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Abstract
Herbaceous	aboveground	biomass	(HAB)	is	a	key	indicator	of	grassland	vegetation	and	
indirect estimation tools, such as remote sensing imagery, increase the potential for 
covering	larger	areas	in	a	timely	and	cost-	efficient	way.	Structure	from	Motion	(SfM)	is	
an image analysis process that can create a variety of 3D spatial models as well as 2D 
orthomosaics	from	a	set	of	images.	Computed	from	Unmanned	Aerial	Vehicle	(UAV)	
and	 ground	 camera	measurements,	 the	 SfM	 potential	 to	 estimate	 the	 herbaceous	
aboveground	biomass	in	Sahelian	rangelands	was	tested	in	this	study.	Both	UAV	and	
ground camera recordings were used at three different scales: temporal, landscape, 
and	national	(across	Senegal).	All	images	were	processed	using	PIX4D	software	(pho-
togrammetry	software)	and	were	used	to	extract	vegetation	 indices	and	heights.	A	
random	forest	algorithm	was	used	to	estimate	the	HAB	and	the	average	estimation	
errors were around 150 g m−²	for	fresh	mass	(20%	relative	error)	and	60	g	m−² for dry 
mass	(around	25%	error).	A	comparison	between	different	datasets	revealed	that	the	
estimates	based	on	camera	data	were	slightly	more	accurate	than	those	from	UAV	
data. It was also found that combining datasets across scales for the same type of tool 
(UAV	or	camera)	could	be	a	useful	option	for	monitoring	HAB	in	Sahelian	rangelands	
or in other grassy ecosystems.
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1  |  INTRODUC TION

Grass	or	herbaceous	vegetation	 is	present	 in	most	ecosystems	on	
earth,	and	herbaceous	aboveground	biomass	(HAB)	has	been	used	
as an indicator of ecosystem productivity and functioning in a pleth-
ora	of	studies	in	relation	to	biodiversity-	ecosystem	functioning	re-
lationships	(Hector	et	al.,	1999).	HAB	is	also	the	main	source	of	feed	
for many wild and domestic animals, and is used in many studies to 
assess	feed	availability	(Hiernaux	et	al.,	2015; Ickowicz, 1995).

HAB	 is	 usually	 collected	 by	 destructive	 sampling	 (removal	 of	
vegetation),	 which	 is	 a	 laborious	 work	 method,	 so	 the	 develop-
ment of indirect sampling using remote sensing methods has been 
under	 continuous	 development	 for	 several	 decades	 (Reinermann	
et al., 2020).	Many	tools	are	based	on	measuring	the	spectral	char-
acteristics of vegetation. Such measurements are normally used to 
calculate	 indices	 (proxies	 of	 vegetation)	 based	 on	 a	 combination	
of	near-	infrared	 and	visible	 reflectance	of	 the	vegetation	 (Bannari	
et al., 1995; Barbosa et al., 2019; Rouse et al., 1974).	These	indices	
are generally based on satellite remote sensing images, but can also 
be derived from images directly taken on the ground with a camera, 
or	from	near-	field	remote	sensing	using	Unmanned	Aerial	Vehicles	
(UAV)	(Candiago	et	al.,	2015; Cruzan et al., 2016;	Grenzdörffer	et	al.,	
2008).	Another	tool	for	estimating	HAB	using	remote	sensing	is	the	
LiDAR	technique	(Schulze-	Brüninghoff	et	al.,	2019).	Therefore,	the	
volume	 of	 herbaceous	 vegetation	 is	 subsequently	 derived	 from	 a	
LiDAR-	retrieved	point	cloud,	which	can	be	used	as	a	proxy	of	HAB.	
Some studies have tested combining both the volume of the her-
baceous	 vegetation	 and	 the	 spectral	 signature	 to	 estimate	 HAB	
(Schulze-	Brüninghoff	et	al.,	2020).

Structure	from	Motion	(SfM)	is	a	photogrammetry	process	that	
can be used to create a variety of 3D spatial models and 2D orthomo-
saics	from	images	(Schonberger	&	Frahm,	2016).	The	process	relies	
on a set of images of the same object taken from different angular 
views,	and	 the	SfM	produces	a	3D	point	cloud	of	 the	object.	This	
process	is	generally	applied	to	UAV	images	and	the	point	cloud	from	
the set of images is used to produce an orthomosaic and a digital sur-
face	model	(Frey	et	al.,	2018).	Color	indices	can	be	calculated	based	
on	the	orthomosaic	depending	on	the	sensors	used	(multispectral	or	
simple	RGB	sensors).	Applying	UAV	imagery	with	the	SfM	process	is	
widely	used	to	estimate	HAB	from	3D-	based	indices	and	vegetation	
indices	(Aasen	et	al.,	2015; Cunliffe et al., 2016; Kolarik et al., 2020; 
Possoch	et	al.,	2016; Wijesingha et al., 2020).	The	SfM	process	can	
also be applied to imagery generated directly from sensors mounted 
on the ground. This process has been used to develop a 3D model 
of individual plants under greenhouse conditions, or directly in the 
field	(An	et	al.,	2017;	Andújar	et	al.,	2018; Bossoukpe et al., 2020; 
Cooper et al., 2017).

Most	 studies	 using	 the	 SfM	 process	 have	 been	 carried	 out	 in	
temperate	grasslands	and	on	a	local	scale	(Lussem	et	al.,	2018, 2019; 
Wijesingha et al., 2020).	In	this	study,	we	assessed	the	applicability	
of	the	SfM	methodology	for	estimating	HAB	in	Senegalese	savannah	
ecosystems including a large diversity of plant functional types. The 
objectives were to:

•	 Assess	the	applicability	of	the	SfM	methodology	based	on	reflec-
tance	in	the	visible	part	of	the	spectrum	(red-	green-	blue;	RGB)	for	
biomass monitoring.

•	 Compare	 the	 biomass	 estimated	 using	 the	 SfM	 methodology	
based	on	images	collected	both	with	UAVs	and	with	a	digital	cam-
era on the ground.

•	 Study	whether	the	SfM	methodology	can	be	used	to	monitor	HAB	
variability over the growing season, across a savannah landscape 
locally, and spatially across a diversity of plant functional types.

• Lastly, compare calibration carried out across the different data-
sets and calibration within each dataset in order to see whether 
existing	datasets	can	be	used	for	such	calibration.

2  |  MATERIAL AND METHODS

We	collected	RGB	images	using	a	camera	mounted	on	an	Unmanned	
Aerial	Vehicle	(UAV),	and	with	a	digital	camera	on	the	ground,	com-
bined with field measurements of herbaceous aboveground biomass. 
The	different	measurements	(UAV,	camera,	and	HAB)	were	carried	
out	on	plots	of	1	ha.	The	UAV	images	covered	all	the	plot.	Within	the	
plot, subplots of 1m by 1m were laid out. The camera plot and the 
HAB	measurements	were	carried	out	on	these	subplots	(Figure 1).	
The positions of the subplots were marked out with a wooden trian-
gle painted in white, or with a plastic bag on the ground.

For the different datasets, we first present the position of the 
plot and the subplots and the dates of the different measurements.

