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A B S T R A C T

Introduction: Intracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts
for approximately 10–15% of all strokes. X-ray computed tomography (CT) scanning is largely used to assess
the location and volume of these hemorrhages. Manual segmentation of the CT scan using planimetry by an
expert reader is the gold standard for volume estimation, but is time-consuming and has within- and across-
reader variability. We propose a fully automated segmentation approach using a random forest algorithm
with features extracted from X-ray computed tomography (CT) scans.
Methods: The Minimally Invasive Surgery plus rt-PA in ICH Evacuation (MISTIE) trial was a multi-site Phase II
clinical trial that tested the safety of hemorrhage removal using recombinant-tissue plasminogen activator
(rt-PA). For this analysis, we use 112 baseline CT scans from patients enrolled in the MISTE trial, one CT scan
per patient. ICH was manually segmented on these CT scans by expert readers. We derived a set of imaging
predictors from each scan. Using 10 randomly-selected scans, we used a first-pass voxel selection procedure
based on quantiles of a set of predictors and then built 4 models estimating the voxel-level probability of ICH.
The models used were: 1) logistic regression, 2) logistic regression with a penalty on the model parameters
using LASSO, 3) a generalized additive model (GAM) and 4) a random forest classifier. The remaining 102
scans were used for model validation.For each validation scan, the model predicted the probability of ICH
at each voxel. These voxel-level probabilities were then thresholded to produce binary segmentations of
the hemorrhage. These masks were compared to the manual segmentations using the Dice Similarity Index
(DSI) and the correlation of hemorrhage volume of between the two segmentations. We tested equality of
median DSI using the Kruskal-Wallis test across the 4 models. We tested equality of the median DSI from
sets of 2 models using a Wilcoxon signed-rank test.
Results: All results presented are for the 102 scans in the validation set. The median DSI for each model was:
0.89 (logistic), 0.885 (LASSO), 0.88 (GAM), and 0.899 (random forest). Using the random forest results in
a slightly higher median DSI compared to the other models. After Bonferroni correction, the hypothesis of
equality of median DSI was rejected only when comparing the random forest DSI to the DSI from the logistic
(p < 0.001), LASSO (p < 0.001), or GAM (p < 0.001) models. In practical terms the difference between the
random forest and the logistic regression is quite small. The correlation (95% CI) between the volume from
manual segmentation and the predicted volume was 0.93 (0.9, 0.95) for the random forest model. These
results indicate that random forest approach can achieve accurate segmentation of ICH in a population of
patients from a variety of imaging centers. We provide an R package (https://github.com/muschellij2/ichseg)
and a Shiny R application online (http://johnmuschelli.com/ich_segment_all.html) for implementing and
testing the proposed approach.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author.
E-mail addresses: jmusche1@jhu.edu (J. Muschelli), emsweene1@jhu.edu

(E.M. Sweeney), nullman1@jhmi.edu (N.L. Ullman), PVespa@mednet.ucla.edu
(P. Vespa), dhanley@jhmi.edu (D.F. Hanley), ccrainic@jhsph.edu (C.M. Crainiceanu).

1. Introduction

Intracerebral hemorrhage (ICH) is a neurological condition that
results from a blood vessel rupturing into the tissue and possibly
extending into the ventricles of the brain. The use of X-ray computed
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tomography (CT) scans allows clinicians and researchers to qualita-
tively and quantitatively describe the characteristics of a hemorrhage
to guide interventions and treatments. CT scanning is widely avail-
able and is the most commonly used diagnostic tool in patients
with ICH (Sahni and Weinberger, 2007). The volume of ICH has been
consistently demonstrated to be an important diagnostic predictor
of stroke severity, long-term functional outcome, and mortality
(Broderick et al., 1993; Hemphill et al., 2001; Tuhrim et al., 1999). ICH
volume change is also a common primary outcome (Anderson et al.,
2010, 2008; Mayer et al., 2005; Qureshi et al., 2011) and secondary
outcome (Anderson et al., 2008; Morgan et al., 2008,?) in clinical
trials. Moreover, the location of the ICH has been shown to affect
functional outcome in patients with stroke (Castellanos et al., 2005;
Rost et al., 2008). Thus, quantitative measures of ICH (e.g. volume,
location, and shape) are increasingly important for treatment and
other clinical decision.

ICH volume can be estimated quickly, for example, using the
ABC/2 method (Broderick et al., 1993). In this method, a reader
chooses the slice with the largest area of hemorrhage. The length
of the intersection between this first axis and the hemorrhage is
denoted by A. The next step is to draw an orthogonal line at the
middle of the segment of length A in the same plane that contains
the largest hemorrhage area. The length of the intersection between
this second orthogonal axis and the hemorrhage is denoted by B.
The reader then counts the number of slices where hemorrhage is
present (C). The volume estimate is A×B×C

2 , which is an approxima-
tion of the volume under the assumption that the hemorrhage shape
is well approximated by an ellipsoid (Kothari et al., 1996). As this
method is relatively easy to implement in practice, it can be used to
quickly produce rough estimates of hemorrhage volume (Webb et al.,
2015).

Although ABC/2 is widely used, Divani et al. (2011) found that
the measurement error associated with the ABC/2 method were sig-
nificantly greater than those using planimetry, which requires slice-
by-slice hemorrhage segmentation by trained readers. Planimetry
is much more labor intensive and time consuming, but it more
accurately estimates the true ICH volume compared to the ABC/2
approach, especially for irregularly shaped ICH and for smaller
thickness (i.e. higher resolution) scans. Another problem that has
not been discussed in the literature is that ICH may change over
time. The shape of the ICH may initially be well approximated
by an ellipsoid but the approximation may become increasingly
inaccurate over time as the lesion changes shape, migrates through
the surrounding tissues, or breaks down. Surgical interventions
that target the removal of ICH may also change the shape of the
ICH or cause additional bleeding. Moreover, the ABC/2 method
has been shown to consistently over-estimate infarct volume
(Pedraza et al., 2012) and may have significant inter-rater variability
(Hussein et al., 2013). Therefore, a rapid, automated, and validated
method for estimating hemorrhage location and its volume from
CT scans is highly relevant in clinical trials and clinical care. Accu-
racy is accompanied by increase of both diagnostic and prognostic
value.

