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Abstract: NOD (non-obese diabetic) mice spontaneously develop type 1 diabetes following T
cell-dependent destruction of pancreatic β cells. Several alterations are observed in the NOD
thymus, including the presence of giant perivascular spaces (PVS) filled with single-positive (SP)
CD4+ and CD8+ T cells that accumulate in the organ. These cells have a decreased expression of
membrane CD49e (the α5 integrin chain of the fibronectin receptor VLA-5 (very late antigen-5).
Herein, we observed lower sphingosine-1-phosphate receptor 1 (S1P1) expression in NOD mouse
thymocytes when compared with controls, mainly in the mature SP CD4+CD62Lhi and CD8+CD62Lhi

subpopulations bearing the CD49e− phenotype. In contrast, differences in S1P1 expression were
not observed in mature CD49e+ thymocytes. Functionally, NOD CD49e− thymocytes had reduced
S1P-driven migratory response, whereas CD49e+ cells were more responsive to S1P. We further
noticed a decreased expression of the sphingosine-1-phosphate lyase (SGPL1) in NOD SP thymocytes,
which can lead to a higher sphingosine-1-phosphate (S1P) expression around PVS and S1P1
internalization. In summary, our results indicate that the modulation of S1P1 expression and S1P/S1P1
interactions in NOD mouse thymocytes are part of the T-cell migratory disorder observed during the
pathogenesis of type 1 diabetes.

Keywords: non-obese diabetic mice; thymus; sphingosine-1-phosphate; sphingosine-1-phosphate
receptor 1; VLA-5 (very late antigen-5); cell migration

1. Introduction

NOD (non-obese diabetic) mice spontaneously develop type I diabetes (T1D) as a result of the
autoreactive destruction of the insulin-producing β cells in the pancreatic islets. The NOD mouse
strain provided a wealth of knowledge of the processes involved in autoimmune diabetes etiology
and is one of the most used mouse models due to the similarity with human disease [1]. The disease
is preceded by a progressive pancreatic inflammatory infiltrate called insulitis, constituted mainly of
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T cells [2], suggesting a primary role of these cells in diabetes onset. This role is also supported by
several studies showing that (1) in vivo treatment with anti-CD4 prevents spontaneous T1D; (2) splenic
CD4+ and CD8+ T cells from diabetic NOD mice can transfer the disease and; (3) neonatal thymectomy
prevents T1D onset [3].

T cells precursors develop within the thymus, where they interact with different components
of thymic microenvironment during the migratory process that parallels T cell differentiation [4].
Several disorders were identified in the NOD thymus, such as changes in the arrangement of
cortical and medullary epithelial cells network, an increase in the deposition of extracellular matrix
molecules (ECM) such as fibronectin and laminin and the presence of giant perivascular spaces
(PVS), which are up to ten times larger than in normal animals. Giant PVS are filled with mature
single-positive (SP) CD4+, CD8+ [5] and FoxP3+ regulatory T cells [6]. These cells are reported
to present a defect in the membrane expression of VLA-5 (very late antigen-5, the α5β1 integrin),
a fibronectin receptor, suggesting the involvement of this molecule in thymocyte accumulation within
the organ [6–8]. Conversely, the formation of giant PVS in the NOD thymus seems to result from
a progressive accumulation of mature T cells, as in vivo experiments showed similar rates of fluorescein
isothiocyanate (FITC)-stained recent thymic emigrants in NOD peripheral lymphoid organs when
compared with controls [7], indicating that other cell migration-related molecules could be involved in
this process.

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid, produced mainly by endothelial
cells [9], pericytes [10] and erythrocytes [11]. When binding to one of its five receptors (S1P1–5),
S1P participates in various cellular processes, such as proliferation, adhesion, death and migration [12,13].
S1P1, S1P2 and S1P3 are ubiquitously expressed, while S1P4 and S1P5 expression is restricted to some
cellular types [13]. S1P1 is widely expressed, mainly in endothelial cells, brain, heart and immune
cells [14,15]. S1P1 signaling in T cells suppresses proliferation and cytokine production and regulates
cell migration [9,16], promoting chemotaxis or fugetaxis depending on the S1P concentration [17].
Accordingly, several studies demonstrate the essential role of S1P and S1P1 in cell migration and,
mainly, in the egress of T cells from the thymus to peripheral lymphoid organs. Indeed, S1P1 knockout
progenitor T cells are able to enter the thymus and differentiate normally; however, mature T
cells cannot leave the organ and are not found in blood and peripheral lymphoid organs [18].
In addition, CD4+CD8+ double-positive (DP) thymocytes present lower S1P1 membrane expression
levels compared with mature CD4+ or CD8+ SP thymocytes, which present increased migration
response towards S1P. Thymocytes increase S1P1 expression during differentiation and leave the
organ following a S1P gradient, which is more concentrated in the blood than in the lymphoid
organs [12]. Thus, the S1P1 works as a major receptor driving the output of lymphocytes from lymphoid
organs under stimulation followed by its internalization, which prevents a constitutive signaling in
an environment with high levels of S1P [19]. Biosynthesis of S1P is regulated by sphingosine-kinases
and S1P-phosphatases, besides irreversibly degradation by S1P lyase that maintains the gradient
of S1P between the compartments. Therefore, high concentrations of S1P in the blood and lymph
together with low concentrations within lymphoid organs sustain a constant flow of lymphocytes from
lymphoid organs [20].

