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Studying dynamic stress effects 
on the behaviour of THP‑1 cells 
by microfluidic channels
Semra Zuhal Birol1,4,5*, Rana Fucucuoglu2, Sertac Cadirci3, Ayca Sayi‑Yazgan2 & 
Levent Trabzon1,3,4,5

Atherosclerosis is a long-term disease process of the vascular system that is characterized by the 
formation of atherosclerotic plaques, which are inflammatory regions on medium and large-sized 
arteries. There are many factors contributing to plaque formation, such as changes in shear stress 
levels, rupture of endothelial cells, accumulation of lipids, and recruitment of leukocytes. Shear 
stress is one of the main factors that regulates the homeostasis of the circulatory system; therefore, 
sudden and chronic changes in shear stress may cause severe pathological conditions. In this study, 
microfluidic channels with cavitations were designed to mimic the shape of the atherosclerotic 
blood vessel, where the shear stress and pressure difference depend on design of the microchannels. 
Changes in the inflammatory-related molecules ICAM-1 and IL-8 were investigated in THP-1 cells in 
response to applied shear stresses in an continuous cycling system through microfluidic channels 
with periodic cavitations. ICAM-1 mRNA expression and IL-8 release were analyzed by qRT-PCR and 
ELISA, respectively. Additionally, the adhesion behavior of sheared THP-1 cells to endothelial cells 
was examined by fluorescence microscopy. The results showed that 15 Pa shear stress significantly 
increases expression of ICAM-1 gene and IL-8 release in THP-1 cells, whereas it decreases the adhesion 
between THP-1 cells and endothelial cells.

In the cardiovascular system, vessel functions are controlled by a combination of various factors such as mechani-
cal forces, biochemical signals, nutrition, drugs, and interactions between different cell types that exist in cir-
culation. The pathological conditions of the blood vessel, such as atherosclerosis, are dependent on the balance 
between these factors1. Wall shear stress is one of the mechanical forces, which is defined as the force per unit 
area that acts on a surface of endothelium lining the vessel wall2. In vivo, the level of shear stress in veins is low 
in magnitude at 0.076–0.76 Pa, due to the non-pulsatile character of the venous system. On the other hand, the 
levels of shear stress in large arteries and arterioles are in the range of 1–7 Pa and 2–6 Pa respectively, due to the 
laminar and pulsatile nature of flow in the arterial side of the circulation3–8.

Since the endothelial cells are in direct contact with blood flow, the shape and alignment of these cells are 
modified by changes in the type of flow and level of shear stress. When the blood flow is steady and unidirec-
tional, endothelial cells are spindle-shaped and aligned with their long axis in the direction of flow, whereas their 
shape is more polygonal with a non-uniform orientation when the flow is turbulent or stagnant. The mecha-
nism underlying this morphological adaptation is the cytoskeletal reorganization driven by actin filaments in 
stress fibers in endothelial cells9–11. It can be possible that the same mechanism can be active in monocyte cells 
exposed to different shear stresses. In this respect, the cytoskeletal organization and adhesion molecules have 
been investigated in this study since there is not clear information in the literature about the status of monocytes 
under different shear stress conditions.

Studying the mechanical forces on the cells needs a multi-disciplinary approach consisting of medicine, 
cell biology, molecular biology, physics, and engineering so that the problem can be investigated in a holis-
tic way. Besides molecular approaches, multi-scale engineering techniques can help a better understanding of 
complex cellular functions12. Microfluidic platforms are very attractive for studying the effects of mechanical 
forces on cells, since the design of microfluidic systems makes it possible to deal with variations in shear stress 
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in microchannels. In particular, microfluidic channels are able to be used with minimal quantities of samples 
and reagents, high resolution image analysis, low cost and portability13. Microfluidics enables the perfusion of 
long-term cell cultures by providing conditioned fluid flow and shear stress, and for these reasons it is used fre-
quently in vascular modeling14. Chau et al. fabricated a microfluidic shear device that simultaneously evaluates 
ten different shear stresses on HUVEC cells (Human Umbilical Vein Endothelial Cells), unlike parallel-plate 
flow chambers15. Shao et al. designed an integrated microfluidic platform that enables assessment of pulsatile 
and oscillatory shear stress on endothelial cells16. Schimek et al. developed a chip-based system consisting of 
microfluidic channels to mimic the transport function of the human cardiovascular system using HDMEC cells 
(Human Dermal Microvascular Endothelial Cells)17.