Methods have been proposed for segmentation of ICH using mag-
netic resonance images (MRI) (Carhuapoma et al., 2003; Wang et al.,
2013). However, in most clinical settings CT, not MRI, is the image of
choice. Furthermore, MRI sequences and protocols may vary across
sites and there is no general, standardized, agreed-upon MRI protocol
for ICH standard-of-care. Thus, there is a need for ICH segmenta-
tion that relies only on CT scan information, is reliable, reproducible,
available, and well validated against planimetry.

We propose an algorithm that can estimate the probability of
ICH at the voxel level, produce a binary image of ICH location, and
estimate ICH volume. We will compare our predicted ICH maps to
the gold standard – manual segmentation. Several methods have
been presented for automated methods for estimating ICH from CT

scans (Gillebert et al., 2014; Loncaric et al., 1996, 1999; Pérez et al.,
2007; Prakash et al., 2012). These methods include fuzzy clustering
(Loncaric et al., 1996; Prakash et al., 2012), simulated annealing
(Loncaric et al., 1999), 3-dimensional (3D) mathematical morphology
operations (Pérez et al., 2007), and template-based comparisons
(Gillebert et al., 2014). Unfortunately, no software for ICH segmen-
tation is publicly available. We provide a completely automated
pipeline of analysis from raw images to binary hemorrhage masks
and volume estimates, and provide a public webpage to test the
software.

2. Methods

2.1. Data

We used CT images from patients enrolled in the MISTIE II
(Minimally Invasive Surgery plus recombinant-tissue plasminogen
activator for Intracerebral Hemorrhage Evacuation) stroke trial
(Morgan et al., 2008). We analyzed 112 scans taken prior to ran-
domization and treatment, corresponding to the first scan acquired
post-stroke for 112 unique patients. Inclusion criteria into the study
included: 18 to 80 years of age and spontaneous supratentorial
intracerebral hemorrhage above 20 milliliters (mL) in size (for full
criteria, see Mould et al. (2013)). The population analyzed here had
a mean (standard deviation (SD)) age of 60.7 (11.2) years, was 68.8%
male, and was 53.6% Caucasian, 31.2% African American, 10.7% His-
panic, and 4.5% Asian or Pacific islander. CT data were collected as
part of the Johns Hopkins Medicine IRB-approved MISTIE research
studies with written consent from participants.

The study protocol was executed with minor, but important, dif-
ferences across the 26 sites. Scans were acquired using 4 scanner
manufacturers: GE (N = 46), Siemens (N = 38), Philips (N = 20),
and Toshiba (N = 8). In head CT scanning, the gantry may be tilted
for multiple purposes, for example, so that sensitive organs, such as
the eyes, are not exposed to X-ray radiation. This causes scan slices to
be acquired at an oblique angle with respect to the patient. Gantry tilt
was observed in 88 scans. Slice thickness of the image varied within
the scan for 14 scans. For example, a scan may have 10 millimeter
(mm) slices at the top and bottom of the brain and 5 mm slices in
the middle of the brain. Therefore, the original scans analyzed had
different voxel (volume element) dimensions. These conditions are
characteristic of how scan are presented in many diagnostic cases.

2.2. Hemorrhage segmentation and location identification

ICH was manually segmented on CT scans using the OsiriX
imaging software by expert readers (OsiriX v. 4.1, Pixmeo;
Geneva, Switzerland). After image quality review, continuous, non-
overlapping slices of the entire hemorrhage were segmented.
Readers employed a semiautomated threshold-based approach using
a Hounsfield unit (HU) range of 40 to 80 to select potential regions
of hemorrhage (Bergström et al., 1977; Smith et al., 2006); these
regions were then further quality controlled and refined by readers
using direct inspection of images. Binary hemorrhage masks were
created by setting voxel intensity to 1 if the voxel was classified as
hemorrhage, regardless of location, and 0 otherwise.

2.3. Image processing: brain extraction, registration

CT images and binary hemorrhage masks were exported from
OsiriX to DICOM (Digital Imaging and Communications in Medicine)
format. The image processing pipeline can be seen in Fig. 1.
Images with gantry tilt were corrected using a customized MATLAB
(The Mathworks, Natick, Massachusetts, USA) user-written script
(http://bit.ly/1ltIM8c). Images were converted to the Neuroimaging

http://bit.ly/1ltIM8c
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Fig. 1. Processing pipeline. Images in DICOM (Digital Imaging and Communications
in Medicine) format were gantry tilt corrected if necessary and converted to NIfTI
(Neuroimaging Informatics Technology Initiative) format using dcm2nii. After NIfTI
conversion, the brain extraction tool (BET) was applied to the image using a previously
published protocol. The image was registered to a brain CT template using a rigid-body
transformation and was interpolated to template resolution. We estimated imaging
predictors and used these predictors to estimate the probability of ICH in a prediction
model. The probability of ICH was thresholded, connected component below 100 vox-
els (0.1 mL) were discarded, and the image was transformed back into original space
of the patient. The ICH volume and the Dice Similarity Index, an overlap measure, were
calculated compared to the true estimate from the manual segmentation.