There is no evidence of the putative role of S1P1 and its physiological ligand, S1P, in the NOD
thymus, particularly in the events that precede the onset of T1D, and how this receptor impacts T cell
migration and accumulation within the NOD thymus. To address these issues, we investigated herein
S1P1 expression and its functional role in thymocyte migration in pre-diabetic NOD mice. We found
that NOD mouse thymocytes have decreased expression of S1P1, mainly within mature CD49e−

(α5 integrin chain) cells. Functional migration assays revealed that NOD CD62LhiCD49e− thymocytes
migrate less towards different concentrations of S1P, differing from the CD62LhiCD49e+ cells that
migrate more than controls under the same conditions. Our data indicate that S1P1 is involved in the
abnormal NOD thymocyte migration, possibly being associated with the lower VLA-5 expression in
NOD thymocytes.
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2. Results

2.1. Decreased S1P1 Expression in NOD Thymocytes

We first analyzed S1P1 expression in NOD mouse thymocytes. As expected and observed by
others [12], we observed by flow cytometry that SP thymocytes express higher levels of S1P1 than
DP cells in control C57BL/6 mice (Figure 1A). The same kind of difference, between DP and SP
subpopulations, was seen in NOD mouse thymocytes. Nevertheless, in this case the expression of
S1P1 was lower in CD4+ and CD8+ SP cells when compared with the correlated subpopulations of
C57BL/6 mice (Figure 1A). The reduced expression of S1P1 was more evident in CD8+ cells (51.3% of
decrease) than in CD4+ cells (36.7%). In agreement with flow cytometry results, immunohistochemistry
revealed a high expression level of S1P1 in the medullary region of C57BL/6 (Figure 1B,C, right panel)
and NOD mouse thymi, as well as within NOD giant PVS (Figure 1B,C, left panel), when comparing
with the cortical region. Yet, no differences were detected when comparing the S1P1 immunostaining
density in the medulla with the values seen in giant PVS (Figure 1C, left panel).

We also investigated whether the mRNA S1P1 expression correlated with the diminished protein
expression in NOD thymocytes. Despite the decreased expression of the receptor when compared with
C57BL/6 mice, we found a higher S1P1 mRNA expression in NOD total and CD8+ SP thymocytes
(Figure S1), suggesting that the impairment in the receptor expression occurs only at protein level and
may lead to a positive transcriptional regulation of the S1P1 gene.

We next evaluated the expression of S1P1 in more mature SP thymocytes. We observed
an important increase in the percentage and absolute numbers of CD62Lhi cells in NOD mouse
thymus (Figure 2A,B), in keeping with the accumulation of mature thymocytes within giant PVS [6].
Interestingly, both SP CD4+CD62Lhi and CD8+CD62Lhi NOD thymocytes presented a decrease in
S1P1 expression (Figure 2C) as well as an important decrease in CD49e expression (Figure 2D,E),
when compared with controls. In addition, those NOD SP CD4+CD62Lhi and CD8+CD62Lhi cells
that did not express CD49e exhibited decreased expression of S1P1 when compared with controls,
whereas CD49e+CD4+CD62Lhi and CD49e+CD8+CD62Lhi cells had no significant differences in S1P1
expression densities (Figure 2F,G).
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Figure 1. Decreased expression of sphingosine-1-phosphate (S1P1) in non-obese diabetic (NOD) 
mouse thymocytes. Panel (A) shows the S1P1 expression in CD4/CD8-defined thymocyte 
subpopulations in C57BL/6 (black bars) and NOD (white bars) mice, analyzed by flow cytometry. 
The histograms show the S1P1 representative staining in NOD (white curve) and C57BL/6 (black 
curve) thymocyte subpopulations. Grey curves represent the negative staining control for C57BL/6 
and the region marks the positive staining. Total = total thymocytes; DN = CD4−CD8− 
double-negative; DP = CD4+CD8+ double-positive; CD4+ = CD4+CD8− single-positive; CD8+ = 
CD4−CD8+ single-positive; MFI = median fluorescence intensity. Results are expressed as mean ± 
SEM and were analyzed by 2-way ANOVA followed by Tukey’s post-test. Differences were 
considered statistically significant when *** or ### p < 0.001; **** or #### p < 0.0001. Asterisks represent 
statistical significance between C57BL/6 and NOD subpopulations; hash marks represent statistical 
significance between DP and SP subpopulations in the same mouse strain, after evaluating 3 C57BL/6 
and 4 NOD thymi. (B), immunohistochemistry showing the S1P1, fibronectin (FN) and cytokeratin 
(CK) expression profile in NOD and S1P1 expression in C57BL/6 thymus sections. The white dashed 
lines delimit the giant PVS. C = cortical region; M = medullary region. Three thymi per group were 
evaluated, with 1 cryosection being analyzed. Original magnification, ×100. (C), S1P1 fluorescence 
intensity in the cortex, medulla and giant PVS of NOD (left graph) and in the cortex and medulla of 
C57BL/6 (right graph) mice, represented by the mean grey value. **** p < 0.0001. 
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thymocytes. Panel (A) shows the S1P1 expression in CD4/CD8-defined thymocyte subpopulations
in C57BL/6 (black bars) and NOD (white bars) mice, analyzed by flow cytometry. The histograms
show the S1P1 representative staining in NOD (white curve) and C57BL/6 (black curve) thymocyte
subpopulations. Grey curves represent the negative staining control for C57BL/6 and the region marks
the positive staining. Total = total thymocytes; DN = CD4−CD8− double-negative; DP = CD4+CD8+