This study focused on the response of THP-1 cells that were subjected to shear stress in the physiological 
range (4 Pa) and above (15 and 45 Pa) for 0.5 h and 3 h, in separate runs, under an continuous flow cycle by a 
syringe pump. Based on the Computational Fluid Dynamics (CFD) studies in this work, we examine THP-1 cells 
exposed to varying shear stress depending on the dimension of the cavities through the microchannel. As it is 
well known that the time varying stresses would be more damaging and effective on possible change of materials 
properties compared to the level of static stresses applied on18. Therefore, early failure and loss of performance 
of materials in fatigue conditions are to be expected when using a regime of time-varying stresses. The same 
problem may occur in the biological systems in which cells are exposed to time-varying stresses, and this is very 
similar to material fatigue, which causes early failure in the body. Therefore, we hypothesized that continuous 
change in shear stress and pressure may cause THP-1 cell fatigue since the cells need to change their morphol-
ogy while they pass through microchannels with changing shear stress and pressure in each cavity. The shear 
stress-dependent immune molecules intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) were 
investigated to assess any change in them as a result of time-varying stress changes. According to the literature, 
ICAM-1 mRNA expression and IL-8 release in HUVEC cells were changed by application of shear stress19; thus, 
here we decided to assess these molecules in monocytes subjected to various different shear stress conditions. In 
addition, adhesion between ECs and THP-1 cells was examined after exposing monocytes alone to shear stress. 
Results showed that 15 Pa shear stress increased the synthesis of ICAM-1 mRNA expression and IL-8 release, 
whereas there was a decrease in the number of THP-1 cells adherent to endothelial cells.

Materials and methods
Microchannels.  Design.  Two microchannels with different dimensions have been used in the experiments 
for creating different wall shear stresses on the bottom walls and pressure levels in the mid-section of the flow 
fields. Microchannel-A has been used to create 4 Pa under 2400 μl/min fluid flow and microchannel-B was used 
to create 15 Pa under 1200 μl/min fluid flow and 45 Pa under 3600 μl/min fluid flow by syringe pump. The 3D 
model of both microchannels is represented in Fig. 1.

The height of microchannels is 100 µm. The dimensions of the microchannels are shown in Table 1.

Computational fluid dynamics analysis.  The meshes for the CFD analysis have been generated by ANSYS-
Meshing. After intensive mesh-analysis tests mesh-independent solutions have been obtained for the pressure 
difference between the inlet and outlet of the microchannel and for the wall shear stress thus, appropriate mesh 
resolution is determined for numerically-accurate solutions.

Boundary conditions and solution method.  The CFD analysis is performed by ANSYS-Fluent where the flow is 
incompressible, steady and laminar. Working fluid is water with a constant density ρ of 1000 kg/m3 and dynamic 
viscosity µ of 10–3 kg/ms. The boundary conditions are as follows: uniform velocity is imposed at the channel 

Figure 1.   The 3D design of microchannels with cavities. Aspect ratio (a/b) was defined as three (3) for all 
configurations with various dimensions. The values of the parameters c and d are equal.

Table 1.   The dimension of the cavitated microchannels.

Channel a (µm) b (µm) c (µm) d (µm)

A 2250 750 500 500

B 500 1500 1000 1000
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inlet, pressure-outlet is defined at the channel exit and all walls have no-slip boundary condition. In this regard, 
continuity and Navier–Stokes equations have been solved iteratively by finite-volume-based flow solver using 
SIMPLE algorithm until the convergence criteria are achieved.

Theoretical wall shear stress calculation.  Wall shear stress is defined as the tangential stress parallel to the sur-
face caused by the blood flow that affects endothelial cells lining on blood vessels by direct action with the flow 
or indirect action with transporting chemicals and similar compounds. Reynolds number (Re), defined as the 
ratio of the inertial forces to the viscous forces is calculated in the Eq. (1):

where μ is dynamic viscosity of the fluid, ρ is fluid’s density, Dh is the hydraulic diameter, and u is the bulk velocity 
of the liquid. Hydraulic diameter is the characteristic length, which depends on the geometry of the microchan-
nel. In the current study, rectangular microchannels with cavities are used in the experiments and CFD analysis 
thus, the hydraulic diameter should be defined for both the wide section width wi = a and the narrow section 
width wi = b as given is the Eq. (2):

where A is the cross-sectional area and P is a wetted perimeter of the channel. The velocity profile for a fully 
developed laminar flow through a rectangular channel with periodically varying cross-section can be written as 
shown in Eq. (3), where Ui is the maximum velocity at either wide or narrow section of the microchannel, and 
h is the channel’s height.