Informatics Technology Initiative (NIfTI) data format using dcm2nii
(provided with MRIcro (Rorden and Brett, 2000)). Images were con-
strained to values −1024 and 3071 HU to remove potential image
rescaling errors and artifacts. No interpolation was done for images
with a variable slice thickness. Thickness was determined from the
first converted slice and the NIfTI format assumes homogeneous
thickness throughout the image. In a future release of dcm2nii,
called dcm2niix, interpolation will be done for scans with vari-
able slice thickness and gantry-tilt correction will be performed
automatically.

All image analysis was done in the R statistical software (R Core
Team, 2015), using the fslr (Muschelli et al., 2015) package to
call functions from the FSL (Jenkinson et al., 2012) neuroimaging
software (version 5.0.4), and the ANTsR package to call functions
from the ANTs (Advanced Normalization Tools) neuroimaging soft-
ware (Avants et al., 2011).

Brains were extracted to remove skull, eyes, facial and nasal
features, extracranial skin, and non-human elements of the image
captured by the CT scanner, such as the gantry, pillows, or medical
devices. Removal of these elements was performed using the brain
extraction tool (BET) (Smith, 2002), a function of FSL, using a pre-
viously published validated CT-specific brain extraction protocol
(Muschelli et al., 2015).

2.4. Image registration

Rorden et al. (2012) introduced a CT template based on 35 indi-
viduals who presented with specific neurological deficits that were
suspected to be caused by a stroke, but were later found to be
due to a metabolic abnormality. This CT template is represented
in MNI (Montreal Neurological Institute) space and brain-extraction
was performed on the template. Prior to image processing, brain-
extracted images were registered to this brain-extracted template
using a rigid-body (6 degrees of freedom) and linearly interpolated
to a 1 × 1 × 1 mm voxel resolution. After interpolation, transformed
hemorrhage masks and brain masks are not binary. These trans-
formed masks were re-thresholded using a value of 0.5 to preserve
mask volume (Frequently asked questions for FLIRT, 2017). Using
a nearest-neighbor interpolation for these binary images after reg-
istration could also be used as a simpler approach and should be
relatively equivalent to the re-thresholding.

This rigid registration does not ensure brains are the same size
or that voxels match across subjects. Having voxels registered across
subjects is not necessary for our model, as we do not incorporate
voxel-level spatial information into the model. Although brains with
different shapes and sizes may map to different areas in the template
space, the goals of this registration are to reorient the image, ensure
isotropic voxel sizes for smoothing and other operations described
below, and preserve the relative volume of the ICH. All image pre-
processing and analysis are done in MNI space, described as template
space, unless otherwise specified.

2.5. Brain mask erosion

After registration, each brain mask was eroded by a box kernel
(3 × 3 × 1 mm). Though this erosion may exclude voxels from super-
ficial bleeds towards the cortical surface, it excludes voxels with
similar ranges as ICH voxels, caused by 1) incomplete skull strip-
ping or 2) partial voluming effects with the skull. If any voxels from
the hemorrhage mask were removed due to brain extraction or
brain mask erosion, these voxels were included in estimating model
performance but their predicted probability of ICH was set to 0.
Therefore, these deleted ICH voxels will always be false negatives in
our approach.
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2.6. Imaging predictors

We derived a set of imaging predictors from each CT scan. We
will describe each predictor together with the rationale for their
use. These features make up the potential set of predictors (features)
for image segmentation. Below we provide the definition of these
predictors, while Fig. 2 displays them for one axial slice of one
subject.

2.6.1. CT voxel intensity information
The first predictor is the raw voxel intensity value in HU denoted

by x(v). This is the main predictor used in visual inspection, with
high HU values being indicative of hemorrhage. Based on the voxel

intensity we have created an indicator for the HU intensity value to
be between 40 and 80 (inclusive), to mimic the criterion used for
screening in manual segmentation. Although all scans may not have
the same intensity range overall or for the hemorrhage, the calibra-
tion of the CT scanner and how the Hounsfield unit is calculated
generally gives similar ranges for similar tissues. Also, these thresh-
olds have been used in previous ICH segmentation work (Prakash et
al., 2012) and have been empirically shown to perform well. More
precisely, we have introduced the predictor

Ithresh(v) =

{
1 if 40 ≤ x(v) ≤ 80

0 otherwise

Fig. 2. Predictor images. Here we display one axial slice of predictor images from one patient. The within-plane standardized and Winsorized predictor images were not shown
as they are within-subject scaled versions of the image x(v) and appear very similar. Although they appear similar at a subject level, the distribution of these predictors is different
across patients. Images that visually separate the areas of ICH compared to the rest of the images are likely to be better predictors.
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2.6.2. Local moment information
For each voxel, we extracted a neighborhood of voxels: all

adjacent voxels along the 3 dimensions together with the voxel itself,
indexed by k: k = 1, . . . , N(v) = 27, where N(v) is the number of
voxels in the neighborhood. If xk(v) denotes the voxel intensity in HU
for voxel neighbor k, then the local mean intensity is defined as:

x(v) =
1

N(v)

∑
k∈N(v)

xk(v). (1)

We also calculate statistics based on higher order moments and
define the local SD, skew, and kurtosis as:

SD(v) =

√√√√ 1
N(v)

∑
k∈N(v)

{
xk(v) − x(v)

}2

Skew(v) =

1
N(v)

∑
k∈N(v)

{
xk(v) − x(v)

}3

[
1

N(v)

∑
k∈N(v)

{
xk(v) − x(v)

}2

]3/2
=

1
N(v)

∑
k∈N(v)

{
xk(v) − x(v)

}3

SD(v)3

Kurtosis(v) =

1
N(v)

∑
k∈N(v)

{
xk(v) − x(v)

}4

[
1

N(v)

∑
k∈N(v)

{
xk(v) − x(v)

}2

]2
=

1
N(v)

∑
k∈N(v)

{
xk(v) − x̄(v)

}4

SD(v)4

We did not divide by {N(v)−1} in standard deviation and skew formula
and did not subtract by 3 for kurtosis. As N(v) is the same at every voxel,
these simplified choices will have no effect on modeling or prediction.