double-positive; CD4+ = CD4+CD8− single-positive; CD8+ = CD4−CD8+ single-positive; MFI = median
fluorescence intensity. Results are expressed as mean ± SEM and were analyzed by 2-way ANOVA
followed by Tukey’s post-test. Differences were considered statistically significant when *** or ###

p < 0.001; **** or #### p < 0.0001. Asterisks represent statistical significance between C57BL/6 and NOD
subpopulations; hash marks represent statistical significance between DP and SP subpopulations in the
same mouse strain, after evaluating 3 C57BL/6 and 4 NOD thymi. (B) immunohistochemistry showing
the S1P1, fibronectin (FN) and cytokeratin (CK) expression profile in NOD and S1P1 expression
in C57BL/6 thymus sections. The white dashed lines delimit the giant PVS. C = cortical region;
M = medullary region. Three thymi per group were evaluated, with 1 cryosection being analyzed.
Original magnification, ×100. (C) S1P1 fluorescence intensity in the cortex, medulla and giant PVS of
NOD (left graph) and in the cortex and medulla of C57BL/6 (right graph) mice, represented by the
mean grey value. **** p < 0.0001.
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show CD62L, S1P1 and CD49e expression in CD4/CD8-defined thymocyte subpopulations in
C57BL/6 (black bars) and NOD (white bars) mice, analyzed by flow cytometry. (A) CD62L
relative cell numbers (%); (B) CD62L absolute cell numbers; (C) S1P1 expression in CD4+CD62Lhi

and CD8+CD62Lhi subpopulations; (D) CD49e expression in CD4+CD62Lhi and CD8+CD62Lhi

subpopulations, (E) percentage of CD4+ and CD8+CD62Lhi cells expressing CD49e; (F) S1P1
expression in CD4+CD62LhiCD49e− and CD8+CD62LhiCD49e− cells; and (G) S1P1 expression in
CD4+CD62LhiCD49e+ and CD8+CD62LhiCD49e+ cells. Histograms show the CD62L (A) and CD49e
(D) staining in NOD (white curve) and C57BL/6 (black curve) CD4+ and CD8+ SP thymocytes. The grey
curves represent the negative staining control for C57BL/6. The region marks the positive staining in
the case of CD49e and the neg/lo vs. hi (negative/ low vs. high) populations in the CD62L histograms.
Total = total thymocytes; DN = CD4−CD8− double-negative; DP = CD4+CD8+ double-positive;
CD4+ = CD4+CD8− single-positive; CD8+ = CD4−CD8+ single-positive; MFI = median fluorescence
intensity; % = relative cell numbers. Results are expressed as mean ± SEM and were analyzed by
2-way ANOVA followed by Tukey’s post-test. Differences were considered statistically significant
when * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. n = 3 C57BL/6; n = 4 NOD.

Interestingly, when we analyzed the less mature SP CD4+CD62Lneg/lo and CD8+CD62Lneg/lo

subpopulations, we found that both NOD CD49e− and CD49e+ cells had lower expression of S1P1
(Figure S2A,B), suggesting that maturation of the VLA-5+ cells from CD62Lneg/lo to the CD62Lhi

phenotype could be observed by the upregulation in S1P1 expression, although this profile was
observed only in NOD CD4+ SP cells (Figure S2C,D).

We also analyzed S1P1 expression in mice at 4 weeks of age, an age-point corresponding with the
beginning of many alterations found in NOD mice, including the formation of enlarged PVSs [21–25].
Curiously, we found no differences in any of the populations investigated (Figures S3A–F and S4A–F),
suggesting that the decreased expression of S1P1 appears late in NOD mouse life and after the VLA-5
defect. Together, these results indicate that the reduced expression of S1P1, along with the VLA-5
defect in mature SP thymocyte subpopulations in NOD mice, could modulate the migratory capacity
of thymocytes and contribute to the accumulation of these cells in giant PVS.

