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Engineering microenvironments for accelerated myocardial repair is a challenging goal.

Cell therapy has evolved over a few decades to engraft therapeutic cells to replenish lost

cardiomyocytes in the left ventricle. However, compelling evidence supports that tailoring

specific signals to endogenous cells rather than the direct integration of therapeutic

cells could be an attractive strategy for better clinical outcomes. Of many possible

routes to instruct endogenous cells, we reviewed recent cases that extracellular matrix

(ECM) proteins contribute to enhanced cardiomyocyte proliferation from neonates to

adults. In addition, the presence of ECM proteins exerts biophysical regulation in tissue,

leading to the control of microenvironments and adaptation for enhanced cardiomyocyte

proliferation. Finally, we also summarized recent clinical trials exclusively using ECM

proteins, further supporting the notion that engineering ECM proteins would be a critical

strategy to enhance myocardial repair without taking any risks or complications of

applying therapeutic cardiac cells.

Keywords: extracellular matrix, cardiomyocyte proliferation, myocardial infarction, cardiac repair, acellular

therapeutics

INTRODUCTION

Post-natal cardiomyocytes (CMs) are terminally differentiated cells in the heart and lack
proliferative capacity. A withdrawal from the cell-cycle correlates with multinucleated and
polyploid CMs (Derks and Bergmann, 2020). At the time of birth, the neonatal human heart
comprises primarily mononucleated CMs and ∼30% binucleated CMs, and this proportion of
mononucleated and binucleated CMs does not change significantly after birth. The DNA of most
nuclei is duplicated to become mononucleated tetraploid in childhood when the cells undergo
hypertrophy (Bergmann et al., 2009). The overall arrest in CMdivision is due to the downregulation
of cell cycle regulators (Walsh et al., 2010; Zebrowski et al., 2015).

After myocardial infarction (MI), several strategies to replenish lost CMs have been proposed.
Engraftment of exogenous cells to restore the damaged myocardium is an attractive remedy to
mitigate the progression of cardiac fibrosis. Exogenous sources include stem cell-derived CMs
or cardiac progenitor cells. The first-generation cell therapy employed mesenchymal stem cells
(MSCs) or similar derivatives (Perin et al., 2015), and the second-generation cell therapy (Cambria
et al., 2017) utilized pluripotent stem cell (PSC)-derived CM (Chong et al., 2014; Shiba et al.,
2016; Liu et al., 2018), which showed a certain extent of success for cardiac repair with stem
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cells. However, a major problem associated with cell therapy
includes relatively low retention and integration of delivered
cells, where only 10–15% are retained regardless of the
source (Hou et al., 2005), and only about 1% of injected
cells remained after 1 month (Nguyen et al., 2016). In
addition, significant arrhythmia, excessive immunosuppression,
and potential teratoma formation are the major roadblocks of
applying therapeutic cells toward clinical application (Berry et al.,
2019; Bolli and Wysoczynski, 2019). Alternatively, cell therapy
with endogenous resources is a preferred strategy. However,
the contribution of endogenous cardiac stem cells is proven to
be minimal, and 31 associated publications from the Anversa
laboratory were retracted (Chien et al., 2019), leading to a
pause on a clinical trial involving c-kit+ cardiac stem cells by
the National Institutes of Health [National Heart, Lung, and
Blood Institute (NHLBI)] as of October 2018. Interestingly,
these results can lead to the longstanding notion that it may
be possible to achieve cardiac regeneration without physically
presenting cells into the injured heart (French and Holmes,
2019). The consistent mismatch between insignificant cellular
engraftment and significant functional improvement has led to
our assertion that the functional benefits might well be derived
from paracrine actions of the transplanted cells (French and
Holmes, 2019), which initiated next-generation therapies with
cell-free approaches (Cambria et al., 2017). Here, we succinctly
summarize extracellular matrix (ECM) proteins directly relevant
to or instructing CMproliferation to establish better strategies for
enhanced cardiac repair.

STIMULATION SIGNALS FOR
CARDIOMYOCYTE PROLIFERATION

Extracellular Matrices Associated With
Cardiomyocyte Proliferation
From many recent studies (Frangogiannis, 2019), the
composition and mechanical properties of the ECM (Chaudhuri
et al., 2020) may play a critical role in inducing the regeneration
of the myocardium (Yahalom-Ronen et al., 2015). The following
studies are recent investigations on ECM proteins and their roles
in CM proliferation.