Voxels with a larger local mean have higher HU neighboring
voxels, which increases their likelihood to be in or adjacent to
the ICH. The higher order moments can provide information about
how homogeneous the intensities in the neighborhood are and
where edges may be located. We also introduce the variable of
the percentage of voxels in each neighborhood that have HU values
between 40 and 80:

pthresh(v) =
1

N(v)

∑
k∈N(v)

I
{
40 ≤ xk(v) ≤ 80

}
(2)

which should be higher for ICH voxels as they are surrounded by
neighbors with higher HU values.

Voxels that are on the surface or are surrounded by non-brain
tissue are less likely to be in the ICH. Thus, voxels not in the eroded
mask are set to 0. We also introduce the variable percentage of voxels
that have neighbors of value of 0:

p0(v) =
1

N(v)

∑
k∈N(v)

I
{
xk(v) = 0

}
, (3)

and an indicator of whether any voxels in the neighborhood had a
value of 0:

I0(v) = I
{
p0(v) > 0

}
. (4)

The reason for introducing these predictors is that we expect that
voxels that have neighbors with intensity zero are less likely to be
ICH. Our approach will not assume that the probability of voxels with
neighbors with HU intensity equal to zero are not in the ICH. Instead,
we will model the probability of belonging to the ICH as a function of
the predictors described in this section.

2.6.3. Within-plane standard scores
Some brain structures have high HU values but are not ICH, such

as the falx cerebri, which lies largely on the mid-sagittal plane. More-
over, raw CT images may contain substantial inhomogeneity. For
example, tissues closer to the top of the brain may have higher
observed intensities (measured in HU) than those in the middle or
bottom of the brain. Thus, if values are standardized within each
plane (axial, sagittal, coronal), for each scan separately, the result-
ing plane-specific z-scores may discriminate better high relative
values within the plane, which may attenuate the effect of HU inten-
sity inhomogeneities. These transformations will also standardize
the intensities so that shifts in intensities will be corrected across
patients, such as those potentially due to shifts due to scanner.

Thus, for each voxel and slice (axial, sagittal, and coronal) planes,
we defined

zo(v) =
x(v) − x(v, o)

ŝ(v, o)
(5)

where o ∈ {axial, sagittal, and coronal}, x̄(v, o) and ŝ(v, o) denote
the mean and standard deviation of the intensities of voxels in the
plane o that contains the voxel v, excluding voxels outside the brain
mask. In addition to the standardized images within each plane we
have also calculated standardized scores based on the Winsorized
mean and standard deviation. More precisely, we used the same for-
mula as in Eq. (5), we set any HU values below the 20th percentile to
the 20th percentile value and above the 80th percentile to the 80th
percentile value within that slice and calculated the slice-specific
mean and standard deviation,. This approach is expected to be more
robust to small and moderate artifacts in the image.

2.6.4. Initial segmentation
A major advantage of our approach is that it can use the

results of other segmentation algorithms as covariates in our model.
Consider, for example, Atropos (Avants et al., 2011), a previously
published, open source, general segmentation tool based on Markov
random fields for image segmentation. Atropos combines an initial
segmentation based on k-means with an expectation-maximization
algorithm for a finite mixture model along with a Markov random
field prior. We used Atropos to conduct a 4-tissue class segmen-
tation which provides the probability for each class. We combined
the top 2 probability classes into one class as Atropos orders the
classes by the mean intensity and hemorrhages have higher HU
values. This combined probability was then used as a predictor,
denoted by Atropos(v). Although Atropos has been shown to perform
well in other studies for tissue-class segmentation (Avants et al.,
2011; Menze et al., 2015), the Atropos segmentation did not perform
adequately in our ICH CT data. However, using the Atropos seg-
mentation probabilities as predictors can be done seamlessly in our
approach. Similarly, the results of any other segmentation approach
can be incorporated in our approach and the relative performance of
methods can be compared.

2.6.5. Contralateral difference images
As most hemorrhages are constrained to one side of the brain,

the contralateral side tends to have lower HU values. In contrast, for
non-hemorrhage voxels, the contralateral voxels tend to have similar
HU values due to the quasi-symmetry of the brain and its adjacent
tissues such as bone. To take advantage of this property, we right-left
flipped the registered image, and computed a difference image

f (v) = x(v) − x(v∗), (6)

where v∗ is the contralateral voxel of v.
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2.6.6. Global head information
Another potential predictor was the distance to the center of the

brain, d(v), account for voxels that are far from the brain center but
may contain artifacts. We also created 3 images by smoothing the
original image using large Gaussian kernels (s = 5 mm3, 10 mm3,
20 mm3) to account for potential heterogeneity in intensity. These
smooth images we denoted by s5(v), s10(v) and s20(v), respectively.

2.6.7. Standardized-to-template intensity
We have also incorporated predictors that contrast the scan HU

intensities with those of an average brain obtained from healthy
individuals. Using 30 CT images from non-stroke patients from Dr.
Rorden (personal communication), we registered the brain-extracted
scans to a CT template, and created a voxel-wise mean image M and
voxel-wise standard deviation S image across registered images in
template space. Each scan in our ICH study, we registered (using
affine transformations followed by SyN (Avants et al., 2008)) it to
the same CT template. We then created a standardized voxel inten-
sity with respect to this population, ztemplate, using the following
equation:

ztemplate(v) =
x(v) − M(v)

S(v)

The image was then returned to the same as the other predictors.
This predictor attempts to use the intensities of non-stroke patients
that takes into account the spatial pattern of the mean and variabil-
ity of intensities in CT scans. This predictor is similar to that used
in Gillebert et al. (2014) and the authors have shown that this pre-
dictor can detect voxels outside of a standard range such as the
hemorrhage.