Second,	we	 detail	 the	 protocol	 for	 the	 image	 acquisitions	 and	
image	analysis	(Structure	from	Motion).

Lastly, we present the herbaceous biomass field measurements.

2.1  |  Design of the measurement setup

Data	were	collected	on	three	spatio-	temporal	scales	for	comparison:

1.	 Temporal	 scale:	 images	 and	 HAB	 data	 were	 collected	 at	 the	
same	 locations	 over	 the	 growing	 season	 (corresponding	 to	 the	
wet	 season	 between	 June	 and	 October)	 (Figure 2a).

2.	 Landscape	 scale:	 measurements	 were	 done	 within	 a	 6,800-	ha	
area	of	enclosed	savannah	in	northern	Senegal	(Figure 2a).

3.	 National	 scale:	 measurements	 were	 taken	 throughout	 Senegal	
(Figure 2b).
This	design	produced	 six	datasets.	Three	datasets	 for	 the	analysis	

of	UAV	imagery:	Temporal	UAV	(TU),	Landscape	UAV	(LU),	and	National	
UAV	 (NU);	 and	 three	 datasets	 for	 the	 digital	 camera	 on	 the	 ground:	
Temporal	camera	(TC),	Landscape	camera	(LC),	and	National	camera	(NC).

2.1.1  |  Temporal	scale	measurements

The temporal scale measurements were carried out at the Centre de 
Recherches Zootechniques	in	Dahra	(Figure 1a),	a	research	station	in	
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northern	Senegal	(15°21’	N,	15°28’	W)	in	the	silvopastoral	zone	of	
the country referred to as the Ferlo region. The station covers an 
area	of	6800	ha	managed	by	ISRA	(Institut Sénégalais de Recherches 
Agricoles).	Mean	annual	rainfall	over	the	last	50	years	was	371.6	mm	
and	the	soils	are	mainly	sandy	(Ndiaye	et	al.,	2014, 2015; Tagesson, 
Fensholt,	Guiro,	et	al.,	2015).

Images were taken from 1 m2 subplots every 10 days with 
the digital camera on the ground during the 2019 rainy season 

(end	of	 July	 to	October)	 and	during	 the	2020	 rainy	 season	 (July	
to	October).	 In	 2019,	 images	were	 collected	 close	 to	 the	Dahra	
research center office, and in 2020 they were collected around the 
Dahra	 flux	 tower	site	 (Tagesson,	Fensholt,	Cropley,	et	al.,	2015).	
Both years, the images were collected along two perpendicular 
1	km	transects	(Diatta	et	al.,	2021).	Every	10	days,	measurements	
were	 taken	1	m	 to	 the	north	of	 the	 last	measurements	 (10	days	
earlier).

F I G U R E  1 Schematic	representation	of	
the	plot	and	the	subplot(s).	The	positions	
of	HAB	are	the	black	squares	measuring	
1	m	by	1	m.	For	the	Unmanned	Aerial	
Vehicle	(UAV),	the	images	were	taken	over	
the entire plot. The camera images were 
taken over the subplots. There were from 
1 to 10 subplots per plot

F I G U R E  2 (a)	Map	of	the	CRZ	(Centre	
de	Recherches	Zootechniques)	near	Dahra	
with the position of the different plots of 
the	Landscape	(red	squares)	and	Temporal	
datasets	(green	dots).	(b)	Map	of	Senegal	
with	the	different	plots	of	the	National	
scale	datasets	(red	dots).	The	yellow	
square	represented	the	position	of	the	
CRZ	Dahra	(map	a)

(a)

(b)



4 of 17  |     TAUGOURDEAU ET Al.

The	UAV	 images	were	 taken	 every	 two	 days	 during	 the	 2020	
rainy	season,	covering	a	one	ha	area.	For	the	HAB	measurements,	
three subplots of 1 m2 were sampled every time in relation to the 
distance from the center of a tree: one under the crown of the tree, 
one at the perimeter of the tree crown and one outside tree influence 
(at	a	greater	distance	 than	 the	height	of	 the	 tree)	 to	be	compared	
with	HAB	measurements	collected	on	the	ground	from	destructive	
sampling	(see	description	below).	The	position	of	the	plot	changed	
each	time.	In	total,	the	measurements	were	taken	around	six	differ-
ent	trees	of	two	different	species	(Balanites aegyptiaca and Vachellia 
tortilis).

2.1.2  |  Landscape	scale	measurement

For the landscape scale measurements, data were collected from 
38	plots	of	1-	ha	close	to	the	Dahra	research	station	(Figure 2a, the 
red	squares).	These	plots	had	already	been	used	in	several	studies	
of vegetation dynamics and were selected to be representative 
of the diversity of vegetation types within the research station 
(Ndiaye	et	al.,	2014, 2015; Raynal, 1964).	Data	were	collected	at	
the	end	of	the	rainy	season	(October	2018)	when	HAB	was	at	its	
maximum.	Images	covering	the	full	1-	ha	plots	were	collected	with	
the	camera	mounted	on	 the	UAV.	For	HAB,	10	subplots	of	1-	m²	
were measured along a 20 m line. The images with the digital cam-
era on the ground were only taken for the first 1 m² subplot among 
the 10.

2.1.3  |  National	scale	measurements

The data collected on a national scale were taken from 47 plots 
during	two	field	campaigns	(Figure 2b):	one	in	the	northern	part	of	
Senegal at the end September 2020 and the other in the southeast-
ern part of Senegal in the middle of October 2020. The selection of 
plots was based on a combination of accessibility and diversity of 
vegetation.	The	soil	was	categorized	 into	three	soil	 types	 (13	sites	
with	 sandy	 soil,	 16	 with	 ferralitic	 soil,	 and	 18	 with	 clay	 soil)	 and	
ecosystem	types	were	separated	 into	 four	categories	 (13	steppes,	
16	sparse	savannah,	11	dense	savannah,	and	8	dense	forests).	The	
average annual rainfall for the 1981– 2018 period in the different 
plots ranged from 221 mm to 468 mm for the northern part and 
759 mm to 1246 mm for the southeastern part. We measured one to 
three	1-	m²	subplots	for	each	plot.

2.2  |  UAV and ground camera acquisition

2.2.1  |  UAV	flight	plan

We	used	two	low-	cost	UAVs	with	integrated	RGB	(Red	Green	Blue)	
sensors.

For landscape scale data collection, the images were collected 
using	 a	 Dji	 Spark	 UAV	with	 the	 litchi	 application	 (https://flyli tchi.
com)	using	automatic	flight.	The	flight	plan	was	six	100-	m	transects	
20 m apart at an altitude of 80 m and speed of 5 m s−1. Images were 
acquired	 with	 autofocus	 (ISO	 exposures	 were	 automatically	 ad-
justed)	at	two-	second	intervals	with	an	80°	angle	of	view	throughout	
the	flights.	The	frontal	overlap	was	about	90%	and	the	side	overlap	
about	80%.	The	flights	took	place	throughout	the	day	between	8	am	
and 6 pm.

