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ABSTRACT: Despite the variety of available computational
approaches, state-of-the-art methods for calculating excitation
energies, such as time-dependent density functional theory
(TDDFT), are computationally demanding and thus limited to
moderate system sizes. Here, we introduce a new variation of
constrained DFT (CDFT), wherein the constraint corresponds to a
particular transition (T), or a combination of transitions, between
occupied and virtual orbitals, rather than a region of the simulation
space as in traditional CDFT. We compare T-CDFT with TDDFT
and ΔSCF results for the low-lying excited states (S1 and T1) of a
set of gas-phase acene molecules and OLED emitters and with
reference results from the literature. At the PBE level of theory, T-
CDFT outperforms ΔSCF for both classes of molecules, while also
proving to be more robust. For the local excitations seen in the acenes, T-CDFT and TDDFT perform equally well. For the charge
transfer (CT)-like excitations seen in the OLED molecules, T-CDFT also performs well, in contrast to the severe energy
underestimation seen with TDDFT. In other words, T-CDFT is equally applicable to both local excitations and CT states, providing
more reliable excitation energies at a much lower computational cost than TDDFT cost. T-CDFT is designed for large systems and
has been implemented in the linear-scaling BigDFT code. It is therefore ideally suited for exploring the effects of explicit
environments on excitation energies, paving the way for future simulations of excited states in complex realistic morphologies, such
as those which occur in OLED materials.

1. INTRODUCTION
Studying excited states inmolecules and extended systems is one
of the major ongoing challenges in physics, chemistry, and
materials science due to the complexity of the underlying
electronic structure. Nonetheless, an accurate characterization
of excitation energies is crucial for a fundamental understanding
of systems of technological interest, for example, solar cells,1

organic light emitting diodes,2,3 and chromophores in biological
systems.4 One example of interest is thermally activated delayed
fluorescence (TADF) emitters, which have gained a spotlight in
recent years as a new type of organic light emitting diode
(OLED).2,3 This is due to their promising maximum theoretical
internal quantum efficiency (IQE) of 100%.5−7 TADF relies on
a reverse intersystem crossing (RISC) mechanism (triplet-to-
singlet energy up conversion, illustrated with a simplified
Jablonski diagram in Figure 1) to achieve such high efficiency
without employing expensive noble metal ions. TADF is
however only possible at appreciable rates if the singlet−triplet
splitting, ΔEST, (defined in Figure 1), is smaller than or
comparable to kbT, where kb is the Boltzmann constant and T
the temperature. Therefore, accurate prediction ofΔEST is a key
but challenging element for designing more efficient TADF
emitters. Excited states in TADF can be a mixture of charge
transfer (CT) and local excitations (LEs), while their nature can
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Figure 1. Simplified Jablonski diagram for TADF emitters. Reverse
intersystem crossing, represented in the figure by the arrow going from
T1 to S1 (with the intersystem crossing going from S1 to T1), is
thermally activated when the energy difference between the two excited
states is smaller or comparable to kbT.
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vary with both chemical structures and changes in the molecular
conformation.8

Experiments for investigating excitations can be challenging
because of factors such as technical setups and short lifetimes. In
addition, the classification and interpretation of the nature of
different excitations (i.e., valence state, CT, and LE) are often
based on empirical data. Ab initio simulations therefore
represent a valuable tool. However, as the example of TADF
also highlights, there are many challenges that lie within the
computational modeling of excited states, including the need to
go beyond gas-phase simulations and instead consider realistic
morphologies.9 In this context, it is necessary to develop a
methodology which is able to reliably capture the excited
electronic structure, while accounting for both conformational
and environmental effects of the full system and still maintaining
an affordable computational cost.
In this paper, we present a new computational approach

motivated by the desire to simulate excitations in large systems
for applications such as TADF. In order to motivate our
approach, we first present an overview of currently available ab
initio approaches for excited-state calculations, many of which
have been developed in recent years as a result of community
efforts to provide accuracy (see, e.g., ref 10) and precision
benchmarks11 for molecular quantities beyond the ground state.
1.1. Density Functional Theory-Based Methods for

Simulating Excited States. Density functional theory
(DFT)12,13 has established itself as one of the most promising
approaches for studying excitations in molecules and large
systems, mainly due to its notoriously favorable trade-off
between accuracy and computational cost. However, it is well
known that, in its standard form, DFT falls short when
describing excited states because of the ground-state nature of
its formulation. For this reason, a range of different DFT-based
methodologies have been developed in order to better account
for excited electronic states.
ΔSCF (self-consistent field)14 is the simplest DFT-based

approach for computing excitation energies. For a given excited
state of interest, the energy splitting is defined as ΔESCF

n = En −
E0, where E0 is the ground-state energy and En is the energy of an
“excited” state, labeled by n, which is obtained by manually
controlling the occupation of the Kohn−Sham (KS) states as the
system reaches self-consistency. The ΔSCF approach has been
used with wide success because of its simplicity and low
computational cost. It has, for a long time, been justified in cases
where the excited state corresponds to the lowest state of a given
symmetry,15 while its applicability has been also extended, such
that it gets a formal justification in the general case.16