2.7. Voxel selection procedure

We chose 10 scans from 10 patients to perform exploratory
data analysis, model fitting, and estimation of model cutoffs; these
data will be referred to as the training data. These scans were ran-
domly selected. These selected patients had a mean (SD) hemorrhage
volume of 37.8 (6) mL, had an average HU intensity of 58.8 HU
and were scanned on the following scanners: GE (N = 6), Philips
(N = 2), Siemens (N = 1), and Toshiba (N = 1). We used the 102
remaining scans as test data to evaluate the performance of the
proposed approaches.

Using the training data, we estimated the 0.5% and 99.5% quan-
tiles for all predictors across ICH voxels. The voxel selection proce-
dure consisted of choosing all voxels that had all of predictors zaxial,
zcoronal, and pthresh within the corresponding 0.5 and 99.5 quantiles as
well as values of HU intensity between 30 and 100. Voxels that did
not meet these criteria were assigned a 0 probability of ICH. These
cutoffs were found empirically to work well in the test scans. This
approach excluded a mean of 63.6 (min: 37.1, max: 89.8) percentage
of non-ICH voxels and included a mean of 97.9 (min: 91.6, max: 99.9)
percentage of ICH voxels. We have found that this voxel selection
procedure improves computational speed as well as the performance
of the algorithms.

2.8. Models

Using the 10 training scans we obtained all voxels passing the
voxel selection procedure described in Section 2.7. We then ran-
domly sub-sampled 100, 000 voxels, which were used for model
fitting, model selection, and exploratory analysis, to reduce compu-
tational burden and increase speed of model fitting and exploratory
analysis. The rest of the remaining voxels from the training data were
used for model calibration. All models were fit with all the predictors
described in Sections 2.6.

We fit several different models on the 100, 000 sub-sampled vox-
els: 1) logistic regression with all covariates used as main effects
(without interactions or nonlinear effects), 2) logistic regression
model with a penalty on the model parameters to reduce the poten-
tial effect of high correlations between predictors, 3) generalized
additive model (GAM) (Hastie and Tibshirani, 1986, 1990), which is
similar to the logistic regression, but allows for non-linear effects on
the linear predictor scale, and 4) random forest classifier (Breiman,
2001). All models were fit using R.

For the standard and penalized logistic regression model,
we used all predictors. The penalized model was fit using the
LASSO (Least Absolute Shrinkage and Selection Operator) penalty
(Tibshirani, 1996) using the glmnet package (Friedman et al., 2010).
The tuning parameter, k, was chosen using 10-fold cross-validation
on the training voxels; the cost function used was the misclassifi-
cation rate. The parameter was chosen using the largest value of k
where that the misclassification rate is within 1 standard error of its
minimum; this approach led to superior out-of-sample stability.

The generalized additive model (GAM) (Hastie and Tibshirani,
1986, 1990) was also fit using indicator variables for binary variables
and thin-plate splines for all continuous measures. The model was fit
using fast-estimation of the restricted maximum likelihood (fREML)
implemented in the mgcv package (Wood, 2011; Wood et al., 2015).
Detailed model specifications are provided in Section 5.2.

The random forest (Breiman, 2001) classification algorithm was
implemented using the randomForest package in R (Liaw and
Wiener, 2002) with the default pruning parameters and number of
trees (ntree=500, mtry=4).

2.9. Estimating a cutoff for model probability

Each model described in Section 2.8 provides an estimate of the
probability for each voxel to be in ICH.

To choose probability thresholds to create a binary segmentation,
we chose the Dice Similarity Index (DSI) (Dice, 1945) as a mea-
sure of the quality of segmentation. The DSI is a measure of overlap
that is insensitive to areas where neither the true nor the predicted
segmentation were labeled ICH, and will be used as a performance
measure when comparing models on the test data. DSI for scan i is
calculated by

DSIi =
2 × TP

2 × TP + FN + FP

where TP denotes the number of “true positive” voxels, where the
manual and predicted segmentation agree that the voxel is in ICH,
FP denotes the number of “false positive” voxels, where the pre-
dicted segmentation indicates that there is no lesion when the
manual segmentation indicates lesion, and FN denotes the number of
“false negative” voxels, where the predicted segmentation indicates
that there is lesion when the manual segmentation indicates that
there is not. DSI ranges from 0 to 1, where 0 indicates no overlap and
1 denotes perfect overlap.

For each model, the probability image was smoothed by taking
the average over the neighborhood voxels (1 voxel in every direc-
tion). For each threshold, we used the voxels in the training data that
were not used for estimating the model, and found the threshold that
maximized the DSI compared to the manual segmentation at those
voxels. This threshold was applied to the smoothed probability maps
to produce binary ICH images.

After thresholding the smoothed image using these DSI-
optimized thresholds, we discarded regions with fewer than 100
(0.1 mL) connected voxels. This removal was done to eliminate
speckling, which helped improve the false positive rate of images.
For each model, the predicted ICH binary mask was transformed back
to the original (i.e. native) space using the inverse of the rigid-body
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transformation. As the linear interpolation associated with this step
results in a non-binary mask, we thresholded the image at 0.5 to pre-
serve volume (Frequently asked questions for FLIRT, 2017), but could
have similarly used a nearest-neighbor interpolation.