2.2. Decreased Expression of S1P Lyase 1 in NOD Thymocytes

S1P lyase 1 (SGPL1) maintains constant S1P concentrations in tissues by irreversible degradation of
S1P [26]. In the thymus, SGPL1 expression in the medullary region is related to low S1P concentrations
around the vessels, allowing up-regulation of S1P1 and egress of mature thymocytes [27,28]. Inhibition
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of SGPL1 leads to the accumulation of mature thymocytes in the thymus and giant PVS formation,
secondary to S1P1 internalization [28,29]. We observed higher SGPL1 expression densities in SP
CD4+ and CD8+ thymocytes when compared with DP cells of both C57BL/6 and NOD mice
(Figure 3A), similar to when we compared CD49e− and CD49e+ cells (Figure S5A,B). Although
differences between subpopulations were observed in both mouse strains, they were less important
concerning NOD mouse thymocytes. No differences in the relative numbers of cells expressing
SGPL1 were observed (Figure S6A–H). Interestingly, when we analyzed the CD62Lhi subpopulations,
NOD SP CD8+CD62hi, CD8+CD62LhiCD49e− and CD8+CD62LhiCD49e+ thymocytes presented lower
SGPL1 expression in comparison with C57BL/6 counterparts (Figure 3B–D). The same was observed
for NOD SP CD8+CD62Lneg/loCD49e+, while a relevant, but not significant reduction was seen
in SP CD8+CD62Lneg/loCD49e− cells (Figures S5C,D). In agreement with the increase of SGPL1
expression in SP cells by flow cytometry, we observed by immunohistochemistry a higher SGPL1
deposition in the medullary region of both C57BL/6 (Figure 3E,F, right panel) and NOD (Figure 3E,F,
left panel) thymi. Accordingly, the SGPL1 reduction in mature NOD thymocytes could result in less
degradation and consequent accumulation of S1P around PVS leading to S1P1 internalization and
thymocyte accumulation.

2.3. CD49e-Negative NOD Mouse Thymocytes Have Impaired S1P-Driven Migratory Response

We investigated the functional role of S1P/S1P1 interactions in NOD thymocyte subpopulations
in Transwell® (Corning Costar, Cambridge, MA, USA) migration assays. We observed that both the
C57BL/6 and NOD SP CD4+CD62Lhi subpopulation migrated towards 10 nM of S1P (Figure 4A),
whereas a discrete, but not significant, migratory response was seen only in C57BL/6 SP CD8+CD62Lhi

cells towards both 10 and 100 nM S1P concentrations (Figure 4B). No chemotactic response was
observed when the C57BL/6 or NOD SP CD62Lneg/lo subpopulations were stimulated with the
same concentrations of S1P and, in some cases, the migration was even lower than in the control
(Figure S7A,B).
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(E), SGPL1, fibronectin (FN) and cytokeratin (CK) expression profile in NOD and SGPL1 expression 
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medullary region. n = 3 thymi per group. Original magnification, X 100; and (F), SGPL1 fluorescence 
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and medulla of C57BL/6 (right graph) mice, represented by the mean grey value. Total = total 
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expressed as mean ± SEM and were analyzed by 2-way ANOVA followed by Tukey’s post-test. 
Differences were considered statistically significant when * or # p < 0.05; ** or ## p < 0.01; **** or  
#### p < 0.0001. Asterisks represent a statistically significant difference between C57BL/6 and NOD 
subpopulations; hash marks represent a statistically significant difference between DP and SP 
subpopulations in the same mouse strain. n = 8 C57BL/6; n = 8 NOD. 
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(white bars) mice, analyzed by flow cytometry. (A) SGPL1 in total thymocytes, as well as CD4+CD8+