For	temporal	and	national	scale	data	collection,	the	UAV	was	a	
Parrot	Anafi	with	a	Pix4D	capture	application	(drone	flight	planning	
app)	using	a	double-	gridded	flight	plan	that	covered	at	least	1	ha.	For	
data collection on the temporal scale, the height of the flight was 
60	m	with	an	overlap	of	80%	at	low	speed.	All	the	flights	were	made	
early	in	the	morning.	Images	were	acquired	in	autofocus	mode	with	
an	80°	angle.

For	data	collection	on	a	national	scale,	we	used	the	same	double-	
gridded	 protocol	 proposed	 in	 the	 Pix4D	 capture	 application,	 but	
with a flight altitude of 80 m. Furthermore, the flights took place 
during the day at some point between 8 am and 7 pm.

2.2.2  |  Ground-	based	camera

For	data	collection,	a	canon	Ixus	180	(20	MP)	was	used	for	the	land-
scape	scale,	while	a	Campark	4K	Ultra	HD	20	MP	was	considered	for	
the national and temporal scales. For the landscape scale, we made 
videos using a digital camera above the 1 m² subplots. For the na-
tional and temporal scales, the cameras were moved above the grass 
along	 five	1-	m	transects.	The	camera	had	a	90°	orientation	 in	 the	
direction of the ground. Close to each transect, we had an item with 
a reference height of 20 cm. For all the data collected, the videos 
were made at a height of 1 m from the ground.

2.3  |  Structure from motion analysis

All	the	images	were	analyzed	with	Pix4D	software	(photogramme-
try	software)	(Figure 3).	The	videos	from	the	digital	camera	on	the	
ground were split into images. The split was such that there were 
between 200 and 300 images per subplot. We used the “3D maps” 
mode of the software (Figure3a and b),	which	produces	an	ortho-
mosaic with a digital number for the red, green, and blue channels 
(Figure 3c	for	UAV	and	Figure 3d	for	digital	camera)	and	a	digital	sur-
face	model	(Figure 3e	for	UAV	and	Figure 3g	for	digital	camera).	The	
spatial	resolutions	were	around	3	cm	from	the	UAV	images	and	few	
mm	for	the	camera.	A	Digital	Terrain	Model	(DTM)	was	used	for	the	
Landscape	UAV	 (LU)	 and	National	UAV	 (NU)	datasets.	The	Digital	
Terrain	model	was	an	output.	The	resolution	of	the	DTM	was	five	
time	the	resolution	of	the	other	(around	10	cm)	For	these	datasets,	
HAB	height	(CHM)	was	estimated	by	taking	the	difference	between	
the	DSM	and	the	DTM.

https://flylitchi.com
https://flylitchi.com
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For the outputs based on data from the digital camera on the 
ground,	we	extracted	the	data	 from	the	height	 reference	and	cor-
rected	the	DSM	of	the	different	plots.	From	the	CHM,	we	used	the	
average	height	of	 all	 the	pixels	within	 the	 subplot	 (Hmean)	 and	 the	
maximum	height	of	the	subplot	(Hmax).

Six	different	 indices	using	 red,	 green,	 and	blue	 reflectance	were	
calculated	 (Table 1)	 (Barbosa	et	al.,	2019;	McKinnon	&	Hoff,	2017).	
We	used	the	digital	numbers	when	calculating	the	indices.	For	the	NU	
dataset,	we	also	computed	reflectance	using	the	option	in	Pix4D	soft-
ware. The indices calculated for reflectance were closely correlated 

F I G U R E  3 Output	from	Structure	from	Motive	(SfM)	(a)	3D	point	cloud	obtained	from	the	Unmanned	Aerial	Vehicle	(UAV)	images,	(b)	3D	
point	cloud	obtained	from	the	camera	images.	(c)	Orthomosaic	obtained	from	the	UAV	images,	(d)	Orthomosaic	obtained	from	the	camera	
images.	(e)	Digital	surface	model	obtained	from	the	UAV	images	(The	height	is	in	meter	above	sea	level),	(f)	Digital	surface	model	obtained	
from	the	camera	images	(the	height	is	in	cm	above	ground)

(a) (b)

(c) (d)

(e) (f)
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with the indices based on the digital number and we thereby con-
cluded	that	the	digital	values	could	be	used	directly	(Appendix	S1).

2.4  |  Collection of herbaceous aboveground  
biomass

Herbaceous	aboveground	biomass	(HAB)	was	collected	for	each	of	
the	1-	m2 subplots. The herbaceous vegetation was cut at soil level, 
as	by	Levang	&	Grouzis	(1980).	The	fresh	mass	was	weighed	directly	
on site. Two different methods were used to estimate dry mass. For 
the	temporal	dataset,	the	whole-	fresh	sample	was	dried	at	56°C	and	
the mass was weighed daily. When the samples stopped decreasing 
in	weight,	we	considered	that	weight	as	the	dry	mass.	For	the	HAB	
data collected on the landscape and national scales, the large num-
ber of samples made it impossible to dry all the samples. We took a 
composite sample from each site with a known fresh weight, which 
we dried to obtain the dry matter content. We then applied the dry 
matter content found for the samples of fresh mass to obtain the dry 
mass	of	each	sample	(Diouf	et	al.,	2015;	Ndiaye	et	al.,	2015).

The number of field measurement and the statistic of the fresh 
and dry mass across the different dataset is in Table 2.

2.5  |  Data analysis

2.5.1  |  Predicting	biomass	from	SfM	outputs

For	each	of	the	six	datasets	even	for	the	datasets	with	a	low	number	of	
measurements	(TC	29	and	LC	35),	we	randomly	separated	the	data	into	
two	groups;	2/3	were	used	 for	 training	 (calibration	dataset)	 and	1/3	

were	used	for	validation	(validation	dataset).	The	model	calibration	was	
done using a random forest algorithm with the field samples of fresh 
and	dry	HAB	as	response	variables	and	SfM	output	as	explanatory	vari-
ables.	Due	to	the	unbalanced	distribution	of	HAB	(more	low	than	high	
values),	we	used	a	root	mean	square	transformation.	The	predictor	vari-
ables	were	the	mean	and	maximum	heights	(Hmean and Hmax),	the	red,	
green,	and	blue	digital	numbers,	and	the	six	vegetation	 indices.	Each	
random	forest	used	500	regression	trees,	each	time	only	including	six	
randomly	selected	predictor	variables	from	one-	third	of	the	calibration	
dataset.	The	percentage	of	explained	variance	was	obtained	by	cross-	
validation	against	the	remaining	33%	of	the	calibration	dataset	within	
the random forest. The importance of each predictor variable was esti-
mated	by	taking	the	difference	in	prediction	quality	based	on	the	mean	
square	error	when	the	randomly	selected	variable	was	included	and	not	
included in the regression trees. This difference was then averaged over 
all trees and normalized by its standard deviation.

The calibrated random forest models were used to predict fresh 
and	dry	HAB	for	the	validation	sites	and	compared	these	predictions	
to	the	field-	observed	HAB	of	the	validation	dataset.	The	agreements	
between model predictions and field observations were assessed 
using	 the	 root	mean	 squared	error	 (RMSE)	 and	 the	 relative	RMSE	
obtained	by	dividing	the	RMSE	by	the	mean	of	the	measured	values	
(RMSER).	We	also	calculated	the	root	median	squared	error	(RMdSE)	
and	the	relative	root	median	squared	error	(RMdSER).