2.10. Testing ICH prediction and measuring model performance

For each of the remaining 102 scans in the test data, the voxel
selection described in Section 2.7 was applied. Using the prediction
process described in Section 2.8 an ICH probability map was esti-
mated using each of the four models. Using the probability thresh-
olds calculated on the training data, as described in Section 2.9, we
obtained a binary ICH map for each of the four methods. For evalu-
ation, all results are provided in the native space of the patient, not
in the template space, as the manual segmentation was done in the
native space.

Model performance was evaluated on the validation data using
the DSI and the ICH volume. The ICH volume was estimated count-
ing the number of ICH voxels multiplied by product of the voxel
sizes, divided by 1000 (1000 mm3 per 1 mL), provided in mL. The
large number of true negatives (non-ICH voxels) artificially inflates
specificity and overall accuracy measures, which are not reported.
The global equality median DSI across models was tested using the
Kruskal-Wallis test. If a difference was present, we tested the null
hypothesis of no difference in the medians for each combination
of models (6 combinations) using a Wilcoxon signed-rank test, and
corrected the p-value using a Bonferroni correction.

The performance of total ICH volume prediction was compared
to the manual segmentation using the Pearson correlation and root
mean squared errors (RMSE) between volumes measures. Similarly,

we performed the Kruskal-Wallis test for the null hypothesis of
equality of medians of the absolute value of the difference between
the estimated volume from each model and the true volume. If the
null hypothesis is rejected, pairwise tests were conducted as in the
case of DSI. For DSI and correlation, higher values indicate better
agreement with the manual segmentation. For RMSE, lower values
indicate better agreement.

After choosing a single model, we explore the DSI over certain
factors. First we will investigate the DSI by different scanner man-
ufacturers and test median equality using the Kruskal-Wallis test,
performing a similar pairwise Wilcoxon signed-rank test proce-
dure with multiplicity correction. We similarly explore differences
of DSI based on 3 categories of hemorrhage size (based on manual
segmentation): using 0–30 mL, >30 to 60 mL, and >60 mL cutoffs,
similar to Hemphill et al. (2001).

3. Results

3.1. Dice Similarity Index

In Fig. 3, we show the DSI distributions based on the test data
for each model. DSI is high on average for all models, with a few
scans having a very small DSI (i.e. failures). The median DSI for each
model was: 0.89 (logistic), 0.885 (LASSO), 0.88 (GAM), and 0.899
(random forest). Using the random forest results in a slightly higher
median DSI compared to the other models, and there was a statis-
tically significant difference across medians (w2(3) = 13.49, p <
0.05). Indeed, after Bonferroni correction, the hypothesis of equality
of median DSI was rejected only when comparing the random forest

Fig. 3. Distribution of Dice Similarity Index in test scans. Here we display the boxplot of the Dice Similarity Index (DSI), a measure of spatial overlap between the estimated
hemorrhage mask and the manually delineated hemorrhage mask, in the 102 test scans. We present the DSI distribution for each model fit: a logistic regression, a logistic model
penalized with the Least Absolute Shrinkage and Selection Operator penalty (LASSO), a generalized additive model (GAM), and a random forest algorithm. Overall, we see high
agreement between the manual and estimated hemorrhage masks with the median of 0.89 for the logistic model, 0.885 for the LASSO, 0.88 for the GAM, and 0.899 for the random
forest. The median DSI for the random forest was significantly higher than those of the other 3 models, after adjusting for multiplicity using a Bonferroni correction (all p < 0.05).
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DSI to the DSI from the logistic (p < 0.001), LASSO (p < 0.001), or
GAM (p < 0.001) models. Based on visual inspection, the difference
between the random forest and the logistic regression is quite small.

To better understand the DSI measurements in our data, Fig. 4
displays the CT scan of the patient in the test data that has the median
DSI in the test scans. The image depicts the brain-extracted CT scan
and the CT scan indicating different types of classification properties
using overlaid colors. Green indicates a correct classification of ICH
from the model (true positive), blue indicates a false negative, and
red indicates a false positive. The image has a finer resolution along
the axial plane (0.5 mm by 0.5 mm) than in the sagittal and coronal
planes (5 mm), as is commonly used for radiological evaluation of
hemorrhages. Patients with the lowest, 25th, 75th, and highest DSI
are shown in Supplemental Figs. S1, S2, S3, and S4, respectively.

3.2. ICH volume estimation

In Fig. 5, we show the estimated ICH volume versus that from
the manual segmentation. The pink line represents the X = Y line,
where the estimated and true volume are identical. The blue line rep-
resents the linear fit; the estimated linear regression equation and
correlation are printed on the plot. The farther away the slope of
the equation is from 1 the larger the bias with values larger than
1 representing over-estimated volumes. The correlation (95% con-
fidence interval (CI)) between the true volume and the predicted
volume were 0.92 (95% CI: 0.88, 0.95) for the logistic model, 0.92
(0.88, 0.94) for the LASSO, 0.91 (95% CI: 0.87, 0.94) for the GAM, and
0.93 (95% CI: 0.9, 0.95) for the random forest. The RMSE for logis-
tic (RMSE: 10.7 mL), LASSO (10.8 mL), and random forest (10.3 mL)
models were relatively close, but was slightly higher for the GAM
model (11.4 mL). The Kruskal-Wallis test indicated no significant dif-
ference in the median absolute value of the difference in estimated
versus true volume over models (w2(3) = 2.3, p = 0.51).

3.3. Model choice

In Supplemental Table 1, we report the estimated coefficients,
standard errors, and z-statistics from the logistic regression model.
In Fig. S5, we present the variable importance plot, representing
the mean decrease in the Gini coefficient for each variable. The
standardized-to-template and neighborhood mean seem to be the
strongest predictors in the random forest. To reduce complexity and
decrease computation time, some predictors may be removed, but as

the random forest algorithm is robust as it does not choose covariates
that do not decrease prediction error in each decision tree.