double-positive, CD4+ and CD8+ SP subpopulations. Histograms show the SGPL1 staining in NOD
(white curve) and C57BL/6 (black curve) CD4+ and CD8+ SP thymocytes. The grey curves represent
the negative staining control; (B) SGPL1 in mature CD4+CD62Lhi and CD8+CD62Lhi SP thymocyte
subpopulations; (C) SGPL1 expression in CD49e−CD4+CD62Lhi and CD49e−CD8+CD62Lhi SP
thymocytes; (D) SGPL1 expression in CD49e+CD4+CD62Lhi and CD49e+CD8+CD62Lhi SP thymocytes;
(E) SGPL1, fibronectin (FN) and cytokeratin (CK) expression profile in NOD and SGPL1 expression
in C57BL/6 thymus sections. The white dashed lines delimit the giant PVS. C = cortical region;
M = medullary region. n = 3 thymi per group. Original magnification, ×100; and (F) SGPL1
fluorescence intensity quantification in the cortex, medulla and giant PVS of NOD (left graph)
and in the cortex and medulla of C57BL/6 (right graph) mice, represented by the mean grey
value. Total = total thymocytes; DN = CD4−CD8− double-negative; DP = CD4+CD8+ double-positive;
CD4+ = CD4+CD8− single-positive; CD8+ = CD4−CD8+ single-positive; MFI = median fluorescence
intensity. Results are expressed as mean ± SEM and were analyzed by 2-way ANOVA followed
by Tukey’s post-test. Differences were considered statistically significant when * or # p < 0.05; ** or
## p < 0.01; **** or #### p < 0.0001. Asterisks represent a statistically significant difference between
C57BL/6 and NOD subpopulations; hash marks represent a statistically significant difference between
DP and SP subpopulations in the same mouse strain. n = 8 C57BL/6; n = 8 NOD.
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Figure 4. S1P induces NOD thymocyte migration. Total thymocytes of C57BL/6 (black bars) and NOD
(white bars) mice were added to the Transwell insert and allowed to respond to 1, 10 or 100 nM of S1P
in the lower chamber. Single-positive (A) CD4+CD62Lhi; and (B) CD8+CD62Lhi and double-positive
(DP) percentages of input were determined by flow cytometry. Results are shown as the ratio of
the percentages of input (single-positive to double-positive thymocytes). Results are expressed as
mean ± SEM and were analyzed by Student’s t test. Differences were considered statistically significant
when * p < 0.05. n = 6 C57BL/6; n = 6 NOD.
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We also investigated whether the differences in S1P1 expression between CD49e+ and CD49e−

cells correlated with the changes in migratory response towards S1P. We found that NOD SP
CD62LhiCD49e− cells had decreased migratory response toward 10 and 100 nM of S1P when compared
with controls (Figure 5A,B). In contrast, NOD SP CD62LhiCD49e+ showed higher migratory response
towards the same S1P concentrations (Figure 5C,D). Regarding CD62Lneg/lo cells, there was no
difference in migratory responses between NOD and C57BL/6 SP CD4+CD62Lneg/loCD49e− cells,
but NOD SP CD8+CD62Lneg/loCD49e− cells displayed lower migratory capacity towards 10 nM of
S1P (Figure S7C,D). For CD49e+ cells, only the NOD SP CD4+CD62Lneg/lo subpopulation presented
higher migratory capacity towards 10 and 100 nM of S1P (Figure S7E,F). Interestingly, when we
treated CD62LhiCD49e+ cells with a specific CD49e blocker antibody, we observed a reduced migratory
capacity of C57BL/6 SP CD4+ and CD8+CD62LhiCD49e+ and NOD SP CD8+CD62LhiCD49e+ cells
toward 10 nM of S1P, while migration toward 100 nM of S1P remained unaltered (Figure 5E,F). Together,
these results show that the membrane levels of VLA-5 (ascertained by CD49e expression) can influence
the cellular migratory response to S1P in the thymus, particularly in the NOD mouse.
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Figure 5. NOD CD49e− and CD49e+ thymocytes present different migration patterns under
S1P stimulation. Total thymocytes of C57BL/6 (black bars) and NOD (white bars) mice were
added to the Transwell insert and were allowed to migrate toward 10 or 100 nM of S1P
present in the lower chamber. Single-positive (A) CD4+CD62LhiCD49e−; (B) CD8+CD62LhiCD49e−;
(C) CD4+CD62LhiCD49e+; and (D) CD8+CD62LhiCD49e+ percentages of input were determined by
flow cytometry, (E) percentages of input of CD4+CD62LhiCD49e+; and (F) CD8+CD62LhiCD49e+

after CD49 blockade, compared with isotype control-treated cells (dashed black lines = 1). Results
are expressed as mean ± SEM and were analyzed by Student’s t test. Differences were considered
statistically significant when * p < 0.05; ** p < 0.01; **** p < 0.0001. n = 6 C57BL/6 and 6 NOD (A–D)
and n = 4 C57BL/6 and 4 NOD (E,F).
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3. Discussion