2.5.2  |  Comparing	Camera	and	UAV	output

The	goal	here	was	to	compare	Camera	and	UAV	predictions	on	the	
same	set	of	data	for	subplots	where	both	UAV	and	camera	images	
were taken. This was the case for 35 subplots of the landscape 

TA B L E  1 List	of	vegetation	indices	used

Acronym Definition Formula References

NDGRI Normalized	Difference	Green	Red	Index (R−G)/(R+G) Lussem	et	al.	(2019)

NDBRI Normalized	Difference	Blue	Red	Index (B−R)/(B+R)

NDBGI Normalized	Difference	Blue	Green	Index (B−G)/(B+G)

vari Visible	Atmospheric	Resistant	Index (G−R)/(G+R−B) McKinnon	and	Hoff	(2017)

Exg Excess	of	green G−0.39*R−0.61*B Barbosa	et	al.	(2019)

Gli Green	Leaf	Index (2*G−R−B)/(2*G+R+B) Barbosa	et	al.	(2019)

TA B L E  2 Mean,	minimum,	maximum,	and	standard	deviation	of	fresh	and	dry	mass	for	the	different	datasets

Dataset N

FM DM

Mean Min Max SD Mean Min Max SD

LC 35 908.71 140 2680 531.27 335.58 74.20 696.80 172.98

LD 345 712.11 0 2680 536.86 255.84 0.00 797.07 178.83

NC 99 528.93 20 2440 418.79 224.01 8.40 1037.00 177.83

ND 86 504.70 20 2440 407.52 212.46 8.40 1037.00 170.60

TC 29 413.34 61 1674 408.69 98.03 18.71 264.00 73.39

TD 65 781.45 240 1540 362.87 197.18 70.00 382.00 83.89

Note: LC	refers	to	landscape	camera,	NC	refers	to	national	camera,	TC	refers	to	temporal	camera.
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camera	data	and	also	for	81	subplots	of	the	national	dataset	(NC	and	
NU).	A	variance	partition	was	made	for	 fresh	and	dry	mass	 to	see	
how	much	of	the	explained	variances	was	similar	between	the	two	
different	estimates,	or	to	what	extent	they	represented	complemen-
tary sources of information. The variance partition was made using 
the	vegan	packages	 in	R.	Variance	partitioning	 is	a	 technique	 that	
separates	the	variances	of	two	(or	more)	sets	of	variables	evaluating	
the	variance	explained	by	the	two	sets	of	variables,	or	only	by	one	
set	of	variables	(Borcard	et	al.,	1992; Legendre & Legendre, 2012).

3  |  RESULTS

3.1  |  Using SfM to monitor the change in HAB on a 
temporal scale

3.1.1  |  Variability	of	the	growing	season	HAB	
according to the digital camera on the ground

On	average,	HAB	was	413.4	± 408.7 g m−² for fresh mass and 98.03 ± 
73.39 g m−²	for	dry	mass	(Table 2).	For	the	fresh	mass,	the	percentage	
of	variance	explained	by	 the	 random	 forest	model	was	15.89%	with	
Hmean, Hmax,	and	the	VARI	index	as	the	three	most	important	variables	
determining	 HAB	 dynamics	 during	 then	 growing	 season.	 The	 R² on 
the	validation	dataset	(10	plots)	was	0.8	with	a	RMSE	of	22.48	g	m−² 
(RMSER =	0.06)	and	a	RMdSE	of	14.6	g	m−²	(RMdSER =	0.07%)	(Table 3).

For	 the	dry	mass,	 the	percentage	of	variance	explained	by	 the	
random	forest	model	was	41.69%	with	the	same	order	of	importance	
for the variables as for fresh mass. The R² on the validation dataset 
was	0.79	with	a	RMSE	of	22	g	m−²	(RMSER =	0.22)	and	a	RMdSE	of	
13.87 g m−²	(RMdSER =	0.18).

3.1.2  |  Variability	of	the	growing	season	HAB	
according	to	UAV	data

The average fresh mass was 781.45 ± 362. 87 g m−² and the aver-
age dry mass was 98.03 ± 73.39 g m−²	(Table 2).	The	random	forest	
model	explained	76.99%	of	the	variances	of	fresh	mass	and	78.91%	
of	 the	 variance	 of	 dry	 mass	 (Table 3).	 The	 three	 most	 important	
variables	 were	 Gli,	 Exg,	 and	Vari	 for	 fresh	 mass,	 and	 Gli,	 Vari,	 and	
Hmean for dry mass. The validation indicated an R2 of 0.78 for fresh 
mass	 (RMSE	 = 132 g m−²,	 RMSER =	 0.16)	 and	 0.27	 for	 dry	 mass	
(RMSE	= 34 g m−²	and	RMSER =	0.16)	(Table 3).

3.2  |  Using SfM to assess HAB variability across 
a landscape

3.2.1  |  Landscape	camera	results

The landscape camera results based on 35 plots showed that the 
average fresh mass was 908.71 ± 531.27 g m−² and the average dry TA
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mass was 333.558 ± 172.998 g m−²	 (Table 2).	 The	 random	 forest	
model was run on 23 plots of the calibration dataset, and it showed 
a	percentage	of	 explained	 variance	of	 44.03%	 for	 fresh	mass	 and	
14.19%	for	dry	mass.	The	most	important	variables	were	Vari,	Hmean, 
and red for fresh mass, and Hmean,	Vari,	and	red	for	dry	mass.	On	the	
validation	dataset	(12	plots),	the	R² was 0.65 for fresh mass and 0.54 
for	dry	mass	with	a	RSME	value	of	203	g	m−²	 (RMSER =	0.21)	and	
95.2 g m−²	(RMSER =	0.26),	respectively.

3.2.2  |  Landscape	UAV	results

For	the	landscape	UAV	dataset,	the	average	fresh	mass	was	712.11	± 
536.86 g m−² and the dry mass was 255.84 ± 178.83 g m−²	(Table 2).

The random forest model was run on 230 subplots and the per-
centage	of	variance	was	82.65%	for	fresh	mass	and	73.82%	for	dry	
mass	(Table 3).	For	both	analyses,	the	three	most	important	variables	
were	Exg,	Vari,	and	Gli.	On	the	115	validation	plots,	 the	R² values 
were	0.77	for	fresh	mass	and	0.73	for	dry	mass.	The	RMSE	for	fresh	
mass was 153 g m−²	(RMSER	of	0.21)	and	59.53	g	m

−²	(RMSER	of	0.23)	
for dry mass.

3.3  |  Using SfM to assess HAB variability on a 
national scale

3.3.1  |  National	camera	results

For	 the	 national	 camera	 dataset	 (N =	 99),	 the	 average	 fresh	 mass	
was 528.93 ± 418.78 g m−² and the average dry mass was 224.01 ± 
177.83 g m−². The random forest was run on 66 plots of the calibra-
tion	dataset.	The	percentage	of	variance	was	52.59%	for	fresh	mass	
and	38.64%	 for	dry	mass.	The	 three	most	 important	variables	were	
Exg,	Gli,	and	Vari	for	fresh	mass,	and	HM,	Exg,	and	Vari	for	dry	mass	
(Table 3).	The	R² on the 33 plots of the validation dataset was 0.64 for 
fresh	mass	and	0.56	for	dry	mass.	The	RMSE	was	153	g	m−²	(RMSER 
=	0.21)	for	fresh	mass	and	72.5	g	m−²	(RMSER =	0.38)	for	dry	mass.