Fibronectin
Fibronectin is a multidomain, high-molecular-weight
glycoprotein, present at low levels in the ECM of the
healthy heart. Proteomics analysis of ECM compositions with
developmental ages showed that collagen I and III and laminins
increase gradually from fetal to adult, while fibronectin decreased
with development (Williams et al., 2014). In vivo, fibronectin is
strongly upregulated in the heart after MI (Konstandin et al.,
2013a). Thus, short-term induction of fibronectin following
myocardial injury may be tied to a beneficial role in cardiac
repair by CM proliferation. The same group proved that
fibronectin promotes CM hypertrophy by nuclear factor of
activated T cell (NFAT) in vivo and in vitro, while fibronectin
attenuates the activation of physiological growth in vitro
(Konstandin et al., 2013b). Co-culture of mammalian embryonic

cardiac fibroblast (cFB) and CM can promote CM proliferation,
and fibronectin secreted by embryonic mouse cFB plays a
pro-proliferative role in this process (Ieda et al., 2009). The
mechanism of CM proliferation is only partially attributed to
fibronectin or collagen type III that promoted CM proliferation
by activating heparin-binding EGF-like GFs via β1 integrin
signaling (Ieda et al., 2009). In zebrafish heart regeneration,
loss-of-function approaches indicated that high expression
of fibronectin does not remuscularize the heart (Wang et al.,
2013), but fibronectin is necessary for functional regeneration by
mobilizing and integrating CMs into the injured region. As such,
cFB and fibronectin need additional players to proliferate CMs
for cardiac repair.

Periostin
Periostin is a multimodular protein composed of a signal peptide
necessary for secretion, a small cysteine-rich module for the
formation of multimers via disulfide bonds, four FAS1 (fasciclin-
1) domains interacting with integrins, and a hydrophilic C-
terminal region known to interact with other ECM proteins (Kii
et al., 2010). Periostin is primarily expressed in the developing
heart, but not in healthy adult ventricular myocardium (Snider
et al., 2008; Hortells et al., 2020). After acute MI, periostin
is re-expressed in the infarct border zones by activated cFBs
(Kanisicak et al., 2016). It was reported earlier that periostin
can switch differentiated mononucleated CMs into the cell cycle
and induce cardiac regeneration with improved myocardial
function, as evidenced by an increase in DNA synthesis, aurora
B kinase detection, and CM cytokinesis (Kühn et al., 2007).
Recently, a report investigated the impact of genetic ablation
of periostin in neonatal mice following MI and showed that
periostin mediates PI3K/GSK3β/cyclin D1 signaling pathway
for myocardial regeneration (Chen et al., 2017). However,
this conclusion still remains controversial in adult mice with
inducible expression of full-length periostin in that periostin is
abundant in the infarcted mouse myocardium in the absence of
regeneration (Lorts et al., 2009). Moreover, the periostin-induced
cell cycle reentry is mediated in an integrin-dependent manner,
which may impact other non-CMs expressing integrins (Kühn
et al., 2007).

Agrin
Agrin is a heparan sulfate proteoglycan. It harbors three
laminin-globular (LG) domains within its C-terminal region,
and the first two LG domains (LG1 and LG2) are sufficient
for binding to α-dystroglycan (αDG). Agrin promotes cell
cycle reentry in both neonatal and adult mice (Bassat et al.,
2017), and a separate study showed that Hippo/Yap signaling
is a key signaling mechanism to mediate endogenous CM
dedifferentiation and proliferation (Morikawa et al., 2017).
In vitro administration of C-terminal agrin from post-natal
day 1 (P1) increased CM proliferation (Bassat et al., 2017).
The injection of recombinant agrin to the myocardium after
MI in juvenile and adult mice also induced CM cell cycle
reentry in the healthy myocardium adjacent to the infarcted
regions, resulting in reduced scar size and improved cardiac
function (Bassat et al., 2017). Although a single administration
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of agrin promotes cardiac regeneration in adult mice after
MI, the degree of CM proliferation observed in this model
suggests that additional therapeutic mechanisms are required
for functional regeneration of the myocardium (Bassat et al.,
2017). In a preclinical porcine model of ischemia reperfusion,
local (antegrade) delivery of a single dose of recombinant agrin
into the infarcted heart resulted in significant improvement in
heart function, infarct size, improved angiogenesis, suppressed
inflammatory response, and cell cycle reentry (Baehr et al.,
2020). Recent studies reported that binding of agrin to αDG
could contribute to enhanced CM proliferation. To expedite such
changes, modulating the stiffness of microenvironments could
synergistically initiate CM proliferation via dedifferentiation–
proliferation–redifferentiation of CMs (Yahalom-Ronen et al.,
2015; Wang et al., 2017; Judd et al., 2019).