S1P1 is the main receptor involved in thymocyte egress to the periphery [30]. Here, we show
that in the thymus of the NOD mouse there is an abnormality in the expression and function of S1P1.
NOD thymocytes have a decreased expression of S1P1 when compared with C57BL/6 thymocytes,
and this is mainly observed in CD4+ and CD8+ SP subpopulations, particularly in the more mature SP
CD4+CD62Lhi and SP CD8+CD62Lhi subpopulations, which under normal conditions, are those ready
to leave the organ [30]. In this respect, the NOD thymus also exhibits higher relative and absolute
numbers of CD62Lhi cells. These mature thymocytes also show decreased expression of CD49e,
consistent with the accumulation of mature thymocytes in giant PVS [5–7]. Interestingly, we found
that the diminished expression of S1P1 occurs in NOD mature (SP CD4+CD62Lhi and CD8+CD62Lhi)
CD49e− thymocytes, but not in CD49e+ cells. We observed differences in the percentage of SP
CD8+CD62Lhi cells that express S1P1, as well as SP CD8+CD62LhiCD49e− and CD8+CD62LhiCD49e+,
when comparing C57BL/6 with NOD (Figure S8A–F); the main differences were observed in the
density of receptor expression ascertained by the median of fluorescence intensity measurements.
These data suggest that the expression of S1P1 and the integrin VLA-5 is somehow related, resulting in
the involvement of both molecules in the accumulation of mature thymocytes in the NOD thymus.
This hypothesis is supported by several studies showing that the signaling mediated by S1P1 modulates
integrin activation and localization. Pre-treatment of endothelial cells with S1P prevented monocyte
adhesion through VLA-5 and αvβ3 integrins expressed on the endothelial apical surface. The treatment
changed the localization of the integrins to the basal surface through S1P1 signaling and activation of
proto-oncogene tyrosine-protein kinase Src family proteins, PI3K (phosphoinositide 3-kinase) and Rac
(Ras-related C3 botulinum toxin substrate) [31]. S1P activates the integrin αvβ3 in the endothelial cell
lamellipodial region and promotes cell migration through vitronectin substrates. The S1P signaling via
S1P1/Gi/Rho GTPases induces integrin association with cytoskeleton proteins and the combination
of αv and β3 subunits [32]. Furthermore, it has been shown that S1P/S1P1 interactions enhance
the CXCL12-mediated myeloma cell adhesion to fibronectin through VLA-4 (the α4β1 integrin) and
VLA-4-mediated transendothelial migration [33].

We also investigated the mRNA expression of S1P1 in NOD versus C57BL/6 thymocytes.
Curiously, the S1P1 mRNA expression was higher in NOD mice than in C57BL/6, both in total
and mature CD8+ SP cells. These data suggest that the decreased expression of the receptor occurs only
at the protein level, which may, in turn, result in a positive transcriptional regulation of the S1P1 gene.
One explanation could be the desensitization of G protein-coupled receptors that occurs rapidly after
agonist exposure and a decrease in the membrane expression of the receptors that can be observed
after prolonged agonist exposure [34]. Moreover, high concentrations of S1P were able to induce
internalization, followed by ubiquitination and degradation of S1P1 [35]. Thymocytes are highly
sensitive to S1P and internalize S1P1 after incubation with 1 nM of this lipid [36]. This internalization
in mature thymocytes can prevent cells from exiting the organ, and increased S1P concentrations
in thymic medullary region (mainly around the PVS) likely caused by SGPL1 inhibition, can lead
to the formation of giant PVS in normal mice [28]. In this study, we did not observe a breakdown
of the S1P gradient in NOD mice when comparing S1P contents between the thymus and serum,
which were similar to C57BL/6 controls (Figure S9). Nevertheless, we cannot rule out the hypothesis
of dysregulation in S1P concentration in the NOD thymus microenvironment, such as an increase
around and within the giant PVS. Higher S1P concentrations could lead to a decrease in the expression
of S1P1 in CD49e− cells that remain for longer periods in these structures. We observed lower SGPL1
expression in NOD mature SP CD8+CD62Lhi thymocytes as compared with controls. Downregulation
or inhibition of this enzyme causes lymphopenia through the disruption of S1P gradients inside the
thymus [29]. Although dendritic cells (DCs) present in the medullary and cortico-medullary regions
seem to be the main reason for the low levels of S1P, the disruption of SGPL1 in thymocytes was
also related to increased thymus and plasma levels of S1P, the decrease of S1P1 on the mature SP
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cell surface and mature thymocyte retention in the thymus [37]. However, other events that involve
post-translational regulation of the receptor expression cannot be discarded.

We observed that S1P1 decreased expression correlated with a lower migratory response of NOD
thymocytes towards S1P. Additionally, S1P-driven migration of NOD SP CD62LhiCD49e− cells was
lower than in the controls, although migration of NOD mature SP CD62LhiCD49e+ thymocytes was
higher when induced by the same S1P concentrations. It is interesting to emphasize that CD49e−

mature thymocytes migrate more towards S1P than CD49e+ mature cells in C57BL/6 mice, but not in
NOD mice. In this case, CD49e+ mature cells were more responsive to S1P, suggesting that the CD49e
expression can influence the chemotactic responses towards S1P in the NOD thymus in a different way.

Finally, we observed a decreased migratory capacity of C57BL/6 SP CD4+ and CD8+CD62LhiCD49e+