3.3.2  |  National	UAV	results

On	the	86	plots	representing	the	national	UAV	results,	the	average	
fresh mass was 504.70 ± 407.25 g m−². For dry mass, the average 
was 212.46 ± 170.60 g m−². The random forest was run on 57 plots. 
The	percentage	of	variance	explained	was	64.76%	and	49.49%	for	

the fresh and dry mass, respectively. The important variables were 
Exg,	Gli,	and	Vari	for	fresh	mass,	and	Hmean	exg	and	Vari	for	dry	mass.	
The R² was 0.64 and 0.56 for fresh and dry mass, respectively. We 
obtained	a	RMSE	of	114	g	m−²	 (RMSER =	0.21)	for	fresh	mass	and	
62.2 g m−2	(RMSER =	0.29)	for	dry	mass.

3.4  |  Results on the combination of datasets

3.4.1  |  Combining	all	datasets

The	 random	 forest	was	 run	on	 the	 grouping	of	 the	 six	 calibration	
datasets	 (436	plots).	 For	 fresh	mass,	 the	 random	 forest	 explained	
71.51%	of	the	variance	for	fresh	mass	and	64.64%	of	the	variance	
for dry mass. For both analyses, the three most important variables 
were	the	Gli,	Exg,	and	Vari	indices.

On the 220 plots of the validation set, the R² was 0.71 with a 
RMSE	of	175	g	m−²	(RMSER =	0.27).	When	the	random	forest	model	
was run on each dataset, the R² on the validation dataset was 0.73 
with	a	RMSE	of	150	g	m−²	and	a	RMSER	of	0.23	(Figure 4a and b).

The R²	 was	 0.53	 with	 a	 RMSE	 of	 79	 g	 m−2	 (RMSER =	 0.34)	
(Figure 5a).	In	comparison,	when	the	random	forest	model	was	run	
on each dataset separately, the R² was 0.73 on the validation data 
with	a	RMSE	of	59	g	m−²	and	a	RMSER	of	0.25	(Figure 5b).

3.4.2  |  Combining	UAV	datasets

The random forest model was run on the combination of the three 
UAV	calibration	datasets	(i.e.,	TU,	LU,	and	NU).	We	obtained	a	per-
centage	of	explained	variance	of	78.65%	for	fresh	mass	and	68.09%	
for	dry	mass	(Table 2).	The	most	important	variables	were	the	same	
for	both	fresh	and	dry	mass	(i.e.,	Gli,	Vari,	Exg).

The relations between predicted values from the random forest 
made	by	combining	 the	UAV	dataset	and	the	measured	values	 for	
fresh mass produced an R² on the validation dataset of 0.76 with a 
RMSE	of	156	g	m−2	(RMSER =	0.24)	(Figure 4c).	The	R²	between	the	
predicted values of fresh mass obtained from the different random 
forest models run on each dataset separately and the measured val-
ues	for	the	UAV	datasets	was	0.77	with	a	RMSE	of	57	g	m−² and a 
RMSER	of	0.23	 (Figure 4d).	The	R² of the model built on the com-
bined	dataset	was	0.73	 (with	a	RMSE	of	62	g	m−²	and	a	RMSER of 
0.24)	for	dry	mass	(Figure 4c).	For	the	prediction	made	on	the	ran-
dom forest models constructed separately, the R² was 0.73 with a 
RMSE	of	57	g	m−²	and	a	RMSER	of	0.23	(Figure 5d).

F I G U R E  4   Predicted	and	measured	fresh	mass	based	on	the	validation	dataset.	(a)	Predicted	fresh	mass	obtained	from	the	random	forest	
model	based	on	combining	all	the	datasets.	(b)	Predicted	fresh	mass	obtained	from	the	random	forest	model	based	on	individual	datasets	
separately.	(c)	Predicted	fresh	mass	obtained	from	the	random	forest	model	based	on	combining	all	the	drone	datasets.	(d)	Predicted	fresh	
mass	obtained	from	the	random	forest	model	based	on	each	drone	dataset	separately.	(e)	Predicted	fresh	mass	obtained	from	the	random	
forest	model	based	on	combining	all	camera	datasets.	(f)	Predicted	fresh	mass	obtained	from	the	random	forest	model	based	on	each	
camera dataset separately
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3.4.3  |  Combining	camera	datasets

For	the	model	based	on	all	the	camera	data,	the	percentage	of	ex-
plained	 variance	 for	 fresh	 mass	 was	 47.81%,	 and	 35.58%	 for	 dry	
mass.	The	three	most	important	variables	were	Gli,	Exg,	and	Hmean 
for fresh mass, and Hmean,	Gli,	and	Vari	for	dry	mass.

The R² for fresh mass when combining the camera datasets 
was	0.73	with	a	RMSE	of	166	g	m−²	and	RMSER	of	0.30	(Figure 4e).	
For the same dataset, the R² for validation of the model developed 
on	each	dataset	separately	was	0.73	with	a	RMSE	of	68.28	g	m−², 
RMSER	of	32%	(Figure 4f).

The R² for validation of the model when combining all camera 
data	 for	 dry	mass	 (Figure 5E)	was	 0.76	with	 a	 RMSE	 of	 74	 g	m−² 
(RMSER =	 35%).	 The	R² of the model developed on each dataset 
separately	was	0.73	with	a	RMSE	of	68.28	g	m−²	and	RMSER	32%	
(Figure 5f).

3.5  |  Comparison of camera and UAV data

For	the	variance	partitioning	of	fresh	mass	(Figure 6a),	58%	of	the	
variance	was	explained	by	both	types	of	data,	14%	only	by	the	cam-
era	and	2%	only	by	the	UAV.	The	residuals	(unexplained	variances)	
amounted	to	26%.	For	variance	partitioning	for	dry	mass	with	33%	
of	residuals	(Figure 6b),	50%	of	the	variance	was	explained	by	both	
types	of	data,	12%	only	by	the	camera	and	5%	only	by	the	UAV.