The parabolic function of the velocity satisfies no-slip boundary conditions at the lower and upper walls of 
the microchannel (y = 0 and y = h) and maximum velocity at the centerline (y = h/2). Hence, the volumetric flow 
rate can be calculated based on the bulk velocity which corresponds to two thirds of the centerline velocity for 
the laminar flow in rectangular channels as indicated in Eq. (4).

For Newtonian-type fluids, there is a linear relation between the shear stress and the rate of deformation. 
Equation (5) which yields a relation between the wall shear stress and the maximum velocity depending on the 
contraction or expansion side of the channel can be derived from Eq. (3).

Shear stress is a biomechanical force that can be calculated using fluid dynamics approaches. Hagen–Poiseuille 
equation in vessel structure with constant circular diameter gives a parabolic velocity profile for laminar and 
steady blood flow and shear stress can be obtained which is directly proportional to blood flow rate and inversely 
proportional to diameter3,20–24. In a similar way, wall shear stress calculation can be adopted to the rectangular 
channel with varying cross-section. Equation (6) can be obtained by substituting the maximum velocity in terms 
of the volumetric flow rate from Eq. (4) and provides a general theoretical expression for the amplitude of wall 
shear stress variation at either expansion or contraction of the microchannel.

As given in the theoretical calculation, the CFD analysis revealed a periodically changing wall shear stress 
along the mid-line on the bottom surface of the microchannel assisting an understanding of the effects of the 
biomechanical forces on THP-1 cells.

Fabrication.  Microchannels were formed by bonding one layer of a glass slide with one layer of PDMS (Sylgard 
184; Dow Corning, Midland, USA) and the microfluidic channels were fabricated by soft lithography. 100 μm 
thick SU-8 3050 photoresist (MicroChem Corp., Newton, USA) was deposited on Si-wafer (University Wafer, 
Boston, USA) and distributed by a spinner (Laurell WS 400 B, North Wales, USA). Then SU-8 was processed to 
be patterned by mask aligner (OAI Model 200, San Jose, USA) under UV light. The PDMS was mixed in a 10:1 
ratio with the curing agent and poured on the SU-8 master after removing bubbles under vacuum. Then, the 
cast was cured at 80 °C for 2 h and incubated in the oven overnight to obtain a PDMS replica of microchannel 
features. Following day, the PDMS mold was removed from the SU-8 master, and then input and output holes 
were drilled to create tubing connection by using a 0.5 mm OD biopsy puncher (Elveflow, Paris, France). Finally, 
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PDMS and glass slides were exposed to medium Radiofrequency (RF) power for 1 min to provide surface modi-
fication for bonding in the plasma device (Harrick Plasma device (New York, USA)25.

Cell culture.  THP‑1 cell culture.  THP-1(human monocytic) cells were kindly provided by Prof. Nesrin 
Ozoren (Bogazici University, Istanbul, Turkey) and maintained in a humidified cell culture incubator at the 
37 °C temperature and 5% CO2 conditions in complete RPMI 1640 medium (Gibco, Thermo Fisher Scientific, 
Waltham, USA) supplemented with 10% fetal bovine serum (FBS) (Biowest, Nuaille, France) and 1% penicillin–
streptomycin (Lonza, Basel, Switzerland) in the upright position. The confluency of cells was assessed daily by 
using a light microscope. The THP-1 cells were split at 80% cell confluency. The entire contents of the flask were 
removed and centrifuged at 125×g for 5 min. The pellet was resuspended in 10 ml complete RPMI-1640 medium 
and counted on the Thoma cell counting chamber by Trypan blue staining (1:10). Cell density was adjusted to 
4 × 105 viable cells in the complete medium26.