Overall, all models perform well for ICH segmentation. A small
percentage (1.0%) of failures were observed with DSI < 0.5 (N = 1
out of 102 scans), but the random forest algorithm had a slightly
higher median DSI, slightly lower RMSE, and a higher slightly cor-
relation than the other models. Therefore, when implementing the
algorithm, we will use the random forest model.

3.4. DSI by scanner manufacturer, average HU, and hemorrhage size

In the following section, we will use the DSI from the random
forest model. In the 102 test scans, the median DSI was 0.89 for
patients scanned in a GE scanner, 0.9 for Philips, 0.9 for Toshiba, and
0.92 for Siemens (Supplemental Fig. S6). The patient with a failed
segmentation was scanned using a GE scanner. The Kruskal-Wallis
test indicated a difference in median DSI in patients from different
scanners (w2(3) = 11.6, p = 0.009). After Bonferroni correction,
the difference of DSI of patients scanned with Siemens versus GE
scanners was the only statistically significant comparison by the
Wilcoxon signed-rank tests (W = 428, p = 0.008, corrected).

In Fig. 6, we see the effect of average HU over the hemorrhage ver-
sus DSI. We note the failed scan had a much lower average HU (44.4
HU) in the hemorrhage compared to the rest of the images (panel A).
Overall, however, above 50 HU, there does not seem to be a strong
effect on the average HU and DSI (panel B). We also note that the
failed case was towards the cortical surface (Supplemental Fig. S1).

After categorization of the hemorrhage volume, 34 (33.3%)
patients had a volume of 0–30 mL (small), 46 (45.1%) had volumes
> 30 to 60 mL (medium), and 22 (21.6%) had ¿60 mL (large). The
median DSI for the small hemorrhages was 0.89, 0.91 for medium
hemorrhages, and 0.9 for large hemorrhages.

The Kruskal-Wallis test indicated a difference in median DSI
among the 3 groups (w2(2) = 6.5, p = 0.04, see Supplemental
Fig. S7). After Bonferroni correction, there was no statistically signif-
icant difference in median DSI, but the strongest comparison was for
the small versus medium hemorrhage sizes (W = 537, p = 0.0502,
corrected).

4. Discussion

We have presented a novel, fully automated method for segmen-
tation of ICH from CT scans. Our method uses only CT scans from

Fig. 4. Patient with median Dice Similarity Index. We present the patient with the median Dice Similarity Index (DSI), a measure of spatial overlap, from the chosen predictor
model fit with a random forest. The median DSI was 0.899, which indicates high spatial overlap. The green indicates a correct classification of ICH from the model, blue indicates
a false negative, where the manual segmentation denoted the area to be ICH but the predicted one did not, and red indicates a false positive, where the predicted segmentation
denoted the area to be ICH but the manual one did not.
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Fig. 5. Comparison of estimated and manual intracerebral hemorrhage volume for each model. In each panel, we show the volume of intracerebral hemorrhage (ICH) estimated
from each model (x-axis) versus that from the gold-standard manual segmentation (y-axis) in the 102 test scans. The pink line represents the X = Y line, which represents perfect
agreement. The blue line represents a linear fit of the data, and the estimated slope equation is displayed along with the Pearson correlation. Panel A represents the volume from
the logistic regression model, B represents that from logistic model penalized with the LASSO, C represents that from a generalized additive model (GAM), and D represents that
from a random forest algorithm. Overall, we see high agreement between the estimated volumes from automated segmentation from each model as all correlations are above 0.9.
The farther away the slope of the equation is from 1 represents a multiplicative bias, where values greater than 1 represents larger estimated volumes. The farther the intercept
is from 0 represents and additive bias in the estimated volume, where values greater than 0 again represent larger estimated volumes.

patients with acute ICH, from the MISTIE II trial. MRI was not used
because MRI procedures for ICH have not been standardized and are
not performed per the standard of care for the disease. We validated
this method against manual segmentation. We used the Dice Simi-
larity Index and correlation between the volume of ICH from manual
and automatic segmentation as measures of algorithm performance.

We started by creating a rich set of predictors that are likely
to capture the most discriminating features between ICH and non-
ICH voxels and described the rationale for each predictor. Models of
these predictors using logistic regression, logistic regression penal-
ized with the LASSO, GAM, and random forests result in high values
for the DSI and high correlations between the total ICH volume

Fig. 6. Dice Similarity Index (DSI) by average voxel HU in the hemorrhage. These values represent the mean Hounsfield Unit (HU) over all voxels in the manual hemorrhage mask
for each patient in the test data set versus the DSI for that patient compared to automatic segmentation. The blue line represents a locally-weighted regression smoother (loess).
We see that the case with the lowest DSI had a much lower average HU in the hemorrhage. Overall, however, above 50 HU, there does not seem to be a strong effect on the average
HU and DSI.
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obtained from manual and automatic segmentations. Random forest
was chosen as the algorithm, as it slightly outperformed the other
approaches on the test data.

The approach failed on a very small subset of the validation set
(N = 1 out of 102 with DSI below 0.5); the failed case had a
much lower mean intensity inside the hemorrhage. In the success-
ful cases, most discrepancies between the manual and automated
segmentation observed occur at the edges of the hemorrhage. This
“edge effect” may be due to the isotropic, non edge-preserving
smoothing. Anisotropic smoothing, as proposed by Perona et al.
(1994), may improve segmentation.