4  |  DISCUSSION

4.1  |  Assessing herbaceous aboveground biomass 
using SfM outputs based on RGB

Our	results	showed	that	Structure	from	Motion	(SfM)	data	obtained	
from	 RGB	 images	 can	 be	 used	 to	 assess	 HAB	 of	 the	 herbaceous	
layer with relatively good accuracy. For fresh mass, we had errors of 
around 150 g m−²	across	the	different	datasets	(around	25%	of	rela-
tive	error),	whereas	for	dry	mass,	the	errors	were	around	60	g	m−². 
However,	there	is	some	room	left	for	improvement	to	be	discussed	
below.	SfM	outputs	are	from	two	types	of	 information:	color	 indi-
ces	(Table 1)	and	height	variables	derived	from	the	DSM	and	DTM.	
Regarding the most important variables, for the color indices the 
color	 index	based	on	all	three	colors	(Gli,	Exg,	Vari	 indices)	proved	
especially	useful.	At	least	one	of	these	variables	proved	to	be	among	
the three most important variables in the 24 models we tested. The 

green	 leaf	 index	 (Gli)	was	amongst	 the	 three	most	 important	vari-
ables in 13 models tested and the most important variable in eight 
models. This is supported by the literature, where the same results 
were	found	(Bendig	et	al.,	2014; Lussem et al., 2018;	Possoch	et	al.,	
2016).	For	most	of	the	datasets	produced,	the	images	were	taken	at	
different times of the day and therefore with different light condi-
tions.	A	color	grid	was	used	as	part	of	four	of	the	six	datasets,	but	the	
correction made with these color references proved to induce more 
errors	at	the	end	(results	not	shown)	and	therefore	this	preprocess-
ing step was omitted from the results presented here. Furthermore, 
the	 index	 based	on	 reflectance	 data	was	 found	 to	 be	 less	 related	
to field measured data than indices based on digital numbers. This 
result	shows	that	 the	color	 indices	were	related	to	biomass.	Here,	
we	only	based	our	work	on	RGB	images	of	course,	but	many	studies	
have	 used	 near	 infrared.	 (Candiago	 et	 al.,	2015; Wijesingha et al., 
2020).	Indeed,	it	is	well	known	that	Infrared-	based	indices	are	linked	
with	the	vegetation	(Rouse	et	al.,	1974).	Increasing	the	spectral	reso-
lution	of	UAV	captors	could	also	be	a	solution	to	increase	the	predic-
tion.	However,	the	cost	of	a	NIR	UAV	or	camera	is	high,	but	it	would	
be	interesting	to	compare	RGB	indices	and	NIR	indices.

The	height	variables	(maximum	and	mean	height	of	the	subplot)	
obtained from the 3D model were within the top three variables in 
nine	out	of	18	models,	especially	for	the	dry	matter	model	(six	out	
nine	models).	The	height	variables	were	more	important	in	the	mod-
els	based	on	camera	outputs.	Spatial	resolution	was	found	to	be	quite	
different	between	the	two	tools,	whereas	for	the	UAV	the	ground	
surface	distance	(GSD)	was	around	3	cm	(a	few	mm	for	the	camera).	
The height of the grass in the Sahel region is generally around 40 
to	50	cm	at	maximum	vegetation	growth	(Boudet,	1984).	GSD	may	
not be precise enough for the height of grass and its variation within 
the	natural	vegetation.	In	other	studies,	using	UAVs	on	grasslands,	
the variables from the 3D model were found to be more predictive 
(Lussem	et	al.,	2018, 2019).	In	some	studies,	the	measurements	were	
taken	on	management	experiments	 that	created	high	variability	 in	
grass heights between the different plots. Their flight height was 
lower than in this study. We chose a height of around 80 m due to 
the presence of trees. It was not that the height of the tree could 
directly	impede	a	flight	altitude	of	20	m	(the	highest	tree	was	around	
15	m	tall),	but	because	the	3D	model	of	the	trees	would	have	been	
sub-	optimal	 and	 may	 have	 impeded	 the	 creation	 of	 the	 mosaics.	
Furthermore,	we	also	used	the	Landscape	and	National	scale	images	
to	work	on	tree	communities	(Bossoukpe,	Faye,	et	al.,	2021).	For	the	
camera, an area of bare soil was close to the subplot. Indeed, we cut 
the grass close to the subplot. This bare soil created a difference 
in height variability and the spatial resolution was much better. For 

F I G U R E  5 Predicted	and	measured	dry	mass	based	on	the	validation	dataset.	(a)	Predicted	dry	mass	obtained	from	the	random	forest	
model	based	on	combining	all	the	datasets.	(b)	Predicted	dry	mass	obtained	from	the	random	forest	model	based	on	individual	datasets	
separately.	(c)	Predicted	dry	mass	obtained	from	the	random	forest	model	based	on	combining	all	the	drone	datasets.	(d)	Predicted	dry	mass	
obtained	from	the	random	forest	model	based	on	each	drone	dataset	separately.	(e)	Predicted	dry	mass	obtained	from	the	random	forest	
model	based	on	combining	all	camera	datasets.	(f)	Predicted	dry	mass	obtained	from	the	random	forest	model	based	on	each	camera	dataset	
separately
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(a)

(c) (d)

(e) (f)

(b)
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the	National	and	some	of	the	Temporal	datasets,	we	measured	the	
height of several herbaceous individuals in the subplot. The mean 
heights measured from the field were compared to the mean heights 
obtained	from	the	3D	model	for	the	camera.	(R² = 0.33, results not 
shown).

Errors	 could	 also	 come	 from	 the	manual	measurements	of	 the	
herbaceous	vegetation	(destructive	sampling).	For	example,	the	per-
centage	of	variance	explained	was	generally	higher	 for	 fresh	mass	
than	 for	 dry	 mass,	 except	 for	 the	 analysis	 covering	 the	 temporal	

scale. One reason might be that in the datasets of the temporal scale 
analysis the dry mass was measured for all samples. For the other 
four datasets, the dry matter content was only measured for a com-
posite sample. The composite sample may have created some bias in 
the	measurement	(Diouf	et	al.,	2015).

One problem is also the positioning of the measurements, espe-
cially	for	the	UAV.	We	used	markers	on	the	soil	(wooden	triangle	or	
plastic	bag),	but	some	inaccuracies	still	remained.	Ideally,	it	would	be	
better to have a 1 m² subplot with a visible border.

F I G U R E  6 Variance	partitioning	between	Camera	and	Unmanned	Aerial	Vehicle	(UAV)	variables.	The	darker	gray	circle	on	the	left	
(X1)	represents	the	percentage	of	variance	only	explained	by	UAV	and	(X2)	the	lighter	gray	the	percentage	explained	only	by	the	camera	
variables.	The	intersection	represents	the	percentage	of	variance	explained	by	both	UAV	and	camera	variables.	(a)	variance	partitioning	for	
fresh	mass,	(b)	variance	partitioning	for	dry	mass

(a)

(b)
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4.2  |  Comparing camera and UAV tools

We	investigated	using	Structure	from	Motion	(SfM)	from	two	dif-
ferent	 types	of	 sensor	 systems:	Unmanned	Aerial	Vehicle	 (UAV)	
and a ground digital camera. Overall, we found higher percentages 
of	explained	variance	for	the	UAV	than	for	the	camera.	However,	
when we compared the same set of subplots for both tools 
(Figure 5),	the	camera	outputs	were	slightly	better	than	those	of	
the	UAV.	We	surmise	 that	 the	difference	observed	between	 the	
two tools was due to a better assessment of vegetation height by 
the camera.