towards 10 nM of S1P after CD49e blockade, suggesting that this integrin can indirectly regulate
S1P-induced thymocyte migration. In contrast, inhibition of migration was observed for NOD
CD8+CD62LhiCD49e+ thymocytes, suggesting that in this subpopulation other molecules can also be
involved. Distinct migratory responses between CD4+ and CD8+ SP thymocytes from NOD mice
were described, for example, towards laminin. In this case, laminin receptor VLA-6 expression
is augmented in both CD4+ and CD8+ SP thymocytes, but migration is enhanced only for CD4
SP cells [6]. Furthermore, our group showed that S1P induces chemotaxis and chemokinesis of
T-cell acute lymphoblastic leukemia (T-ALL) blasts at 100 nM. By contrast, high concentrations of
S1P (1000, 5000 and 10,000 nM) induce fugetaxis (or chemorepulsion) of the same cells [17]. It is
thus conceivable that different thymocyte subpopulations present different sensitivity in migratory
behavior under S1P stimulation, depending on the concentration and receptor expression, and that
VLA-5 expression could differentially influence cell response in these conditions. Indeed, we cannot
exclude the participation of other interactions since S1P/S1P1 can alter cellular responsiveness through
other molecules, besides integrin activation and chemokine response, as mentioned above. Together,
our results provide evidence that the expression and migratory defects of NOD thymocytes are part
of a complex mechanism that comprises hypo and hyper responsiveness to certain stimuli. This fits
the multivectorial model for intrathymic T-cell migration we have previously proposed [6], in which
the direction and velocity of thymocyte migration result from the balance of interactions mediated by
different vectors, such as ECM proteins, cytokines and chemokines. Accordingly, the alterations seen
in NOD mouse thymocytes likely alter the resultant vector driving oriented thymocyte movement
within the thymus, modifying the overall thymocyte migratory behavior, which should be considered
in the context of T1D development in NOD mice.

4. Materials and Methods

4.1. Animals

Female C57BL/6 and NOD mice aged 9–12 weeks (pre-diabetic) or 4 weeks (when indicated) were
obtained from the Institute of Science and Technology in Biomodels (ICTB, Fiocruz, Rio de Janeiro,
Brazil) and the Necker Hospital (Paris, France) and were maintained under specific-pathogen free
(SPF) conditions. Experimental procedures were approved by the Fiocruz ethical committee on animal
use (L-024/2015; June 2015), according to the rules defined by Brazilian and European legislations.

4.2. Antibodies and Chemicals

Rabbit anti-S1P1 (catalog number PA1-1040) and S1P1 Synthetic Immunizing Peptide (PEP-220)
were obtained from Thermo Scientific (Rockford, IL, USA). Rabbit anti-SGPL1 (bs-4188R) was
purchased from Bioss Antibodies (Boston, MA, USA). S1P and rabbit anti-FN (F3648) were obtained
from Sigma Aldrich (St. Louis, MO, USA). Fluorochrome-labeled rat monoclonal antibodies directed
against mouse proteins, including anti-CD4 APC, anti-CD8 PerCP, anti-CD49e PE, unrelated IgG2A
PE and anti-CD4 APC-Cy7, were purchased from BD Biosciences (San Jose, CA, USA), as well as
purified rat anti-CD49e and its respective isotype control. Rat anti-CD62L Pacific Blue and the
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respective isotype control were obtained from BioLegend (San Diego, CA, USA). Purified rabbit
anti-CK polyclonal antibody was obtained from DAKO Co. (Santa Clara, CA, USA). Rat anti-CD8
PerCP-Cy5.5, goat anti-rabbit IgG Alexa Fluor®488 and goat anti-rabbit IgG Alexa Fluor® 546 were
obtained from Molecular Probes (Eugene, OR, USA).

4.3. Flow Cytometry

After thymus removal, thymocyte suspension was prepared in a tissue homogenizer with
1 mL of PBS (Sigma Aldrich). One million cells were stained using the BD Cytofix/CytopermTM
Fixation/Permeabilization Kit (BD Biosciences) for S1P1, followed by staining for CD49e, CD62L, CD4 and
CD8. Cells were then evaluated by flow cytometry using a FACSCanto II device (BD Biosciences).