Linear-response (LR) time-dependent DFT (TDDFT)17,18 is
the most commonly used method for investigating excitations in
molecular systems as it often provides good agreement with
experiments. Despite being well established and more affordable
than sophisticated post-Hartree−Fock methods such as CCSD-
(T) and CASSCF,19 LR-TDDFT nonetheless has limitations
which prevent it from being feasibly employed in modeling
realistic morphologies, such as those in which TADF emitters
are employed. First, its computational cost is still too onerous for
modeling systems larger than a few hundred atoms,20 although
various approaches have been developed for treating large
systems, for example, linear scaling TDDFT21 and GPU-
accelerated approaches22 and subspace-based approaches.23

Second, it notoriously fails when describing CT states with
routinely used semi-local functionals.24,25 The latter issue in
particular has been extensively studied, and a number of

solutions are nowadays available, of which the most successful is
the use of range-separated hybrid functionals.26 However, such
functionals are still not widely available and can make
calculations more expensive, while good performance often
necessitates the tuning of the functional parameters for the
system in question.25

Another DFT-based method for studying excited states is
constrained DFT (CDFT).27,28 In CDFT, a constraint is added
to the density, following which the energy is found by
minimizing the density with this additional condition. In its
most common form, a specific electronic charge is constrained
to a region of simulation space. If opportunely guessed, such a
constraint can correspond to a specific excited state where the
electronic density is well localized within the region and takes
into account, by design, the self-consistent response of the system
to the imposition of such a constraint. For this reason, CDFT
has performed very successfully for molecular systems with an
obvious spatial separation between donor and acceptor
regions.28−35 Such a simple approach naturally overcomes
some of the well-known limitations of DFT, for example, the
self-interaction problem and the resulting delocalization errors,
making CDFT particularly appropriate for treating CT states
and an asset for modeling exciton formation. CDFT is
conceptually intuitive and follows the same scaling as DFT
(generally scaling with the cube of system size). However, it is
most appropriate where some information is known about the
excitation in question (where and how much charge to impose).
For a comprehensive review of CDFT, we refer the reader to ref
36.
The simplicity of its framework has also made CDFT

attractive for the development of new variations. Recently,
Ramos and Pavanello37,38 proposed two versions of CDFT. In
the first implementation,37 they combined CDFT with a frozen-
density embedding approach. The method, termed constrained-
subsystem DFT (CSDFT), is mainly applied to describe hole
transfer reactions. In the later paper,38 they presented a CDFT
method tailored to compute low-lying electronic excitations
(XCDFT) of molecular systems, which resolves the space of
virtual states by projection. The results show an accuracy only
slightly worse than LR-TDDFT. A more recent paper by
Roychoudhury et al.39 proposes a generalization of CDFT for
charge-compensating electronic excitations in molecules
(XDFT). The obtained results are again comparable to
TDDFT results.
Beyond the above methods, there are also other DFT-based

approaches for excited-state calculations, which are either
generally applicable, such as orthogonality-constrained DFT,40

or designed for CT states, such as constricted variational density
functional theory.41 In short, there are many approaches which
can compute low-lying excitations in molecular systems, with
each displaying limitations either in the ability to describe
particular classes of excited states (LE vs. CT) or in the
maximum accessible system size.
Furthermore, beyond the ability to treat many atoms, the

complexity of large systems often also necessitates the ability to
map to local degrees of freedom (DoFs).42,43 To this end, it
would be highly advantageous to have an excited-state method
which can be related to a local description of a large system, for
example, to excite a single molecule within a cluster of
molecules. Given all these factors, there is no clear consensus
on the best approach to use, particularly for applications such as
TADF where the nature of the excitation can be a combination
of LE and CT, and the effect of an extended environment can be
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crucial for accurately describing the excitation. Nonetheless, the
recent variants of CDFT demonstrate its potential for providing
accurate results with a lower computational cost than TDDFT.
In this paper, we present an alternative variation of CDFT. In

our approach, which is implemented in the wavelet-based
BigDFT code,44 the constraint is defined as a particular
transition, or a combination of transitions, between given
occupied and virtual states, rather than a region of the simulation
space. The approach is therefore termed transition-based CDFT
(T-CDFT). The transition constraint takes inspiration from an
optical excitation term, rigorously defined using LR equations
and parameterized, for instance, from LR-TDDFT. In this
context, it can be considered as a further step beyond LR
calculations, where SCF effects are added on top of the optical
excitation. We consider both “pure” transitions between one
occupied molecular orbital (the highest occupied molecular
orbital) and a single orbital in the unoccupied sectorwhich
require no additional simulation inputand “mixed” excitations
involving more than one occupied → virtual transition, where
we use TDDFT to define the transition breakdown. We
benchmark our approach on low-lying singlet and triplet
excitations of a set of molecules in the gas phase, including
both acenes and OLED emitters, putting the results in
comparison with ΔSCF and TDDFT calculations. Although
the present work focuses on gas-phase simulations, we also
describe a path toward future large-scale simulations, using the
ability of BigDFT to treat systems containing thousands of
atoms.45,46

The outline is as follows. In Section 2, we first present the
underlying formalism of T-CDFT, before describing the
implementation in BigDFT. We finish Section 2 by defining
two indicators which will be used for analyzing excitations and
specifying the Computational Details. In Section 3, we present
the results, first discussing the nature of the excitations,
including both LE/CT character and the effect of treating
excitations as pure or mixed. We finish with a detailed
comparison between the obtained excitation energies for the
different methods, for both LE and CT excitations. Finally, in
Section 4, we conclude.

