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Introduction
Production of Clostridium perfringens enterotoxin (CPE) is 
essential for C. perfringens type F strains to cause intestinal dis-
eases, including food poisoning and nonfoodborne gastrointes-
tinal diseases such as antibiotic-associated diarrhea.1,2 CPE, a 
35-kDa single polypeptide with a unique primary amino acid 
sequence, belongs to the aerolysin pore-forming toxin family.1,2 
It consists of an C-terminal domain that mediates binding to 
receptors and an N-terminal domain responsible for oligomer-
ization and pore formation.1,2

Early Steps in CPE-Induced Cell Death
As shown in Figure 1, CPE cytotoxicity starts when this toxin 
binds to receptors, which include certain members of the clau-
din family of tight junction proteins. This binding results in 
formation of a small (~90 kDa) complex that contains CPE 
along with both receptor and nonreceptor claudins. 
Approximately 6 CPE small complexes then oligomerize into 
an ~500 kDa prepore located on the host cell plasma mem-
brane surface. A beta hairpin loop then extends from each CPE 
molecule to create a beta barrel pore that is inserted into the 
host cell membrane. This CPE pore is permeable to molecules 
<200 Da, particularly cations.

New Insights Into CPE-Induced Cell Death 
Pathways
Approximately 15 years ago we reported that, in a concentration-
dependent manner, CPE activates 2 different cell death path-
ways.3,4 In those studies, low (1 µg/mL) CPE concentrations 
killed human enterocyte-like Caco-2 cells by a classical 

caspase-3 mediated apoptosis. However, higher (10 µg/mL) 
CPE concentrations caused those cells to die from necrosis, 
although the molecular details of that necrotic process were not 
defined. Those studies also established that elevated cytoplas-
mic levels of Ca2+ and increased calpain activation are impor-
tant for the development of either CPE-induced apoptosis or 
necrosis but, again, mechanistic details were unclear.

Since publication of those initial CPE cell death pathway 
studies, considerable progress has been achieved in understand-
ing mammalian cell death pathways induced by various other 
(non-CPE) treatments. In particular, 2 host kinases named 
receptor interacting serine/threonine kinases 1 and 3 (i.e. RIP1 
and RIP3) and a pseudokinase named mixed lineage kinase-
domain (MLKL) have been implicated in some cell death 
pathways.5 RIP1 and RIP3 help mediate classical caspase-3 
mediated apoptosis as part of Complex IIb. However, all three 
of these proteins are involved in a form of programmed necro-
sis known as necroptosis. In the necroptotic cell death pathway, 
RIP1 and RIP3 are located in the necrosome, which promotes 
oligomerization of MLKL to serve as the executioner for cell 
death through an incompletely understood process.

Given those advances, our recent mBio study used highly 
specific inhibitors of RIP1 or RIP3 activity, or MLKL oli-
gomerization, to explore if those 3 host proteins play a role in 
CPE-induced cell death. Results indicated that RIP1 and 
RIP3, but not MLKL oligomerization, are important for the 
apoptosis induced when Caco-2 cells are treated with a low 
CPE concentration. In contrast, RIP1 and RIP3 activity and 
MLKL oligomerization were all contributors to the necrosis 
that develops when Caco-2 cells are treated with a high CPE 
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concentration, identifying this cellular necrotic process as 
necroptosis. In addition, calpain inhibitors were shown to block 
MLKL oligomerization in Caco-2 cells treated with high CPE 
concentrations, implicating calpain activation as a key interme-
diate step in CPE-induced necroptosis. A model incorporating 
these findings is included in Figure 1. Last, these findings are 
not specific for Caco-2 cells since similar results were also 
obtained when T84 human enterocyte-like cells were treated 
with the same low or high CPE concentrations.

Relevance of These In Vitro Findings for 
Understanding CPE-Mediated Intestinal Disease
While in vitro results using cultured Caco-2 or T84 cells are 
interesting, are they germane for understanding CPE-mediated 
intestinal disease? C. perfringens likely produces CPE during 
sporulation to induce a diarrhea that expels spores from the 
body and thus propagates disease transmission. In animal 
models, purified CPE causes severe intestinal damage, includ-
ing villus shortening, gross epithelial necrosis, and cellular des-
quamation.1,6 This intestinal damage is apparently required for 
the development of diarrhea since intestinal fluid loss in CPE-
treated animal models (1) correlates with the onset of intestinal 
damage and (2) can only be produced using concentrations of 
purified CPE that are sufficient to cause intestinal damage.1,6

The CPE concentrations used in our Caco-2 and T84 cell 
studies have pathophysiologic relevance as they overlap CPE 

levels measured in diarrheic feces from patients with CPE-
mediated intestinal disease, which range from <1 to >100 
µg/mL of the enterotoxin.7 The broad range of CPE concen-
trations present in diarrheic feces supports the concept that it 
may be beneficial if, during disease, CPE broadly induces 
intestinal cell death and consequent tissue damage at both 
low and high concentrations, consistent with our cell culture 
results. Interestingly, ⩾ 10 µg/mL of purified CPE is needed 
to cause intestinal pathology in rabbit small intestinal loop 
models,6 which is higher than the CPE concentrations meas-
ured in diarrheic feces of some patients. This apparent para-
dox could be explainable by (1) differences in CPE sensitivity 
between animal models vs humans, (2) lowering of fecal CPE 
levels due to degradation by fecal proteases, and/or (3) late 
collection of some diarrheic fecal samples, ie, collection after 
CPE stool levels had already peaked. Another possible expla-
nation could be that a C. perfringens factor(s) not present in 
purified CPE preparations significantly enhances the activity 
of lower CPE concentrations during intestinal infection. This 
hypothesis is supported by some in vitro data, ie, CPE-
producing type F strains often make NanI sialidase, which 
increases CPE binding and cytotoxicity for Caco-2 cells by 
~2- to 3-fold.8