Slit-2 and Nephronectin
Slit-2 is a neuronal protein and is the only binding partner of
αDG with a single LG domain, while two other homologous Slit-
1 and Slit-3 are not yet reported to bind to αDG (Wright et al.,
2012). Nephronectin is expressed in CMs throughout the heart
and is secreted into the cardiac jelly (Patra et al., 2011). From
embryonic cFB-derived ECMs, Slit-2 and nephronectin promote
CM cytokinesis both in vitro and in vivo (Wu et al., 2020), but
not cell cycle entry of post-natal CMs. The authors postulated
that Slit-2 and nephronectin may act directly on CM and activate
intracellular signaling pathways, such as RhoA (Backer et al.,
2018).

Decellularized Extracellular Matrix
Instead of a single ECM component, decellularized zebrafish
cardiac ECM (zECM) was intramyocardially injected to treat
adult mice after MI (Chen et al., 2016). Given the high
regenerative capacity of adult zebrafish hearts, decellularized
zECM made from normal or healing hearts can induce
mammalian heart regeneration. In a mouse model of acute MI,
although a single injection of both normal and healing zECM
improved cardiac functional recovery and repair, the healing
zECM induced better improvements on heart function. Groups
treated with zECM exhibited proliferation of the remaining CMs
and multiple cardiac precursor cell populations and reactivation
of ErbB2 expression in CMs. NRG1, a mitogen of CMs and
a ligand of ErbB2/ErbB4 complex, was detected in zECM but
only minimally in murine ECM. The presence of NRG1 in
zECM and the reactivation of its receptor ErbB2 in zECM-
treated hearts are consistent with the observed proliferation
of CMs and improvement of cardiac function. In addition,
decellularized porcine myocardial-derived ECM hydrogels were
developed (Seif-Naraghi et al., 2013) and showed increases in
cardiac muscle and improvements in cardiac function following
an injection into the infarct (Christman, 2019). Application of
decellularized porcine cardiac ECM to cardiac explant (post-
natal day 1) with simultaneous modulation of stiffness using
BAPN (3-aminopropionitrile) and ribose (stiffening) (Wang
et al., 2020) presented a case that both ECM proteins and
mechanical properties of microenvironments are important
modulators for cardiac regeneration. Thus, these cases indicate

that cardiac ECM-based therapeutics needs to combine with
biomechanical modification.

Microenvironmental Contribution to
Cardiomyocyte Proliferation
In addition to CM proliferation via cell cycle reentry, heart
regeneration requires dedifferentiation, which indirectly initiates
proliferation, and the migration of CM to the injured sites,
followed by redifferentiation. Clinically, mechanical unloading
of diseased hearts can improve adverse remodeling and improve
metabolism (Uriel et al., 2018). The stiffness of the ECM in
the myocardium increases progressively, which is correlated
with CM cell cycle arrest. By modulating the stiffness of
polydimethylsiloxane (PDMS) substrates, compliant (5 kPa)
substrates promoted dedifferentiation and proliferation of
neonatal CMs including a disorganized sarcomere network and
conspicuous cell cycle reentry (Yahalom-Ronen et al., 2015).
In contrast, rigid (2 MPa) substrates facilitated karyokinesis
(nuclear division) leading to binucleation. Thus, the compliant
microenvironment could facilitate CM dedifferentiation and
proliferation via its effect on the organization of the cytoskeleton
(Yahalom-Ronen et al., 2015). In addition to the first report
of neonatal (up to 7 days post-partum) cardiac regeneration
(Porrello et al., 2011), another recent investigation found
that neonatal regeneration sharply declines within 48 h, with
hearts of 2-days-old mice responding to amputation with
fibrosis, rather than regeneration (Notari et al., 2018). By
comparing the global transcriptomes of mouse hearts at P1
and P2, the authors reported that most differentially expressed
transcripts encode ECM proteins and structural constituents
of the cytoskeleton. Pharmacological inhibition of the cross-
linked enzyme LOX (lysyl oxidase) using BAPN rescued the
ability of heart regeneration after apical amputation in P3
neonatal mice. On the other hand, stiffer substrates (10 to
50 kPa) were shown to increase CM proliferation and Yap
activity in cultures of β-catenin double-knockout CMs (αE-
catenin and αT-catenin), indicating that stabilizing cytoskeleton
stimulates the nuclear translocation of Yap (Vite et al., 2018).
The differences between published works may be attributed to
varying experimental techniques including dimensionality, tissue
vs. culture conditions, and stiffness range.