HUVEC cell culture.  HUVEC cell line was purchased from Lonza (catalog number CC-2517) and maintained 
in a humidified cell culture incubator at the 37  °C temperature and 5% CO2 conditions in complete M199 
medium (Gibco) supplemented with 10% fetal bovine serum (FBS) (Biowest) and 1% penicillin–streptomycin 
(Lonza). The confluency of cells was assessed daily by using a light microscope. The HUVEC cells were split at 
80% cell confluency. The cells were washed with 3–5 ml 1× PBS (Biochrom, Cambridge, UK). The cells were 
trypsinized and split into a fresh T25 flask. containing M199 supplemented with 10% FBS and 1% Pen/Strep27.

Shear stress application on THP‑1 cells.  All the microchannels and accessories were sterilized by UV 
exposure for 15 min before performing the experiments. After sterilization, microchannels were washed with 
complete RPMI-1640 medium to eliminate bubbles from the system. THP-1 cells were suspended in medium 
and were injected and circulated through the cavitated microchannels using the syringe pump system on con-
tinuous circulation under 4, 15, or 45 Pa shear stress, in separate, during 0.5 and 3 h. Experiments for THP-1 
cells were performed with 10 ml cell suspension at 0.8 × 106/ml cell density, and in parallel cells were incubated 
in a static environment (in cell culture flasks) at the same density throughout the experiment as a control25.

Quantitative real time‑PCR.  Total RNA was isolated from THP-1 cells with the RNeasy Micro Kit (Qia-
gen, Hilden, Germany) according to the manufacturer’s instructions and quantified using a Nanodrop spec-
trophotometer. The corresponding cDNA was amplified using PCR, the High Capacity cDNA Synthesis Kit 
(Applied Biosystems, Thermo Fisher Scientific, Waltham, USA). Real-time RT-PCR reactions was performed 
using the SYBR Green PCR Master mix (Luna Universal Probe qPCR kit, New England Biolabs, USA) on ABI 
StepOne Real Time System. Expression level of ICAM-1 was normalized to 18S rRNA housekeeping gene and 
calculated using ΔΔCt method in three replicates. Primers sequences are as follows: ICAM-1 forward 5′-GCT​
TCG​TGT​CCT​GTA​TGG​C-3′, reverse 5′-AGT​GGG​AAA​GTG​CCA​TCC​TTT-3′; 18s forward GGC​CCT​GTA​ATT​
GGA​ATG​AGTC, reverse CCA​AGA​TCC​AAC​TAC​GAG​CTT.

Cytokine assay.  Supernatants of each group were collected after THP-1 cells were subjected to 4, 15, and 
45 Pa shear stress during 0.5 and 3 h. The IL-8 protein level in supernatants was analyzed using the IL-8 ELISA-
MAX kit (BioLegend, San Diego, USA) according to the manufacturer’s protocol. Absorbance readings were 
taken in Bio-Rad microplate reader at λ = 450 nm and 650 nm, respectively.

Adhesion assay.  Before the adhesion assay, HUVEC cells, which were seeded in a 6-well plate with 
4 × 105 cells/ml density, were grown to 80% confluence and later were pretreated with 10 ng/ml TNF-α for 4 h. 
After, THP-1 cells were stained with Hoechst 33342 (Thermo Fischer Scientific, Waltham, USA) (dilution 1:250 
in RPMI 1640 per 1 × 106 cells) at RT for 20 min. Stained THP-1 cells were washed with PBS for two times 
and resuspended in RPMI-1640 complete medium. After that, THP-1 cells were subjected to 15 Pa shear stress 
through cavitated microchannel-B under 15 Pa by ExiGo pump (Cellix Ltd., Dublin, Ireland) at refilling mode 
for 0.5 and 3 h in separate experiments. THP-1 cells in the static control group were not subjected to fluid flow. 
At the end of the experiment, three groups were placed in different falcon tubes in mixed medium (RPMI 1640-
M199 in equal volume) and then added to HUVEC cells, which were seeded in the 6-well plates. After 1 h incu-
bation, cells were washed with PBS for 3–4 times to remove unbound THP-1 cells on HUVEC cells. The number 
of adherent THP-1 cells were examined under Zeiss Axio A1 fluorescence microscope (Carl Zeiss Meditec, Jena, 
Germany) by counting five random fields in each group.