Although we have shown good performance in patients with ICH,
intraventricular hemorrhage (IVH) and subarachnoid hemorrhages
(SAH) are two other forms of hemorrhagic stroke that may occur
clinically. As obstructive IVH requiring external ventricular drainage
was in the exclusion criteria in MISTIE II (Mould et al., 2013), no
cases with primary IVH were included. The 3 cases with the largest
overall volume had some considerable IVH extensions, the largest
being around 20 mL. This leads to an overall underestimation of the
hemorrhage volume in our models. We believe the model may per-
form reasonably well with patients with IVH, yet may require a
separate model, but not necessarily for SAH.

Intraventricular hemorrhages have similar HU ranges for large
portions of the hemorrhage, but may have lower HU values of the
hemorrhage which are less dense and surrounded by cerebrospinal
fluid. Moreover, cases with larger IVH volumes may cause larger
deformations than seen in cases with ICH only, which may negatively
affect any registration process. In contrast, for SAH, the process of
mask erosion may considerably remove voxels from the hemorrhage,
which occurs largely on the cortical surface. This step is important to
remove false positives, which may occur from partial volume effects
with areas of the skull and voxels towards the cortical surface. If the
methods for registration and erosion perform similarly to the cases
with ICH, we can perform the same procedure and re-fit the model
using additional cases of IVH and/or SAH.

Several other methods have been proposed for segmentation of
ICH from CT scans (Gillebert et al., 2014; Loncaric et al., 1996, 1999;
Pérez et al., 2007; Prakash et al., 2012). Loncaric et al. (1996) per-
formed the analysis on only one 2-dimensional scan and could not
be compared with our approach. The method proposed by Pérez
et al. (2007) is semiautomated and was only validated by visual
inspection. They reported segmentation failure in 6 out of 36 scans
(16.7%) compared to 1 out of 102 scans (1.0%) for our method. Our
reported median DSI (0.899) is much larger than the one reported by
Gillebert et al. (2014) (approximately 0.62 and 0.78 for hemorrhagic
strokes as read from their graphs). Our results were comparable to
those reported by Prakash et al. (2012) (0.897, 0.858, and 0.9173
for different groups with hemorrhage). Loncaric et al. (1999) did not
compare automatic and manual segmentation masks; instead they
compared ICH volumes from 5 subjects measured at 3 time points.
Their reported Pearson correlation was 0.917 for the 15 scans, similar
to our results using the random forest (R = 0.93).

Only Gillebert et al. (2014) responded to our requests for segmen-
tation software to perform the segmentation and we could not find
any software online. Although the method of Gillebert et al. (2014)
is comparable to ours, their approach has not been packaged for
general use. We have released an open source package that can per-
form ICH segmentation (https://github.com/muschellij2/ichseg). Our
software includes the models for prediction, the CT template from
Rorden et al. (2012), template-level standardized mean and stan-
dard deviation images, as well as functions to register the images,
create the predictors, predict from the models, and return a binary
hemorrhage mask. Although an R package is ideal for prediction on
a large number of images and for researchers who prefer scripting,
releasing easy to use graphic user interfaces may increase the appeal
of the methods proposed. Therefore, we have also released a Shiny

(Chang et al., 2015) R application online (http://johnmuschelli.com/
ich_segment_all.html) that takes an input CT scan and outputs ICH
segmentation mask and provides a representation of each processing
step.

A potential issue for CT images that contain ICH is image regis-
tration. Indeed, methods developed for registration of healthy brains
can fail in brains exhibiting pathology. The only predictor that used
non-linear registration was the standardized-to-template intensity.
The potential problems associated with this transformation are mit-
igated by the transformation back to the native space. Thus, we use
non-linear registration, but do not rely on a highly accurate image
registration to template to compare voxels across patients; instead
we use registration to obtain potentially noisy predictors in the
native space.

Another potential concern could be that training data consisted of
only 10 patient scans and using only 100, 000 randomly sub-sampled
voxels that passed the voxel selection procedure from these scans.
Remarkably, the models have shown to have high out-of-sample
accuracy. The training and test sets were kept unchanged to avoid
overfitting the models to the test set. Validation of the method on
additional data would be useful, while rater studies may provide
more insight into the clinical differences between various segmen-
tation approaches. However, we would like to note that our data
was highly heterogeneous and contains test scans from multiple sites
and scanners. Moreover, the location and size of hemorrhages is also
highly heterogeneous. Thus, we expect our method to have a good
out-of-sample accuracy in a heterogeneous population of CT images
with ICH.

The proposed approach provides estimated binary hemorrhage
masks, which can be used to automatically estimate quantitative
measures of hemorrhage location (Muschelli et al., 2015). Our results
would also allow automated shape analysis, which require a binary
mask. The subject-specific hemorrhage masks can be used for other
voxel-based analyses that could yield novel insights into the rela-
tionship between hemorrhage characteristics and patient outcomes.

4.1. Conclusions

We have implemented and validated a fully automated segmen-
tation algorithm of ICH in CT scans and published the associated
software both as an R package and as a GUI. The method relies on
a series of processing steps and on creating a set of relevant pre-
dictors. This method has been shown to have very good agreement
with the gold standard of manual delineation of hemorrhages. As
an automated process, it is much faster, does not require exten-
sive radiologic image experience, is scalable to thousands of images,
and does not have inter-reader variability. As our methods and soft-
ware produce binary hemorrhage masks that can be localized both
in the native and template space (Muschelli et al., 2015), quantita-
tive voxel- and region-level analyses could be conducted to assess
the association between ICH characteristics and health outcomes.
Methods also provide an estimator of the ICH volume, which can be
used in standard statistical analyses, as it has been shown to be asso-
ciated with long-term functional outcomes (Broderick et al., 1993;
Jordan et al., 2009; Tuhrim et al., 1999).
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