2. METHODS
2.1. Excitations in the Linear-Response Formalism.

When a system is submitted to an excitation, its density matrix
and therefore its observables are modified by the effect of a
(potentially frequency-dependent) perturbing operator Φ̂(ω),
with ω being the frequency. Stated otherwise, we can identify a
response density operator ρ′(̂ω) which represents the deviation
of the density matrix from the ground-state equivalent, indicated
by ρ̂0. Such a response density satisfies an equation of motion

written in the form of a quantum Liouville (super) operator, ̂,̂
(see, e.g., ref 47):

ω ρ ω ω ρ− ′̂ = [Φ̂ ̂ ]̂̂
Φ( ) ( ) ( ), 0 (1)

Its action on a generic operator Ô reads

ρ̂ ≡ [ ̂ ̂] + [ ̂′[ ̂] ̂ ]̂Ô H O V O, ,0 0 (2)

where Ĥ0 is the ground-state Hamiltonian and V′[̂Ô] ≡
∫ drdr′δV̂[ρ0̂]/δρ(r, r′)O(r, r′) encodes the response of the
ρ̂-dependent potential to a modification of the density operator.
The “excitation modes” of the molecule are defined through the
excitation operators Êa, satisfying

̂ = Ω ̂̂Ê Ea a a (3)

withΩa being the excitation energies. The operator orthonorm-
alization condition,

δ̃ ̂ ̂ =E ETr( )a b ab (4)

where ̃ ̂E a is the excitation operator associated to the left
Liouvillian eigenproblem,48 guarantees that the excitation
operators can be seen as a basis for representing the perturbation
of the system.
Under a linear-response condition, it is possible to show48 that

the excitation operators satisfy the so-called transverse condition,
which states that

ρ ρ̂ ≡ ̂ ̂ ̂ + ̂ ̂ ̂ = ̂⊥E E Q Q E E( )a 0 a 0 0 a 0 a (5)

where  ρ̂ = ̂ − ̂Q 0 0 is the projector to the empty subspace of the
ground-state Hamiltonian Ĥ0. According to this condition,
excitation operators can be parametrized as

∑ ϕ ψ ψ χ̂ = | ⟩⟨ | + | ⟩⟨ |E ( )a
p

p
a

p p p
a

(6)

We here indicate ψp as the occupied orbitals, where ϕp
a and χp

a

are associated to vectors belonging to the span of unoccupied
states (and are therefore orthogonal to the set of all occupied
orbitals).
Each excitation mode of the system, with associated energy

Ωa, is thus described using a set of states {ϕp
a, χp

a}, each defined in
the unoccupied subspace. It is possible to show48 that these
objects represent, respectively, the state into which |ψp⟩ is
excitedor from which it decayswhen the system is subject
to the monochromatic perturbation Φ̂a ≡ [Êa, ρ̂0], which would
only resonate with the excitation having an energy Ωa (see

48).
The spectrum is symmetric with respect to the inversion of the
eigenvalues Ωa → −Ωa and, given a specific excitation {ϕp

a, χp
a},

the associated solution with opposite energy is described using
the transposed pair {χp

a, ϕp
a}.

2.2. Transition-Based ConstrainedDFT. Excited states, as
calculated, for example, with LR-TDDFT, may be characterized
by the orbitals involved in a given transition. Each of the
occupied orbitals labeled ψp is then associated with a particular
transition of this state in the unoccupied sector.
Following these guidelines, we define the (Hermitian)

transition operator, T̂a

∑ ψ ψ

̂ ≡ ̂ + ̂ =

= | ⟩⟨ | + | ⟩⟨ |

T E E

w w

1
2

( )

1
2

( )

t
a a a

p
p
a

p p p
a

(7)

which is associated with the linear combination of an excitation
and a de-excitation with the same energy. Normalization of the
excitation modes implies that ∑p⟨wp

a|wp
a⟩ = 1. A representation

of the states |wa
p⟩≡ |ϕp

a⟩ + |χp
a⟩ can be provided by introducing an

explicit basis {|s⟩} in the subspace of empty states so that both |
ϕp
a⟩ and ⟨χp

a| can be represented as

∑| ⟩ = | ⟩w W sp
a

s
ps
a

(8)

The representation of the above equation in the basis set of
the eigenvalues of the ground-state Hamiltonian gives rise to the
TDDFTCasida’s equations. For semi-local DFT functionals, the
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normalized coefficients Wps
a can be directly extracted from the

Casida’s coupling matrix eigenproblem, thereby providing an
explicit representation of |wp

a⟩.
We define our excitation energies via the following equation

ρ ρ≡ [ ]| − [ ]ρ‐ ̂ ̂ =E E ETT CDFT
(a)

Tr( ) 1 0a (9)

where we denote E[ρ] as the SCF energy obtained from the
density ρ. In other terms, we minimize the energy by imposing
self-consistency under the transition constraint imposed by the
operator T̂a. More specifically, the density matrix operator is
constrained such as to include the transitions ψp → wp

a in its
definition. The energy of the system is then minimized along the
set of solutions implementing such a constraint.
2.2.1. Transition Breakdown. We now describe the

procedure for imposing the constraint on the density. A
particular excitation (labeled a) is characterized by a set of
occupied states |ψp⟩, which are excited to the corresponding
unoccupied orbitals |s⟩ with a weight provided by the
coefficients Wps

a . This may involve only one occupied p orbital,
for example, the highest occupied molecular orbital (HOMO),
or it may involve a mixture of several orbitals. We refer to the
former as a “pure” transition, while the latter is considered a
“mixed” transition. For a given orbital p, the level of purity of the
transition a can be quantified by means of a transition purity
indicator, p

a , defined as

≡ ⟨ | ⟩w wp
a

p
a

p
a

(10)

which would lead to a value of 1 if only the orbital ψp participates
in the transition. Clearly, ∑ = 1p p

a for any excitation a.