Statistical analysis.  GraphPad Prism 6.0 software was used for calculating all p values. ANOVA and Stu-
dent’s t test were used to determine the p values according to existed number of data. The standard error of the 
mean was indicated with vertical bars in column graphs. p values of less than 0.05 were considered statistically 
significant.

Results
Flow rate and shear stress relation.  The simulation studies were performed by CFD using ANSYS-Flu-
ent software. The comparative flow rate-shear stress graphic for various flow rates in the cavitated microchannel-
A and B is shown in Fig. 2.

Channels A and B were chosen in the experiments to determine ICAM-1 mRNA expression and release of 
IL-8 from THP-1 cells, since the level of wall shear stress under test are in the range of target ones. The flow rates 
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have been calculated by CFD to induce 4, 15, and 45 Pa of shear stress levels on THP-1 cells. 4 Pa is defined as 
in the range of physiological shear stress, whereas 15 and 45 Pa are above the physiological range. The difference 
between the minimum and maximum shear stress, called amplitude, that occurs through the microchannel is 
the shear stress acting on the cells. The flow rate lines are shown in Fig. 3a, and the morphology change of THP-1 
cells passing through the cavities inside the microchannel, because of change in shear stress, is shown in Fig. 3b.

15 Pa significantly changes the shear stress relevant molecules.  ICAM-1 has been investigated 
widely in endothelial cells subjected to various types of shear stress19 however, no detailed information has been 
published regarding any change in ICAM-1 mRNA levels in THP-1 cells after application of shear stress. There-
fore, ICAM-1 mRNA expression levels in sheared THP-1 cells were determined by qRT-PCR. Microchannel-B 
was used to apply shear stress on THP-1 cells. THP-1 cells were subjected to laminar shear stress at 15 Pa for 3 h 
to assess the effect since the increase in the content of F-actin was determined to be highest after the treatment 
of 15 Pa, compared to the control and the other experimental groups in our previously published article25. As 
shown in Fig. 4, ICAM-1 mRNA levels in THP-1 cells treated with 15 Pa for 3 h were significantly higher than 
the control group.

Next, we evaluated the effect of shear stress on IL-8 secretion from THP-1 cells. In this experimental setting, 
microchannel-A was used to create 4 Pa, and microchannel-B was used to develop 15 Pa and 45 Pa shear stress. 
As shown in Fig. 5, there was a significant decrease in IL-8 secretion from THP-1 cells, which were exposed to 
various shear stress forces (4 Pa, 15 Pa or 45 Pa) compared to the untreated control group. Although IL-8 secre-
tion was reduced to its lowest level in THP-1 cells exposed to 45 Pa of shear stress, exposure to 4 Pa shear stress 
also led to a decrease to a closer value in these cells. Interestingly, 15 Pa shear stress did not lead to such a large 
reduction in IL-8 secretion in THP-1 cells compared to 4 Pa and 45 Pa treatments. Overall, these findings indicate 
that shear stress upregulated ICAM-1 expression, but downregulated secretion of IL-8 in THP-1 monocytic cells.
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Figure 2.   The comparative flow rate-shear stress graphic for microchannel-A and B.

Figure 3.   Schematic of the flow rate lines (a) and the morphology change of the THP-1 cells (b) inside the 
microchannel.
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Adhesion decreased between endothelial and THP‑1 cells.  Having shown that shear stress in cavi-
tated microchannels leads to changes in THP-1 cell behavior, we wondered whether attachment of THP-1 to 
endothelial cells (HUVEC) would be affected. To address this point, THP-1 cells, which were pre-labeled with 
Hoechst 33342, were subjected to 15 Pa shear stress with a continuous flow cycle for 0.5 h and 3 h periods. Later, 
THP-1 cells were placed on HUVEC cells, which were pre-stimulated with TNF-alpha to induce a pro-inflam-
matory environment. After removal of non-adherent THP-1 cells, the attachment of THP-1 to HUVEC cells was 
assessed using a fluorescence microscope and data are represented in Fig. 6.

As shown in Fig. 7, the THP-1 cell number attached to HUVEC cells decreased in groups exposed to shear 
stress for either 0.5 h and 3 h, compared to the untreated control group. Moreover, 3 h exposure to shear stress 
significantly attenuated the binding of THP-1 cells to HUVEC cells compared to both 0.5 h and control groups. 
This finding suggests that adhesion level to HUVEC cells decreases when the exposure time of shear stress at 
15 Pa increases for THP-1 cells.