To date, there has been only limited direct study of CPE-
induced cell death pathway activation in the intestines. A 
recent study9 demonstrated some caspase-3 activation in 

Figure 1.  CPE-induced cell death in Caco-2 and T84 cells. CPE (gold) binds to a receptor claudin (purple), to form an ~90-kDa small complex. This small 

complex also contains nonreceptor claudins (red) which remain associated with bound CPE throughout its action (not shown). Approximately 6 small 

complexes oligomerize to form a prepore on the host cell surface. Each CPE molecule in the prepore then extends a beta hairpin to create a membrane pore 

that causes dysregulation of ions (including Ca2+ influx). Depending on the CPE concentration applied, there is either limited or strong activation of calpain. 

With low calpain activation, RIP1 and RIP3, likely acting via complex IIb, cause a caspase-3 activation that then triggers apoptosis. In contrast, strong calpain 

activation mediates, via the RIP1/RIP3-containing necrosome, MLKL oligomerization to cause necroptosis. See Refs 1, 2, and Shrestha, Mehdizadeh Gohari, 

and McClane 2019 mBio article for more details). CPE indicates Clostridium perfringens enterotoxin; MLKL, mixed lineage kinase-domain.
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CPE-treated rabbit small intestine. However, this activation 
initiated after the onset of intestinal damage. Furthermore, 
caspase-3 inhibitors were unable to block the development of 
CPE intestinal damage. Whether CPE causes intestinal 
necroptosis has not yet been examined.

There is another interesting, yet complicating, aspect of 
CPE intestinal action. This enterotoxin binds primarily to 
villus tip cells yet damages the entire villus.10 That observa-
tion prompted recent in vitro studies11 showing CPE-
induced death of sensitive Caco-2 cells causes release of 
factors, possibly including a serine protease, that kill CPE-
insensitive cells. Extrapolating this observation to the intes-
tines may suggest that CPE kills sensitive villus tip cells, 
which then release factors to cause bystander cell killing of 
insensitive cells further down the villus. If correct, the 
bystander killing effect may actually be responsible, via a still 
unknown cell death pathway, for much of the intestinal dam-
age observed in CPE-treated intestines. A proposed model 
incorporating the involvement of bystander killing in CPE 
in vivo effects is shown in Figure 2.

Possible Pertinence of These New CPE Findings for 
Understanding Cell Death Mechanisms of Other 
Pore-Forming Toxins (PFTs)
PFTs such as CPE represent the largest single class of bacterial 
toxins. Studies prior to our recent mBio CPE paper had already 
demonstrated that several other PFTs can induce necroptosis 
through processes that apparently involve cytoplasmic ion dys-
regulation.12-14 However, the mechanisms behind those pro-
cesses have been unclear. For example, the cause of the 
cytoplasmic ion change in necroptotic cells had not been clearly 
determined. Some studies with other (non-PFT) factors had 
reported that oligomerization of MLKL during necroptosis 

can itself affect intracellular ion levels.15 Alternatively, ion dys-
regulation caused directly by PFT pores might promote MLKL 
oligomerization and thus necroptotic cell death. Also, it had 
been unclear whether intermediate host factors beyond the 
necrosome can be involved in PFT-induced MLKL 
oligomerization.

Given those uncertainties, our recent mBio paper offers 2 
potentially more generalizable contributions for understanding 
necroptosis induced by at least some other PFTs. First, these 
CPE results demonstrate that Ca2+ influx through a PFT pore 
to activate calpain can mediate MLKL oligomerization and 
necroptosis. It remains possible that MLKL oligomerization 
then causes some secondary ion dysregulation to further potenti-
ate CPE-induced cell death. Second, this CPE research estab-
lishes the principle that, beyond the necrosome, cellular 
intermediates like activated calpain can also help mediate MLKL 
oligomerization and PFT-induced necroptosis. It is possible 
that some PFTs, particularly those causing Ca2+ influx, also use a 
calpain-mediated pathway to cause necroptosis.

Unresolved Questions for Future Research
The above discussion raises a number of interesting and impor-
tant questions regarding CPE action and, more generally, 
PFT-induced cell death pathways. Some topics for future 
research include: Does CPE-induced bystander killing occur 
in the intestines? Does CPE directly, or via bystander killing, 
cause necroptosis in the intestines? If so, is this effect impor-
tant for causing intestinal tissue damage? What is the target of 
activated calpain during apoptosis or necroptosis in CPE-
treated cells? How does this lead to MLKL oligomerization in 
cells treated with high CPE doses? Regarding other PFTs, do 
some of those resemble CPE by causing (in a dose-dependent 
nature) apoptosis and necroptosis? Is calpain activation an 
important intermediate when other PFTs induce necroptosis?
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