For the generic case of a mixed transition, it is then enough to
split the T-CDFT approach into multiple constraints by
decomposing the transition T̂a into partial terms

∑̂ = ̂T T
p

pa
(a)

(11)

where T̂p
(a) is a pure transition defined from the sole ket |wp

a⟩; we
can define the energy of the mixed transition by the SCF energy
obtained from the density operator

∑ρ ρ̂ = ̂
p

p p
a a a

(12)

where ρ̂p
a is the SCF density obtained from the pure T-CDFT

calculation with the constraint Tr(ρ̂T̂p
(a)) = 1.

2.2.2. Extracting Singlet and Triplet Excitations. With this
representation, the orbital sector of the configuration interaction
space is, by construction, identical between up and down spins.
Therefore, spin contamination is forbidden, and we work in the
subspace of Sz = 0 excitations. Singlet (+) and triplet (−)
transitions can be easily identified, taking the solutions withWps↑

a

= ±Wps↓
a , respectively.

In the KS DFT formalism, ρ̂0 is found by SCF optimization of
the following Lagrangian:

ρ ρ= ̂ [ ̂] ̂E HTr( )BS KS (13)

where the KS HamiltonianHKS is functionally dependent on the
density matrix. To impose the constraint, we may add to the
above Lagrangian the following term

∑ ρ ψ= ⟨ | ̂| ⟩ −C V s W( )pa
p,s

a
ps

ps
a

(14)

The set of Lagrange multipliers ′V s s
c

, is there to enforce the
condition

∑

∑

ρ ρ ψ

ρ ψ

̂ ̂ = ⟨ | ̂| ⟩ =

= ⟨ | ̂| ⟩ =

T W s

w

Tr( ) ( )

1

p

p
p p

a
p,s

ps
a

a

(15)

which would add to the KS Hamiltonian, a density-independent
term:

∑ ψ ψ̂ = | ⟩⟨ | + | ⟩⟨ |H V s s( )
p s

p pc
a

,
a
ps

(16)

where the sum should only be performed on the set of states p, s
such thatWps

a ≠ 0. Once the appropriate values for the Lagrange
multipliers are found, the energy of the excited system can be
calculated with the usual KS expression, after removing the
constraining term from HKS. Singlet and triplet transitions can
then be associated with constraint operators, which are spin-
averaged (+) and spin-opposite (−), respectively: (Ĥc

a↑ =±Ĥc
a↓).

Such a formalism is particularly practical because for each
pure transition T̂p

(a), one can choose an arbitrarily large Lagrange
multiplier as the representability condition of the density matrix
will always guarantee ⟨wp

a|ρ̂|ψp⟩≤ 1. A value of a magnitude of 20
atomic units for Vc is largely sufficient for imposing the
constraint, as discussed in Section 2.5. Therefore, although the
computational cost increases with the number of components in
a given mixed excitation, the overall cost is comparable to
traditional CDFT, where several calculations may be required to
identify the Lagrange multiplier which satisfies the constraint.

2.3. Indicators for Analyzing Excitations. When
analyzing excited states, it is useful to employ quantitative
indicators, which allow the comparison of various features of a
given excitation. This includes the orbitals involved in a given
transition and the spatial character. To this end, we define the
following two simple indicators.

2.3.1. Transition Purity. Both the transition purity indicators,
(eq 10), and the T-CDFT formalism may be applied to any

transition. In this work, a = 1 refers to a pure HOMO-virtual
excitation, while a number significantly below 1 indicates that
excitations involving deeper occupied orbitals have a non-
negligible contribution to the overall description of the
excitation.

2.3.2. Spatial Overlap. The accuracy of computed excitation
energies strongly depends on whether the chosen method is able
to correctly capture the character of the excitation. As discussed,
this is particularly true for TDDFT, where energies of low-lying
CT states calculated with some functionals may be severely
underestimated, in some cases by several eV, while other
functionals agree well with experiment.49 This has motivated the
development of diagnostic tools for predicting the accuracy of
TDDFT in a given case by classifying the nature of the
excitation. It is not straightforward to develop a unique and
effective descriptor, so that several examples of such develop-
ments can be found in the literature.50−54 These generally
include geometric descriptors based on the molecular orbitals
and electron densities.
One such descriptor is the Λ index,54,55 which is based on the

overlap of molecular orbital moduli and is defined as

∫∑ ψ ψΛ = | || |W r r r( ) ( ) d
ps

ps s p
a a2

(17)
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It has been suggested that a small orbital overlap, defined by a
Λ value below 0.3−0.4, depending on the functional,
corresponds to a CT transition which is not correctly described
by TDDFT.55

Although it is possible to define indicators such as Λ which
depend on the output of the excited state calculation, in this
work, we instead employ a simplified descriptor which is based
on a particular transition that is used as the constraint in T-
CDFT, that is, the simulation input, rather than the output. For
the case of pure HOMO−LUMO (lowest unoccupied
molecular orbital) transitions, this results in a simplified version
of theΛ index. This descriptor, which we denoteΛT, is based on
the square root of the product of the overlap of solely the
HOMO and LUMO wavefunctions and thus describes their
spatial overlap

∫ ψ ψΛ = | || |r r r( ) ( ) dT HOMO LUMO (18)