Discussion
Mechanical forces take the first place to understand how cells and tissues emerge and develop an adaptation in the 
direction of changes of environment28. Studying the effects of the mechanical forces on cells in vivo is difficult, so 
there need to be alternative approaches and tools for their study in vitro6. Many of these techniques have different 
principles in operation, analysis, and detection. The microfluidic system is one of these techniques, which has 
the benefits of low wastage of reagents and samples, design flexibility, and control of the cellular environment29. 

Figure 4.   15 Pa of shear stress leads to an increase in ICAM-1 relative expression in THP-1 cells. THP-1 cells 
were either kept in a static environment (control) or treated with 15 Pa for 3 h (15 Pa). Bar graph indicates mean 
ICAM-1 expression levels analyzed by qRT-PCR from two independent experiments. Fold change expression of 
the ICAM-1 gene was normalized to18S rRNA. p values were determined by Student’s t test.

Figure 5.   Various shear stress forces downregulate IL-8 secretion from THP-1 cells. THP-1 cells were treated 
with 4 Pa, 15 Pa, or 45 Pa shear stress for 3 h. IL-8 levels were measured by ELISA. Bar graph represents the 
mean IL-8 concentration of four independent experiments. p values determined by ANOVA (± SEM).
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We used cavitated microfluidic channels as a tool for investigating shear stress in the physiological and above 
range on THP-1 cells, to find out whether their response is similar to endothelial cells lining blood vessels. In 
addition, we determined whether the application of various shear stresses to cells, to induce fatigue, over vari-
ous time periods, could induce a change in molecular expression in THP-1 cells, thereby reflected a functional 
change in these cells.

Vascular endothelial cells lining blood vessels are subjected to mechanical forces such as fluid shear cir-
cumferential distention, stress, and blood pressure; these play essential roles in the regulation of function and 
remodeling. Therefore, any abnormalities of mechanical forces can cause diseases such as atherosclerosis or 
hyperplasia30. The pathophysiological shear stress and disturbed flow in the blood vessels, sensed by endothelial 
cells, may directly act on the smooth muscle cells after endothelial damage31. This situation causes the release of 
proinflammatory molecules that make endothelial cells more adhesive to platelets and these endothelial-bound 
platelets may recruit leukocytes to the damage sites. This pathological interaction between platelets, endothelial 
cells, and leukocytes catalyzes the inflammatory process required for the development of atherosclerosis32. Based 
on observations from animal and human studies, the formation of plaque is intimately connected to hemo-
dynamic factors. Cheng et al. developed a perivascular shear stress modifier that mimics regions which have 
different shear stress compositions (increased, lowered and lowered/oscillatory)33. They placed a cast around 
the vessel wall to create a fixed geometry, which causes gradual stenosis. As a result, in the vessel segment inside 
the cast, different regions include lowered shear stress, increased shear stress, and oscillatory shear stress with 
vortices occurring respectively by increasing or decreasing the blood flow. In our study, we considered a similar 
principle to create shear stress and pressure difference. The values of the shear stresses were evaluated as the 

Figure 6.   Pre-exposure of THP-1 cells to 15 Pa shear stress decreases their adhesion to HUVEC cells. THP-1 
cells, which were pre-labeled with Hoechst 33342 (blue), were exposed to 15 Pa for 0.5 h or 3 h. THP-1 cells 
were then placed on TNF-alpha-pre-stimulated HUVEC cells for 3 h. After non-adherent THP-1 cells were 
removed, Hoechst 33342-stained-THP-1 cells (blue), which were attached to HUVEC cells, were monitored 
by a Zeiss Axio A1 fluorescence microscope. (a) THP-1 cells, which were placed on HUVEC cells in a static 
environment without exposing to a flow; (b) THP-1 cells, which were pre-exposed to 15 Pa shear stress for 0.5 h 
were placed on HUVEC cells, and (c) THP-1 cells, which were pre-exposed to 15 Pa shear stress for 3 h were 
placed on HUVEC cells. The magnification is 10×.