CLINICAL APPLICATION OF
EXTRACELLULAR MATRIX-BASED
BIOMATERIALS FOR CARDIAC REPAIR

Here are a few examples for ECM-based biomaterials specifically
for cardiac repair. More acellular injectable biomaterials for
treating MI are reviewed elsewhere (Hernandez and Christman,
2017; Christman, 2019). In addition, commercially available
ECM-based scaffolds for cardiac repair are discussed in the
recent reviews therein (Swinehart and Badylak, 2016; Pattar et al.,
2019)

CorMatrix is a scaffold derived from small intestinal
submucosa (SIS) and is the most widely used SIS-ECM product
in cardiovascular surgery, which also recently received Food and
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Drug Administration (FDA) approval (Mosala Nezhad et al.,
2016). CorMatrix ECM cardiac patches were tested in clinical
trials (ClinicalTrials.gov identifier: NCT02887768), claiming to
promote endogenous cardiac regeneration. However, a study
utilizing CorMatrix patches in infants with congenital heart
disease did not show evidence of native cardiac tissue ingrowth
within 21 months (Nelson et al., 2016). Further complications
were reported from other clinical trials with a CorMatrix
patch, including patch dehiscence after atrioventricular
continuity reconstruction following massive posterior annulus
decalcification and mitral valve replacement for mitral stenosis
due to dystrophic calcification (Poulin et al., 2013). These results
suggest that CorMatrix may elicit eosinophilic inflammation in
human patients after implantation, perhaps via α-gal (galactose-
α-1,3-galactose) present in the porcine intestine (Mosala Nezhad
et al., 2016), which probably supports the notion that completely
defined therapeutics would be beneficial to avoid adverse
reactions in human patients.

VentriGel is an ECM hydrogel derived from decellularized
porcine myocardium (Singelyn et al., 2012; Seif-Naraghi
et al., 2013; Hernandez and Christman, 2017) examined in a
recently published clinical trial (ClinicalTrials.gov identifier:
NCT02305602). The outcomes of the first-in-man trial
highlighted the safety and efficacy of the treatment over 6
months (Traverse et al., 2019). VentriGel is a relatively weak
hydrogel (Johnson et al., 2011), exhibiting two orders of
magnitude lower stiffness than the stiffness (13 Pa of storage
modulus at 8 mg/mL) of healthy, normal adult myocardium
(around 10–15 kPa; Pandey et al., 2018). While there is yet
sufficient evidence for the capability of decellularized hydrogel
to promote endogenous cardiac regeneration, the ECM signals
of normal healthy myocardium can prove a promising strategy
for engineering biomaterials for cardiac repair.

CONCLUSIONS AND OUTLOOK

From earlier studies treating p38 mitogen-activated protein
(MAP) kinase inhibitor (SB203580) for CM mitosis (Engel
et al., 2005, 2006), a number of stimulation signals have been
identified for CM to reenter cell cycle and to promote [cyclin
A2 (Shapiro et al., 2014); a cocktail of CDK1, CDK4, cyclin D1,
and B1 (Mohamed et al., 2018); Tbx20 (Xiang et al., 2016); and
hypoxia-inducible factor 1α (HIF1α) (Guimarães-Camboa et al.,
2015)] or inhibit [Meis1 (Mahmoud et al., 2013) and thyroid
hormone (Hirose et al., 2019)] preexisting CM proliferation.
Hippo (Heallen et al., 2011; Leach et al., 2017) and NRG1/ErbB4
(D’uva et al., 2015) pathways could be a molecular strategy to
promote adult CM proliferation. The Hippo-DGC (dystrophin–
glycoprotein complex)-agrin studies identified that viral delivery
or a direct injection of CM proliferation agonist could be a
viable cardiac repair strategy (Morikawa et al., 2017). More
recently, ERBB2-ERK (extracellular signal-regulated kinase)-
YAP mechanotransduction signaling was shown to trigger CM
mitosis and epithelial-to-mesenchymal (EMT)-like transition
toward phenotypic plasticity (Aharonov et al., 2020). Another
important consideration is to exploit the metabolic switch from

mitochondrial oxidative phosphorylation to glycolysis to induce
CM proliferation. Recent studies reported that CM proliferation
can be enhanced by inhibiting fatty-acid utilization with
deletion of pyruvate dehydrogenase kinase-4 (PDK4) (Cardoso
et al., 2020), activating Nrg1/ErbB2 signaling (Honkoop et al.,
2019), and activating PPARδ/PDK1/p308Akt/GSK3β/β-catenin-
pathway (Magadum et al., 2017).