At the two extremes, a value of zero indicates no spatial
overlap between the HOMO and LUMO and hence a CT
excitation, while a value of 1 represents full spatial overlap,
corresponding to a LE state. We note that ΛT does not
distinguish between singlet or triplet excitations, nor does it take
into account additional contributions in the case of mixed
excitations. For work requiring an in-depth analysis of a
particular excitation, a modified version based on the output
of T-CDFT or other indicators such as those referenced above
would therefore be more appropriate.
2.4. Implementation in BigDFT.We have implemented T-

CDFT in the BigDFT code,44 which uses a Daubechies wavelet
basis.56 By taking advantage of the orthogonality, compact
support, and smoothness of wavelets and in conjunction with
accurate analytic pseudopotentials (PSPs), BigDFT is able to
yield a high, systematically controllable precision. It has both a
standard cubic scaling approach with respect to the number of
atoms57 and a linear scaling (LS) algorithm, which can treat
thousands of atoms.45,46 The T-CDFT implementation builds
on the existing CDFT implementation in LS-BigDFT,58,59

wherein a support function (or wavefunction) basis is
constructed for the ground state and then used as a fixed basis
for the (T-)CDFT calculation. In the following, we therefore
first summarize the support function (SF)-based approach
employed in LS-BigDFT. We then describe the generation of
both SFs and extended KS wavefunction basis sets, where the
latter is used to verify the suitability of the SF basis for excited
states.
2.4.1. Linear Scaling BigDFT. In LS-BigDFT, the extended

KS orbitals are expressed in terms of a set of localized SFs,ϕα, via
the coefficients ci

α

∑ψ ϕ| ⟩ = | ⟩
α

α
αci i

(19)

The density matrix, ρ̂, is then defined in terms of the SFs and the
density kernel, Kαβ60

∑ρ ϕ ϕ̂ = | ⟩ ⟨ |α β
αβ

αβK
(20)

By taking advantage of the well-known nearsightedness
principle,60,61 it is possible to impose strict localization on
both the SFs and density kernels. In BigDFT, the SFs are
represented in the underlying wavelet basis set and optimized in
situ during the self-consistency cycle. This results in a set of
localized SFs, which have adapted to their local chemical

environment, giving a minimal basis which, by construction, can
represent the occupied KS orbitals. Because the SFs are
truncated within a user-defined localization radius, Rloc,
systematic convergence is possible by increasing the localization
radius.
The density kernel is then also optimized, either by means of

the Fermi operator expansion (FOE)62,63 approach, which
works directly with the density kernel or with direct
minimization or diagonalization approaches, which are used to
obtain the coefficients ci

α, from which the kernel can then be
constructed. FOE used in conjunction with sparse matrix
algebra, as implemented in the CheSS library,42 results in LS
computational cost.
The localized SFs of LS-BigDFT can also be used as a means

for further reducing the complexity of calculations of large
systems. This is achieved via a fragment-based analysis, in which
the system is divided into subsystems and can be used both to
reduce the computational cost by exploiting similarity between
fragments58,64 and to identify independent fragments and
analyze interactions between them.43,65 SF-based T-CDFT is
fully compatible with these fragment-based approaches; future
work will aim at exploiting this to study excitations in
environments.

2.4.2. Support Function Basis. The use of a transition-based
constraint relies on the ability to accurately represent both the
occupied orbitals and the virtual orbital(s) involved in the
constraint. The SFs are optimized to describe the occupied
states; however, as in the ONETEP code,66 which uses a similar
approach to optimize the basis of non-orthogonal generalized
Wannier functions (NGWFs), the unoccupied states can be
poorly represented.67,68 In ONETEP, this problem is overcome
by using a projection operator to optimize a second set of
NGWFs to represent the virtual states, which are then combined
with the ground-state NGWFs.68

In LS-BigDFT, we instead retain a single set of SFs, exploiting
the direct minimization approach to optimize selected virtual
states alongside the occupied states.45 When only a few virtual
states are required, this may be carried out in a single calculation.
However, when a larger number of virtual states are required, it is
more stable to employ a two-step approach:

1. Ground-state calculation for occupied states only, to
obtain the density, and an initial guess for both the SFs
and kernel.

2. Non-self-consistent calculation in which the SFs and
kernel are further optimized to represent a number of
virtual states.

Although step 1 may employ any approach to kernel
optimization, step 2 requires the use of the direct minimization
approach. Because the virtual states are more delocalized than
the occupied states, particularly in the case unbound of states, it
is typically necessary to use larger localization radii, while
depending on the nature of the virtual states, it may also be
necessary to increase the number of SFs.

2.4.3. Wavefunction Basis. In order to validate T-CDFT
with a SF basis, we have also employed a wavefunction (WFN)-
based approach, wherein the basis set is generated via a ground-
state cubic scaling calculation with a (large) number of virtual
states. These wavefunctions are then used for T-CDFT, treating
them as a fixed SF basis with effectively infinite localization radii.
By increasing the number of virtual wavefunctions, it is possible
to systematically approach the complete basis set limit, assuming
that the set of excited states wp

a is localized (which is always true
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for excitations below a given threshold, see48). Such an approach
is therefore possible for comparing the choice of the excitation
operator in different computational setups.
2.5. Computational Details. Vertical singlet and triplet