Figure 7.   Shear stress attenuates the adhesion of THP-1 cells and HUVEC cells significantly. HUVEC cells were 
kept under static conditions, and THP-1 cells were subjected to shear stress at 15 Pa for 0.5 h and 3 h, separately, 
and later placed on HUVEC cells. THP-1 cells were stained with Hoescht 33342 cell tracker dye. 5 random fields 
were assessed to semi-quantify the adhesion level. Bar graph represents the mean value of adhesion based on 
two independent experiments. p values determined by ANOVA (± SEM).
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difference (amplitude) between the wide and narrow regions in cavitated channels. These amplitude values have 
been used to calculate the flow rates by CFD using Ansys-Fluent software. The most important consideration 
when determining these flow rates was to perform experiments without damaging the cells seeded in the micro-
channels. This was why two microchannels were used in the experiments. In this content, the target shear stress 
values were determined as 4 Pa, which is within the physiological range, and 15 and 45 Pa which are above the 
physiological values, based on the literature23.

Although several studies have been performed on the F-actin network of endothelial cells, there is no clear 
information on how F-actin synthesis changing in THP-1 cells under shear stress. In our previous study25, we 
reported that the monocytic cells were subjected to 4, 15, and 45 Pa of shear stress for 0.5 and 3 h, to address 
this issue. The reason to choose 15 Pa target shear stress for investigating ICAM-1 mRNA is because this causes 
the greatest increase in rate of F-actin content at 15 Pa for 0.5 h, compared to the control group in our previous 
study. ICAM-1 is a leukocyte adhesion molecule that is expressed by endothelial cells in altered shear stress, 
inflammation, and pathophysiological conditions such as hyperplasia and atherosclerosis. Even though it is 
known that ICAM-1 is expressed in monocytes34, this has not been investigated under different shear stress 
levels. According to our results, the ICAM-1 mRNA level in THP-1 cells was found to be significantly higher 
than the control group under 15 Pa shear stress. The results obtained from the experiments of ICAM-1 expres-
sion in THP-1 cells, when exposed to shear stress, are promising in terms of being pioneering work in the role 
of monocytes in atherosclerotic plaque formation.

For neutrophils and lymphocytes, IL-8 is a chemotactic cytokine (chemokine) that is produced by many cells, 
including fibroblasts, neutrophils, monocytes, endothelial cells, and cancer cells35. IL-8 is known to be found in 
human atherosclerotic plaque regions. The cells which have fewer receptors for this chemokine are less sensitive to 
atherosclerosis, and also in lesions, fewer monocytes could be found. Gerszten et al. investigated how chemokines 
play a role in the interaction of monocytes subjected to flow (shear stress of 2 Pa) in the vascular endothelium36. 
They observed that IL-8 triggers the strong adhesion between monocytes and endothelium, which shows an 
unexpected role for IL-8 in monocyte recruitment, and this chemokine can rapidly cause rolling monocytes to 
adhere tightly to form monolayers. In this study, IL-8 release was investigated after shear stress application at 4, 
15, and 45 Pa to determine the shear stress value that causes changes at maximum range in THP-1 cells. It was 
found that the IL-8 release in each group was decreased compared to control. Exposure of THP-1 cells to 4 Pa 
and 45 Pa shear stress leads to attenuation of IL-8 secretion, with higher levels in the latter. Interestingly, even 
though exposure of THP-1 cells to 15 Pa shear stress caused a decrease in IL-8 secretion, it was not as substantial 
as at the other shear forces. Although, IL-8 is an attractant with in vitro activity for neutrophils, lymphocytes, 
and basophils, it is not for monocytes37. It can be suggested that shear stress between 4 and 45 Pa can reduce the 
release of IL-8 from THP-1 cells compared to the control group, which is important to activate the neutrophil 
adhesion to the endothelium that causes the vascular environment to be less atherogenic.