Although	both	tools	are	based	on	the	same	concept,	they	have	
quite	 different	 uses.	 UAVs	 are	 now	 frequently	 used	 for	 vegeta-
tion	monitoring.	 Our	 work	 confirmed	 that	 UAVs,	 especially	 when	
equipped	with	 a	 low-	cost	RGB	 sensor,	 can	be	used	 to	 adequately	
quantify	the	phytomass	of	herbaceous	layers	in	a	savannah	ecosys-
tem.	UAVs	can	be	used	to	map	areas	from	1	ha	up	to	20–	30	ha	(po-
tential	area	with	one	UAV	battery)	depending	on	the	flight	plan	and	
UAV	characteristics.	The	spatial	scale	of	this	approach	is	well	suited	
to	experiments	on	permanent	grasslands	(Lussem	et	al.,	2019).	For	
many	temperate	ranching	systems,	UAVs	could	also	be	used	to	as-
sess biomass on a plot scale to evaluate the available livestock feed. 
However,	in	Sahelian	countries,	as	in	many	pastoralism	areas,	range-
lands	are	used	as	a	common	resource	exploited	by	several	farmers	
across	 large	areas.	UAVs	could	be	used	as	an	 intermediate	 tool	 to	
close the spatial gap between field observations and satellite im-
ages.	Many	UAV	studies	have	shown	that	woody	vegetation	can	also	
be	 characterized	using	UAVs	 (Bossoukpe,	 Faye,	 et	 al.,	2021;	Mayr	
et al., 2018).	Trees	are	an	 important	part	of	 the	savannah	ecosys-
tem,	even	with	their	low	density.	One	interesting	feature	of	the	UAV	
tool	is	the	ability	to	evaluate	both	strata	of	vegetation	(Bossoukpe,	
Ndiaye,	et	al.,	2021).	It	can	also	be	used	to	assess	the	spatial	struc-
ture of vegetation, to show the effect of trees on the herbaceous 
layers,	for	example.

UAV	 use	 does	 have	 some	 limitations.	 The	 spatial	 resolution	
(around	 3	 cm)	 of	 the	UAV	 is	 not	 high	 enough	 to	 identify	 differ-
ent individual grasses, so it remains a tool for describing overall 
vegetation.	 Furthermore,	 UAV	 systems	 cannot	 monitor	 grasses	
that grow underneath tree crowns. The herbaceous vegetation is 
indeed influenced by the presence of trees, and the vegetation 
under trees often has a different botanical composition and phyto-
mass.	In	Savannahs	with	a	low	tree	cover	(~5%),	the	impact	of	trees	
is	limited.	However,	in	denser	savannah	systems,	evaluation	of	the	
herbaceous phytomass of the ecosystem based only on the herba-
ceous layers outside the tree cover may be more problematic, and 
in	forest	areas	of	closed	canopies	RGB	UAV-	based	monitoring	of	
the	understory	is,	of	course,	not	possible.	Another	limitation	of	the	
use	of	UAVs	relates	to	legislation	issues	(Haula	&	Agbozo,	2020).	
Indeed,	the	use	of	UAV	technology	is	limited	by	law.	In	many	coun-
tries, some areas are restricted, such as populated areas, airports, 
or	other	sensitive	areas	(e.g.,	military)	and	for	some	countries	the	
use	 of	 UAVs	 is	 totally	 forbidden	 and/or	 detailed	 legislation	 has	
not	 effectively	 been	 implemented.	 Furthermore,	 UAV	 licenses	

are	 required	 in	many	 countries,	 which	means	 that	 UAVs	 cannot	
be used by just anyone, and that potential users will have to take 
training courses to obtain the license.

Using	 SfM	 approaches	 with	 a	 simple	 digital	 camera	 has	 been	
much	 less	 studied	 than	 with	 UAVs	 (Andújar	 et	 al.,	 2018; Cooper 
et al., 2017),	even	though	it	is	easier	and	cheaper	to	use	a	camera.	In	
the	study	by	Cooper	et	al.	 (2017),	SfM	was	obtained	from	photog-
raphy and here we used a video to simplify the field work and to be 
able	to	subsequently	select	 the	number	of	 images	 implemented	 in	
PIX4D	software.

The digital camera has advantages for use on a fine spatial scale, 
due	to	its	higher	definition	(a	few	mm	as	opposed	to	3	cm)	as	com-
pared	to	UAV	systems.	In	cases	of	low	phytomass,	such	as	early	in	
the growing season, or for very low and sparse herbaceous layers, 
individual	grasses	can	be	easily	identified	(Figure 1).	Structure	from	
Motion	has	already	been	used	on	individual	plants	(An	et	al.,	2017; 
Andújar	et	al.,	2018)	and	we	believe	 that	other	variables	 from	the	
herbaceous	stratum	could	be	assessed	(individual	height,	leaf	area,	
species	 recognition,	 etc.).	However,	 for	dense	herbaceous	vegeta-
tion, it is impossible to identify individuals. In homogeneous cover, 
the	Structure	from	Motion	process	can	be	challenging,	with	 lower	
applicability. In such cases, only variables on a community scale can 
be assessed, such as the phytomass or the mean height of the layer. 
(Bossoukpe	et	al.,	2020).

Another	 interesting	 feature	of	 the	camera	approach	 is	 its	ease	
of use, and the tool can be used to develop a herbaceous growth 
monitoring	programs	across	a	large	scale	(national	scale).	In	Ireland,	
a participatory monitoring program has been in operation for sev-
eral years, where farmers across the country estimate grass growth 
(Hanrahan	et	al.,	2017).	The	data	are	available	online	and	can	be	used	
by farmers or the authorities. In Sahelian countries, this kind of data 
could	 greatly	 enhance	 the	 current	 monitoring	 framework	 (Diouf	
et al., 2015).

However,	compared	to	UAVs,	using	a	digital	camera	has	several	
drawbacks. Of course, a digital camera cannot be used to produce 
maps	and	the	orthomosaic	is	not	geotagged.	Moreover,	a	height	ref-
erence	is	needed.	For	the	UAV,	several	subplots	can	be	taken	for	a	
single	flight,	whereas	for	the	camera	each	sample	requires	an	SfM	
process	and	the	number	of	pix4D	projects	needed	for	calibration	will	
be	larger	(one	per	sample).

4.3  |  Using the SfM methodology across spatio- 
temporal scales

Our	results	showed	that	Structure	from	Motion	(SfM)	can	be	used	on	
the three different scales tested here. Regarding the different scales 
and	datasets,	the	range	of	the	biomass	masses	was	quite	similar	be-
tween	the	different	datasets	(Table 2).	Between	the	six	datasets,	the	
percentage of variance was clearly higher for the datasets includ-
ing	more	measurements.	All	in	all,	we	observed	similar	errors	across	
the	 three	different	scales	and	showed	that	SfM	can	be	used	 in	all	
instances of scales.
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On	 the	 temporal	 scale,	we	 tested	SfM	use	during	 the	growing	
season. The growing season in the Sahel region is very short and 
erratic	during	the	few	months	of	the	wet	season	and	UAVs	and	cam-
eras can be used to monitor grass growth with a high measurement 
frequency.	On	an	experimental	design	with	differences	in	manage-
ment	or	water	input	on	small	plots,	such	as	(Cisse,	1986;	Hiernaux	
&	Hérault,	2003;	Hiernaux	et	al.,	1995;	Hiernaux	&	Turner,	1996),	
SfM	could	be	used	to	monitor	the	dynamics	of	the	herbaceous	layers	
indirectly	with	high	frequency.