excitations were calculated using T-CDFT,ΔSCF, and TDDFT.
T-CDFT calculations used PBE69 only, as hybrid functionals are
not available in LS-BigDFT, while ΔSCF and TDDFT
calculations used both PBE and PBE0.70 Because T-CDFT is
targeted at large systems, where hybrid functionals are often
prohibitively expensive, this reflects the computational setup
which would be used on this scale. All ground-state calculations
and singlet T-CDFT calculations are spin-restricted, while the
remainder of the excited-state calculations are unrestricted.
ΔSCF energies and the spatial overlap parameter were

calculated using cubic-scaling BigDFT, where excited-state
calculations used the ground-state wavefunctions as an initial
guess to avoid convergence on local minima, as described in the
Supporting Information. The ΔSCF procedure notoriously
models the non-Aufbau electronic singlet state which is not a
spin eigenfunction.71 To obtain the energy of the singlet excited
state, we therefore applied the common spin purification
formula to the uncorrected mixed-state energy ES1

purified

= −E E E2S
purified

S
unpurified

T1 1 1 (21)

All reported S1 ΔSCF energies are ES1
purified.

TDDFT calculations employed NWChem72 using the
Tamm-Dancoff approximation (TDA),73 with a cc-pVTZ
basis set.74 LR-TDDFT calculations were also performed
using BigDFT, using the full Casida formalism,18 in order to
determine the transition breakdown and purity. As only LDA75

is available for TDDFT in BigDFT, these calculations, including
the transition breakdowns, were performed using LDA with a
WFN basis generated using PBE; the difference compared to
using a basis generated with LDA was found to be negligible. T-
CDFT calculations employed a SF basis with 4/9/9 SFs for H/
C/N with Rloc = 4.23 Å; the calculated values were found to be
within 0.05 eV of the converged WFN-based results,
demonstrating that the SF basis is complete enough to allow
accurate fixed-basis T-CDFT calculations, provided the virtual
states of interest are well represented. A Lagrange multiplier of
−20 was used for all T-CDFT calculations as this was found to
be large enough to converge Tr(KW)an example con-
vergence plot is shown in the Supporting Information, alongside
further Computational Details.

3. RESULTS
Benchmark calculations of the lowest-energy singlet and triplet
(S1 and T1) excitations were performed for a set of molecules
which were chosen to provide a range of LE, CT, and mixed LE-
CT character excitations. The test set, which is depicted in
Figure 2, consists of five acenes, namely, naphthalene,
anthracene, tetracene, pentacene, and hexacene, which con-
stitute a set of well-characterized molecules and four exemplar
OLED molecules, namely, NPh3 (triphenylamine), 2CzPN
(1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene), ACRFLCN (10-
phenyl-10H-spiro(acridine-9,9- fluorene)-2,7-dicarbonitrile),
and CBP (4,4′-bis(N-carbazolyl)-1,1′-biphenyl). NPh3,
2CzPN, and ACRFLCN are among the most investigated
TADF emitters while CBP is a host molecule used to sensitize
TADF emitters.76

Although experimental data for these systems are available,
these are typically adiabatic excitation energies, which can differ

significantly from vertical excitation energies (see, e.g., ref 77).
Furthermore, such experiments take place under various
external conditions, with the results being sensitive to the
external environment (i.e., the solvent or other molecular
environment) and temperature.78,79 As the aim of this work is to
assess the performance of T-CDFT for vertical excitations in the
gas phase, it is therefore not informative to make quantitative
comparisons with experimental data. Indeed, one of the
motivations behind this work is to provide a formalism which
can treat large enough systems to take into account explicit
environmental effects. Such comparisons are therefore saved for
future work, while in the following, we focus on theoretical
comparisons only.

3.1. Nature of the Excitations. Before discussing the
excitation energies, we first characterize the electronic
excitations and component transitions for the benchmark
molecules. The frontier orbitals for PBE are depicted in Figure
3, alongside andΛT values. The equivalent PBE0 plot and the
corresponding frontier orbital energies can be found in the
Supporting Information.

3.1.1. Transition Purity. The HOMO−LUMO transition
purity values, , show that, within our computational setup, S1
excitations are less pure than T1 excitations, with the least pure
excitation being 0.99 for T1 and 0.93 for S1. We therefore expect
that a HOMO−LUMO constraint in T-CDFT should represent
a reasonable approximation for these molecules; in order to test
this, we treat the S1 excitations of the acenes as both pure and
mixed. For the mixed excitations, the transition breakdown was
taken from TDDFT, neglecting all contributions smaller than

Figure 2. Relaxed atomic structures of the test set molecules. H/C/N
atoms are depicted in white/black/blue, respectively.
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0.01 and renormalizing the transition breakdown accordingly.
The results are given in Table 1. For naphthalene, which has the
least pure excitation (0.93 before normalization), the energy for
the mixed excitation is around 0.1 eV higher than the pure case,
whereas the mixed excitation energy for hexacene (0.98 purity
before normalization) is only 0.02 eV higher than the pure
excitation energy. For other excitations which aremuch less pure
than naphthalene, the mixed nature of the excitations may have a
much stronger effect on the calculated energies, although this
will also will vary depending on the involved transitions and not
just the relative contributions. For the purposes of this work,
however, these results suggest that a purity of 0.97−0.98 or
above is such that neglecting other contributions should make
little difference to the results. Therefore, all OLED excitations

are treated as pure, while the acene results in the following are
those for the mixed excitations.

