discussion

We analyzed 131 brain structural volumes in 1235 (3 T = 1089, 1.5 T = 146) cognitively
normal participants, and we calculated the harmonized Z-score for each region considering
age, field strength, eTIV, and sex. The harmonization of these covariates improved the
reliability of assessing age-related atrophy in the normal database because the amplitude
of the confidence interval decreased after harmonization. Quantitative evaluation based
on the Kolmogorov–Smirnov test showed that the null hypothesis of the two structural
volume distributions (1.5 T MRI and 3 T MRI) coming from the same population was not
rejected. These results showed that harmonization is effective.

Our method achieved high AUC values (0.96) in the hippocampus to separate NC and
AD and moderate AUC values (0.70) discriminating between pMCI and sMCI. Elahifasaee
et al. showed that a pMCI/sMCI classification accuracy of 65.94% could be achieved
based on feature decomposition and kernel discriminant analysis [29]. Several studies have
shown that discrimination between sMCI and pMCI is a difficult task. Our results cannot
compare directly to Farzaneh’s results because the metrics are different; however, since our
results are based only on the univariate Z-score, our results showed a reliable accuracy to
classify sMCI and pMCI in comparison with previous studies.

There are some limitations to our study. The measurement bias may include the
MRI manufacturer, image acquisition protocol, scanner coil, and field strength; we only
considered field strength in our study. Moreover, there are innumerable possible combina-
tions of other covariates, and we tried to increase the generality in clinical applications by
considering a simple model.

5. Conclusions

Our results showed that our method could be effective for AD detection, with high
accuracy. Moreover, it can be used for sMCI/pMCI discrimination without being affected
by the different field strengths, thus having high generalization capability. Most of our
database, in fact, consisted of participants scanned by 3 T MRI, while the evaluation data
set comprised patients all scanned by 1.5 T MRI. Furthermore, our method can be expected
to improve the accuracy of the multivariate Z-score approaches, such as machine learning
and other multivariate analyses. We believe that multivariate Z-scores derived from whole-
brain ROIs can be applied to the type classification of dementia and may be a useful
biomarker of other neurodegenerative disorders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12101555/s1, Table S1: The coefficients for harmonized Z-
score calculation in all ROIs.
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