Studies show that many molecules can act as sensory elements to transduce hydrodynamic forces applied to 
endothelial cells38. The adhesion of leukocytes to activated endothelium via high-level expression of adhesion 
molecules is influenced by low shear stress39. In the case of atherosclerotic plaque development, firstly, monocytes 
adhere to endothelial cells in the inflammatory site, and then endothelial transmigration follows the adhesion. 
The process starts with the initial capture step (tethering) and proceeds with rolling, firm adhesion, and migra-
tion, respectively. Different adhesion molecules expressed on the surface of activated endothelial cells play a 
role in each step40. The interaction between l-selectin on the monocytes and its ligand on the endothelial cells 
leads to a rolling motion after the first contact between monocyte and endothelial cells in the second step41,42. 
β1 integrin VLA-4 (CD49d) of monocytes interacts with vascular cell adhesion molecules 1 (VCAM-1; CD106) 
on endothelial cells in the third step. Finally, β2 integrin interacts with ICAM-1 (CD54), and transendothelial 
migration may occur in by means of several molecules such as ICAM-1, VCAM-1, and platelet endothelial cells 
adhesion molecule-1 (PECAM-1; CD31)42–44. In the literature, there is no clear information about the investiga-
tion of the adhesion characteristic after treating monocytes with shear stress (continuous cycling) for the long 
term and higher physiological levels. Hsiai et al. developed a microelectromechanical systems (MEMS) sensor 
to quantify individual monocyte/EC binding kinetics in terms of displacement and velocity profiles at ± 0.26 Pa 
shear stress under oscillatory flow. According to those results, the application of oscillatory flow, low mean shear 
stress, and high shear stress gradient up-regulated the expression of ICAM-1, in parallel with the increasing 
number of monocytes bound to EC45. However, in our study, although an increase in ICAM-1 gene expression 
was detected when THP-1 cells were subjected to shear stress at 15 Pa under laminar flow for 3 h compared to 
control, the adhesion of THP-1 cell to endothelial cells was decreased. This discrepancy is most likely caused by 
changes in different adhesion molecules, which may be more dominant in determining the adhesion behavior 
of monocytes to endothelial cells at higher shear stress levels.

Conclusion
The microfluidic channels have been designed and fabricated to create and apply shear stress on endothelial and 
monocytes in terms of investigating their effects on these cells. Shear stress was applied by two microchannels, 
where different shear values were obtained through manipulating the geometry and dimension of the microchan-
nels. The shear stress levels used in the experiments were determined with simulation studies by the ANSYS-
Fluent program. These microchannels were designed to create calculated shear stress as well as mimicking the 
atherosclerotic environment by the use of cavities.

The activation of endothelial cells by up-regulation of cell adhesion molecules and chemokines causes mono-
cyte cell recruitment; thus, the accumulation of monocytes in the wall of arteries plays a major role in the process 
of atherosclerosis46. Since any change in shear stress level affects directly these cells by the blood flow, which 
may be physiological or pathological such as in atherosclerosis, endothelial cells have been widely investigated 
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in terms of their changes in structural and adhesion molecules in response to stress. However, no information 
is available regarding the status of these molecules in monocytes in response to shear stress. Therefore, ICAM-1 
mRNA expression levels were investigated to find out whether or not shear stress affects the same molecules 
in monocyte cells as in endothelial cells. In addition, chemokines play a significant role in the communication 
between endothelial and monocyte cells in atherosclerosis47. Various cell types, including activated endothelial 
cells, release IL-8 for the recruitment of monocytes, and this chemokine is found in human atherosclerotic 
plaques48. IL-8 release was investigated here in monocytes activated by flow for various periods to find out how 
the change in shear stress level affects the level of IL-8 release. In the case of atherosclerotic plaque development, 
firstly monocytes adhere to endothelial cells at the inflammatory site, and then endothelial transmigration fol-
lows the adhesion. The adhesion of THP-1 cells to endothelial cells was investigated to determine the adhesion 
characteristics after treating THP-1 cells with shear stress.

This shear stress study aimed to fill some gaps that exist in our understanding of monocyte biology, which 
contributes to inflammation in atherosclerotic plaques. The results show that treating THP-1 cells with 4, 15, 
and 45 Pa shear stress induces significant changes in shear stress-related molecules such as ICAM-1 and IL-8 
and also determines the behavior of THP-1 cells in adhesion to the endothelium as well. The results showed that 
15 Pa triggers significant changes in the shear stress-related molecules. Moreover, in the condition of continuous 
cycling of monocytes through cavitated microchannels, cells are exposed to periodic and stable average higher 
and lower shear stress levels; thus, this condition can cause cell fatigue.

Data availability
The data that support the findings of this study are available from the corresponding author, [SZB], upon rea-
sonable request.
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