3.1.2. Spatial Overlap. The high value of ΛT for the acenes
implies a strong spatial overlap between the HOMO and
LUMO. Although this does not take into account the slightly
mixed nature of the S1 excitations in the shorter acenes, as a first
approximation it implies that the transition constraint is local in
nature and will give rise to a predominantly local excitation (for
both functionals). On the other hand, the OLEDmolecules have
a smaller spatial overlap, so that the transition constraint and
thus the excitation display a hybrid LE/CT nature of various
degrees, in agreement with previous results.9 We therefore
expect TDDFT with PBE to perform more robustly for the
acenes, whereas the CT character found in the OLED
excitations could lead to a less accurate description.

Figure 3. PBE-calculated frontier orbital energies and corresponding HOMO and LUMO wavefunctions, as obtained from cubic-scaling BigDFT.
Wavefunctions were visualized in VESTA,80 using an isosurface value of 0.0005 a0

−3/2. The corresponding charge transfer parameter,ΛT, andHOMO−
LUMO transition purity values, , are also given for each molecule, where the latter are calculated using LDAwith a PBE basis, as described in the text.

Table 1. Comparison of S1 Energies for the Acenes Calculated Using T-CDFTWith PBE Both When Treated as Pure HOMO→
LUMO Excitations and When Treated as Mixed Excitations Including all Transition Contributions Greater Than 0.01a

HOMO → LUMO HOMO-1 → LUMO+1 HOMO-2 → LUMO+2 energy

naphthalene
pure 1.000 4.33
mixed 0.935 0.027 0.038 4.41
anthracene
pure 1.000 3.09
mixed 0.975 0.010 0.015 3.15
tetracene
pure 1.000 2.29
mixed 0.988 0.012 2.32
pentacene
pure 1.000 1.75
mixed 0.989 0.011 1.77
hexacene
pure 1.000 1.35
mixed 0.989 0.011 1.37

aShown are the normalized transition contributions and the calculated energies in eV.
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3.2. Acenes. We first consider the acenes, comparing our
benchmark results with higher-level theory calculations based on
CCSD(T), which is often regarded as the gold standard of
chemical accuracy in quantum chemistry.81 We employ the
values from ref 82 (and references within). The low-lying singlet
excitations in the acenes are termed 1La and

1Lb, which differ in
energetic ordering depending on the acene in question.82,83

However, because the 1La state primarily involves a HOMO−
LUMO transition and thus has the same character as our
calculations, we take the 1La values as our reference, irrespective
of whether the CCSD(T)-calculated 1Lb state is lower in energy.
As shown in Figure 4, both T-CDFT and TDDFT with PBE

capture the CCSD(T) trend in S1 and T1 energies, albeit with a
systematic underestimation of both states, which increases
slightly with the number of rings. This underestimation is
common to all the DFT-based approaches (see Supporting
Information for tabulated results).
Figure 5a shows themean absolute deviation (MAD) between

each of the DFT-based approaches and CCSD(T). Compared
to T1, S1 is more sensitive to both the method and functional,
with T1 energies being relatively consistent across the bench-
mark results and in most cases having a smaller MAD than S1.
Furthermore, the T-CDFT/PBE results are in remarkable
agreement with TDDFT/PBE results despite the lower
computational cost, with both approaches having MADs of 0.6
and 0.4 eV for S1 and T1, respectively. Both T-CDFT and
TDDFT significantly outperformΔSCF for S1 when using PBE,
while both ΔSCF and TDDFT with PBE0 give a modest
improvement in accuracy, albeit at much higher computational
cost. In short, we find that T-CDFTwith PBE performs very well
for the predominantly local excitations seen in the acenes.
3.3. OLEDs. Due to their larger size, there is a lack of higher-

level quantum chemical reference data for the OLEDmolecules.
However, due to the CT-like nature of the excitations, TDDFT
with semi-local functionals cannot be expected to provide a
reasonable reference. Indeed, the limitations of TDDFT for CT
states are well known, as is the corresponding strong
dependence on the employed functional. This has motivated
the use of range-separated hybrid functionals for the treatment
of TADF materials. For example, Adachi and co-workers78

reported that functionals such as CAM-B3LYP85 or LC-ωPBE86

tend to overestimate absorption energies for common TADF

molecules. The situation may be improved by using “optimally”
tuned range-separated functionals, which have been shown to
give good agreement with experimental data,84,87 although the
tuning of the separation parameters for a particular system
increases the computational cost. Sun et al.84 computed vertical
excitation energies for a set of OLEDmolecules, including those
considered in this work, using TDA-TDDFT with an optimally
tuned LC-ωPBE* functional and a 6-31+G(d) basis set. We use
these values as a reference in the following, although we note
that they were performed using an implicit solvent (PCM
toluene), which may influence the results.
The MAD between our calculations and the reference values

is depicted in Figure 5b. There is a greater variability in MADs
across methods and functionals compared to the acenes,
particularly for T1. Furthermore, both ΔSCF and TDDFT
with PBE systematically underestimate the reference values (see
Supporting Information), with the largeMAD for TDDFT/PBE
being particularly striking. On the other hand, T-CDFT/PBE
performs significantly better, giving MADs which are closer to
the ΔSCF and TDDFT PBE0 values. This much better
performance of T-CDFT/PBE compared to that of TDDFT/

Figure 4. Trend in S1 and T1 energies for the acenes from naphthalene
to hexacene, for both T-CDFT and TDDFT with PBE and CCSD(T),
where the latter values are taken from ref 82.