Translation of technologies to augment the stimulation signals
requires a thoughtful examination, especially considering the
oncogenic potential of activating growth pathways (Heallen
et al., 2019). Another promising strategy of activating CM
proliferation is to deliver an intrinsic extracellular factor (e.g.,
FSTL-1) via an engineered patch to stimulate endogenous repair
(Wei et al., 2015). This acellular approach reduces the laborious
effort to prepare therapeutic cells, while avoiding potential
tumor formation and adverse immune rejection from the

FIGURE 1 | The schematic showcases an example of integrin-binding

domain, such as fibronectin, periostin, or laminin; and αDG-binding domain,

such as agrin, Slit-2, or laminin α chains. The engagement of extracellular

matrix (ECM) proteins via transmembrane receptors [integrin or dystroglycan

(DG)] can be tuned by engineering the ECM proteins to further stimulate

cardiomyocyte (CM) proliferation and associated pathways without penetrating

CMs. Some laminin-globular (LG) domains from laminins are also interactive

with integrin (Aumailley, 2013) as well as heparin (Ishihara et al., 2018), so the

receptor-ligand integrations are not exclusive. For CM proliferation, active

(unphosphorylated) Yap is translocated to the nucleus where the Yap interacts

with TEA domain (TEAD) transcription factor to regulate cell proliferation.
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patient. However, such an extracellular factor can also potentially
stimulate non-CMs. Specific ligands that only allow engagement
with CMs are needed to avoid adverse activation of the expansion
of cFBs and their differentiation into myofibroblasts (specifically
associated with fibrosis) (Fu et al., 2018).

Laminin α chains and several proteoglycans harbor a few
tandem arrays of LG domains. Despite the structural similarity
between agrin and laminin, binding affinity to αDG and the
configuration of a tandem array of LG domains are distinct
(Dempsey et al., 2019). This different feature may have conferred
the different roles of ECM proteins containing LG domains
in CM proliferation and differentiation. Thus, the therapeutic
application of LG domain containing ECMs (agrin, laminin, and
Slit-2, as depicted in Figure 1) needs to have further specification
in their molecular nature and the receptors exclusively expressed
in CM (for recent reviews on LG domain containing molecules,
see Hohenester, 2019a,b; Yap et al., 2019).

ECM proteins that were applied for myocardial regeneration
augmented the additional modification to enhance longevity
and contribution for remuscularization (e.g., CorMatrix and
VentriGel). ECM proteins binding to αDG, agrin, or Slit-
2 contributed to CM proliferation (Bigotti et al., 2020), but
further mechanistic understanding requires establishing a better
strategy for CM proliferation. In addition to providing novel
engineering strategies for cardiac repair, more critical analysis
of CM proliferation assays and induction of CM proliferation
by microRNA, metabolic switch, or small molecule is necessary
to inform the field to efficiently reach the goal of myocardial
regeneration (Leone and Engel, 2019). A recent phase I
clinical trial (ESCORT, NCT02057900) with fibrin and Matrigel

composites incorporating human embryonic stem cell (hESC)-
derived cardiac progenitor cells (Isl1+) proved the safety of the
approach (Menasche et al., 2018;Menasché, 2020), which showed
a synergistic contribution to the regeneration of the myocardium
without apparent integration of the delivered cardiac cells. Thus,
a protein engineering strategy could be a starting point to
target a specific receptor and well-defined signal pathways (e.g.,
Hippo/Yap) (Bassat et al., 2017;Morikawa et al., 2017) (Figure 1).
Then, engineering multifactorial, acellular biomaterials with
a simple deployment strategy could be a therapeutic goal
(Christman, 2019). Ideally, both mechanical compensation and
biochemical definition would be necessary. In addition, what
levels of complexity we have to address are an important question
to answer (Ogle et al., 2016) since a small increase in the ejection
fraction of 5–10% in the function of the left ventricle would
be a meaningful resolution to mitigate heart failure for patients
suffering from post-injury.
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