Here,	we	only	tested	the	method	during	the	wet	season	and	on	
green	grass.	However,	dry	grass	during	the	nine	months	of	the	dry	
season is an important source of animal feed in the region. The con-
tinuous monitoring of this remaining dry biomass is key for livestock 
management in pastoral systems. Remote sensing work based on 
the	soil	tillage	index	using	shortwave	infrared	information	has	been	
carried	out	to	evaluate	dry	biomass	(Kergoat	et	al.,	2015).	The	SfM	
methodology could be a complementary solution for estimating the 
volume of dry grass resources based on the soil cover. Some pre-
liminary work has been undertaken using cameras combined with 
growing	season	data	(Diedhiou	et	al.,	2021).

Structure	 from	Motion	 can	 also	 be	 used	 to	 assess	 the	 spatial	
variation	of	biomass	in	the	herbaceous	stratum.	Here,	we	tested	the	
two tools on two different spatial scales: the landscape scale, where 
all the measurements were taken on a research station of around 
6800 ha in Dahra Djoloff. The variability of herbaceous biomass on 
this scale is driven by the microtopography that reflects differences 
in soil types and impacts water availability for the herbaceous bio-
mass. Trees also influence the herbaceous layers and management 
of	the	different	plots	 (free	grazing,	enclosure,	and	dense	Senegalia 
senegalensis	planting).	Here,	SfM	tools	can	be	used	to	 test	 the	 im-
pact	of	these	factors	on	the	herbaceous	layers	(Diatta	et	al.,	2021),	
especially	with	a	focus	on	the	temporal	aspect	 (within	or	between	
growing	seasons).	For	more	applied	and	operational	usage,	opera-
tions on a landscape scale should be considered in relation to the 
management type and size involved. In the Sahel, ranching farms 
are	not	really	frequent,	but	SfM,	especially	based	on	UAVs,	could	be	
an interesting tool for evaluating grass availability in different plots. 
In	pastoralism	systems,	 landscape-	scale	monitoring	could	be	of	 in-
terest	 for	some	actors.	For	example,	pastoral	units	with	collective	
management	are	installed	in	the	different	Sahelian	countries.	UAVs	
could be useful for monitoring the different rangelands within the 
pastoral unit.

Our analysis of monitoring on a national scale involved a data-
set collected in the northern and southeastern parts of Senegal. In 
addition to selecting plots based on topography and management 
type,	the	plots	were	located	along	a	rainfall	gradient	(from	an	aver-
age	of	200	mm	per	year	to	more	than	1000	mm	per	year),	and	a	soil	
type gradient from sandy soils to ferralitic soils was also considered. 
A	national	scale	monitoring	program	is	important	for	livestock	pol-
icy, and indeed in several Sahelian countries the available biomass 
(herbaceous	layers	and	foliage	of	woody	species)	is	monitored	on	a	
national	scale	taking	a	sample-	based	approach.	The	aim	is	to	eval-
uate the national fodder balance and eventually develop local and 

national	policies	(pastoral	mobility,	distribution	of	animal	feeds,	etc.)	
(Touré	&	Ickowicz,	2014).	Our	results	showed	that	SfM	tools	could	
be used across Senegal and possibly other Sahelian countries. For 
the	UAV	approach,	one	limitation	is	the	southernmost	region	where	
the tree cover can be dense, and only the grass biomass outside the 
tree cover can be monitored.

UAVs	or	other	very	high	 resolution	 (VHR)	 remote	 sensing	 sys-
tems	could	be	used	to	simplify	scaling-	up	from	field	measurements	
and	conventional	remote	sensing	systems	(Taugourdeau	et	al.,	2014).	
Indeed, a hybrid model combining fewer measurements could re-
place	actual	field	measurement	programs	that	require	an	extensive	
protocol to assess the heterogeneity of the biomass layer, as already 
proposed	for	other	communities	(Kattenborn	et	al.,	2019).

The camera approach could also be used on a national scale. One 
interesting	feature	of	a	camera	monitoring	protocol	is	that	it	requires	
few	qualifications	and	equipment	and	one	way	forward	will	be	to	use	
this tool as part of a participatory observatory. Different observers 
across	 the	country	could	 take	RGB	 images	using	a	digital	camera/
smartphone, which would be analyzed to monitor biomass across 
the country.

4.4  |  Combining the use of datasets

We obtained better results for biomass estimation when more sam-
pling data were used. One way forward would be to combine several 
datasets	 to	 build	 a	 large	 calibration	 dataset.	However,	 our	 results	
showed that prediction was not better and generally performed 
slightly worse when our calibration was based on a combination of 
several datasets, as compared to when calibration was based on a 
single	dataset	(Figures 3 and 4).	This	result	was	found	even	for	the	
dataset	with	few	observations,	such	as	the	"Temporal	Camera"	(29	
plots)	and	the	"Landscape	Camera"	(35	plot)	approaches.	For	these	
two datasets, the random forest and the separation in calibration set 
and validation set are necessarily adapted due to the low number of 
measures but we used the same methodology for all datasets.

For both, the percentage of variance of the random forest was 
quite	low,	but	the	prediction	on	the	validation	dataset	was	not	mark-
edly different from the other datasets. The difference between the 
combined datasets and single datasets was less pronounced when 
the	combination	of	datasets	was	made	between	UAV	and	camera,	
separately. The small difference between the results based on cali-
bration within a dataset and calibration made by combining the data-
sets	from	the	same	tool	showed	that	tool-	specific	calibrations	were	
quite	generic.	It	can	be	hypothesized	that	the	calibrations	developed	
in this work could be used directly on new datasets of each type. 
We	found	small	differences	between	the	makes	of	UAVs	(Spark	or	
Anafi)	and	cameras	used	(Campspark	and	Canon)	and	on	the	image	
acquisition	protocols	(altitude,	type	of	flight	plan).

It	would	be	interesting	to	produce	more	data	using	UAVs	on	her-
baceous plants involving different types of vegetation and proto-
cols. The goal of such work would be to further test the robustness 
and	generalness	of	UAV	biomass	relations	for	African	savannahs.
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5  |  CONCLUSION

We	showed	that	RGB	images	used	for	structure	from	Motion	(SFM)	
can be used to assess aboveground biomass of the herbaceous lay-
ers	in	a	Sahelian	savannah	ecosystem.	We	tested	SfM	processing	for	
biomass	estimates	using	data	from	Unmanned	Aerial	Vehicles	(UAV)	
and ground digital cameras and on three scales. The three different 
scales included spatial scales within a landscape or across a coun-
try and, lastly, the temporal scale measuring continuously over the 
growing season. Our results showed that this approach could be ad-
equately	used	on	all	the	different	scales	and	testing	of	the	methods	
also took into consideration variations in land management and soil 
types	for	a	rainfall	gradient	from	arid	to	sub-	humid	conditions.	The	
ground digital camera data were found to be slightly more accurate 
than	the	UAV	data,	but	UAV	measurements	have	the	advantage	of	
facilitating	the	scaling-	up	of	field	measurements	to	areas	of	several	
ha.	Herbaceous	aboveground	biomass	mapping	by	SfM	can	be	used	
to undertake studies of ecological processes at a high spatial resolu-
tion and provides an image source building an important bridge in 
spatial scales between field observations and satellite remote sens-
ing images.
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