Figure 5. Mean absolute deviation (MAD) of benchmark vertical S1
and T1 energies for the set of molecules exhibiting pure excitations,
relative to reference energies coming from CCSD(T)82 for the acenes
and TDA-TDDFT with a tuned range-separated functional84 for the
OLEDs. Corresponding energies are given in the Supporting
Information.
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PBE is in line with the more CT-like nature of the excitations.
Indeed, TDDFT/PBE most strongly underestimates the
excitation energies for the molecules with the strongest CT-
like character (i.e., the smallest ΛT values). At the same time,
Figure 6 shows that the smaller the value of ΛT, the bigger the

difference between T-CDFT/PBE and TDDFT/PBE. In other
words, unlike TDDFT/PBE, which is strongly influenced by the
nature of the transition, the quality of the T-CDFT/PBE results
is not noticeably impacted by the nature of the excitation, giving
reliable results for both the local excitations in acenes and the
CT excitations in the OLED molecules.
Because accurate calculations ofΔEST are crucial for designing

new, optimal TADF emitters, we conclude this section by
discussing ΔEST. Both ΔSCF and TDDFT with PBE benefit to
some degree from error cancellations in S1 and T1 errors, so that
there is less variability across themethods. Nonetheless, while T-
CDFT with PBE underestimates the reference ΔEST values, this
is less severe than the PBE-calculatedΔSCF andTDDFT values.
Furthermore, the MAD for T-CDFT/PBE is similar to that of
ΔSCF with PBE0 and only outperformed by the significantly
more expensive TDDFT/PBE0 calculations.
To sum up, what emerges from our benchmark calculations

and other computational works9,88,89 is that the modeling of the
excitations in OLED molecules is strongly method- and
functional-dependent, and it is therefore not trivial to obtain a
unique and consistent description. Nonetheless, by comparing
with tuned range-separated functional calculations, we see that,
unlike TDDFT with PBE, T-CDFT is equally able to model
both LE and CT states.

4. CONCLUSIONS
In this work, we introduce a variation of CDFT (T-CDFT),
wherein the constraint is defined as a transition between
particular occupied and virtual orbitals, rather than a region of
the simulation space as in traditional CDFT. By defining an
approach which goes beyond the linear response regime, we aim
to provide a tool for the robust modeling of excitations in
molecules. Our approach is applied to acenes and OLED
emitters, for which the lowest-energy singlet and triplet states are
dominated by a transition between the HOMO and LUMO.
However, we also demonstrate the ability to take into account
contributions from transitions between other orbitals. This has

only a small impact on our benchmark calculations but could
prove to be important in future investigations of excitations with
a more strongly mixed character.
By comparing our benchmark calculations with reference

values from the literature, we find that T-CDFT with PBE
performs well for both the predominantly local excitations seen
in the acenes and the mix of CT and LE character seen in the
OLED emitters, outperforming or equaling both ΔSCF and
TDDFT with the same functional. Importantly, T-CDFT does
not suffer from the problems encountered when applying
TDDFT with semi-local functionals to CT states and, unlike
CDFT with a spatial constraint, can model both LE and CT
states. At the same time, the computational cost of T-CDFT is
similar to that of the ground state, while the ability to use a fixed
(large) Lagrange multiplier keeps the cost significantly lower
than TDDFT, even for mixed excitations involving multiple
transitions. Furthermore, T-CDFT also proves to be more
robust than ΔSCF, which can suffer from both spin
contamination and convergence on local minima.
Finally, our approach has been implemented in the linear-

scaling BigDFT code and is fully compatible with the available
fragmentation approaches. This capability could be used to
impose excitations on a per-fragment basis in supramolecular or
large biological systems. For example, in the case of local
excitations on a molecule (fragment) in a given environment,
where no strong coupling with the environment is expected, the
constraint could be imposed between orbitals associated with
the target fragment only, while still treating the full system. Such
an approach has the advantage of screening out spurious low-
energy charge transfer excitations, which can be encountered
with TDDFT. On the other hand, in the case where charge
transfer excitations between fragments are of interest or where
local excitations are expected to couple strongly with the
environment, an alternative approach might be required. This
could include performing TDDFT for a larger subset of the
system or using other information about the excitations to guide
the choice of constraint(s). Crucially, our framework is flexible
enough to impose both intra- and inter-fragment constraints.
In summary, T-CDFT provides a robust and accurate

approach for treating both LE and CT states. When combined
with linear-scaling BigDFT, it is very well suited for treating
excitations in large systems, enabling the exploration of explicit
environmental effects on both excitation energies and ΔEST, a
key quantity for modeling TADF-based OLEDs. Indeed, we
foresee that such an approach will represent a powerful tool for
the study of excitations in realistic supramolecular morpholo-
gies, for applications such as TADF. Work in this direction is
ongoing.

5. DATA AND SOFTWARE AVAILABILITY
In addition, the data associated with this work, including Jupyter
notebooks and associated files which can be used to reproduce
the calculations, are available at https://gitlab.com/
martistella86/t-cdft-notebooks.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00548.

Additional computational details, discussion of the
investigation into local minima in ΔSCF, example plot
showing the effect of varying the Lagrange multiplier, plot

Figure 6. Difference between T-CDFT and TDDFT energies versus
ΛT, the HOMO−LUMO spatial overlap, where both calculations
employ the PBE functional.
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of the frontier orbital energies as calculated with PBE0,
tabulated data for the frontier orbital energies calculated
using different basis sets, and both a plot and table
containing the excitation energies calculated using the
different approaches (PDF)
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