4.4. Real-Time Quantitative Polymerase Chain Reaction (Quantitative RT-PCR)

Thymus RNA was extracted using a combination of TRIzol® (Invitrogen, Carlsbad, CA, USA)
and RNeasy® mini kit (Qiagen, Austin, TX, USA): total thymi were lysed in 1 mL TRIzol® with
the aid of a pipette. Chloroform was then added to the lysate, and the organic and aqueous
phases were separated by centrifugation at 10,000× g for 18 min, at 4 ◦C. From the aqueous phase,
after the precipitation with ethanol, RNA was extracted using the RNeasy® mini kit and suspended
in Ultrapure Nuclease-Free Water (USB Corporation, Cleveland, OH, USA). cDNA synthesis was
performed with 2 µg of RNA with Super Script II RT (Invitrogen, Carlsbad, CA, USA). For SP
CD4+ and CD8+ subpopulations, a pool of thymocytes from 4 thymi was suspended in 1 mL of
RPMI (Roswell Park Memorial Institute medium) 1640 10% FBS (fetal bovine serum) (Cultilab,
Campinas, Brazil) and stained with anti-CD4 and anti-CD8 antibodies for 30 min at 4 ◦C, followed
by cell sorting in a FACS Aria device (BD Biosciences). After sorting, RNA was extracted from SP
CD4+ and CD8+ cells using the same protocol described above. cDNA synthesis was performed
with 100 ng of RNA. Quantitative RT-PCR of total thymus and SP subpopulations was performed
with Syber® Green PCR Master Mix (Applied Biosystems, Forster City, CA, USA) on a Step One
Plus System (Applied Biosystems). PCR cycling conditions were as follows: a first step at 95 ◦C
for 20 s, followed by 40 cycles at 95 ◦C for 3 s and 62 ◦C for 30 s and generation of melting
curves for primer specificity analysis. Gene expression was calculated in the Expression Suite
Software (version 1.1., Life Technologies, Carlsbad, CA, USA) using the comparative Ct method
(∆∆Ct) with the threshold set at 0.02. Statistical analyses were conducted using the ∆Ct values.
Gene expression was reported as fold change (2−∆∆Ct), in relation to samples from C57BL/6 control
mice, used as calibrators. HPRT and GAPDH genes were used as reference genes and their constitutive
expression was validated using the same software. The following primers were used: 200 nM S1P1
forward GTGTAGACCCAGAGTCCTGCG; 200 nM S1P1 reverse AGCTTTTCCTTGGCTGGAGAG
(Sigma Aldrich); 300 nM HPRT forward TCCCAGCGTCGTGATTAGCGATG; 300 nM HPRT reverse
GGCCACAATGTGATGGCCTCCC (Invitrogen, Carlsbad, CA, USA); 300 nM GAPDH forward
CCACTCACGGCAAATTCAACGGC; 300 nM GAPDH reverse CCACCCTTCAAGTGGGCCCCG
(Invitrogen, Carlsbad, CA, USA). Further information about primer standardization can be found in
supplementary information, Table S1.

4.5. Immunohistochemistry

Thymi were removed from NOD and C57BL/6 mice, embedded in Tissue-Tek O.C.T. Compound
(Sakura Finetechnical Co., Tokyo, Japan) and maintained at −80 ◦C. 5-µm-thick cryostat sections were
settled on poly-L-lysine (Sigma Aldrich)-covered glass slides and were acetone-fixed for 10 min at
−20 ◦C. Slides were treated with PBS 1% BSA (bovine serum albumin) for 30 min and incubated
with primary antibodies (diluted in PBS for extracellular staining or PBS/BSA 1%/Saponin 0.1% for
intracellular staining) overnight at 4 ◦C. Samples were then submitted to corresponding secondary
antibodies for 30 min at room temperature. Immunostained samples were analyzed by an Axio
Imager A2 device using the Axio Vision Rel 4.8 software (Zeiss, Oberkochen, Germany). Negative
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controls, in which the secondary antibody was used alone, did not generate any significant labeling.
Selected microscopic fields comprised cortical, medullary and PVS regions of the thymic lobules.
The quantitative fluorescence analysis was performed by transforming the specific staining into
an eight-bit grey image. The Mean Gray Value was used to quantify S1P1 or SGPL1 expression,
using ImageJ software (Rasband, WS ImageJ, NIH, Bethesda, Rockville, MD, USA). For S1P1 expression,
we examined 23 cortical, 8 medullary and 11 giant PVS regions for NOD thymus and 33 cortical
and 24 medullary regions for C57BL/6. For SGPL1 (Sphingosine-1-phosphate lyase 1) expression,
we examined 11 cortical, 7 medullary and 4 giant PVS regions for NOD and 12 cortical and 9 medullary
regions, for C57BL/6 thymus.

4.6. Transmigration Assays

Thymocyte migratory activity was assessed in Transwell® chambers. Briefly, 5-µm pore size
Transwell membranes (Corning Incorporated Costar, Corelle, NY, USA) were blocked with PBS 1 %
fatty-acid free BSA for 45 min at 37 ◦C in a 5 % CO2 atmosphere. After blockade, 2 × 106 cells in
100 µL of RPMI 1640 1 % fatty-acid free BSA migration medium were added to the upper chamber,
while 600 µL of the migration medium or migration medium containing S1P were added to the
bottom chamber. After 3 h of incubation, the cells in the bottom chamber were counted in a Neubauer
hematocymometer (BRAND GMBH + CO KG, Wertheim, Germany), followed by labeling with
appropriate antibodies and analyzed by flow cytometry. For CD49e blockade assays, cells were
pre-incubated with blocking antibody or isotype control for 30 min at 4 ◦C and then challenged to
migrate under the same conditions described above.

4.7. S1P Quantitation

Thymi and sera were obtained from NOD and C57BL/6 mice, and the S1P concentration was
determined by thin-layer chromatography (TLC) as previously described [38,39].

4.8. Statistical Analysis

Results were analyzed using Student’s t test or 2-way ANOVA tests, followed by Tukey’s post-test,
and using the software GraphPad Prism 6 (version 6.01, GraphPad Software, San Diego, CA, USA).
Differences were considered statistically significant when p < 0.05 (* or #), p < 0.01 (** or ##), p < 0.001
(*** or ###) or p < 0.0001 (**** or ####).

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/5/1446/s1.
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