ﬂ SCNSors m\py

Article
A Self-Calibrating Probabilistic Framework for 3D
Environment Perception Using Monocular Vision

Razvan Itu'” and Radu Gabriel Danescu *

Technical University of Cluj-Napoca, St. Memorandumului 28, 400114 Cluj-Napoca, Romania;
razvan.itu@cs.utcluj.ro
* Correspondence: radu.danescu@cs.utcluj.ro; Tel.: +40-264-401-457

check for
Received: 27 December 2019; Accepted: 25 February 2020; Published: 27 February 2020 updates

Abstract: Cameras are sensors that are available anywhere and to everyone, and can be placed
easily inside vehicles. While stereovision setups of two or more synchronized cameras have the
advantage of directly extracting 3D information, a single camera can be easily set up behind the
windshield (like a dashcam), or above the dashboard, usually as an internal camera of a mobile
phone placed there for navigation assistance. This paper presents a framework for extracting and
tracking obstacle 3D data from the surrounding environment of a vehicle in traffic, using as a sensor a
generic camera. The system combines the strength of Convolutional Neural Network (CNN)-based
segmentation with a generic probabilistic model of the environment, the dynamic occupancy grid.
The main contributions presented in this paper are the following: A method for generating the
probabilistic measurement model from monocular images, based on CNN segmentation, which takes
into account the particularities, uncertainties, and limitations of monocular vision; a method for
automatic calibration of the extrinsic and intrinsic parameters of the camera, without the need of
user assistance; the integration of automatic calibration and measurement model generation into a
scene tracking system that is able to work with any camera to perceive the obstacles in real traffic.
The presented system can be easily fitted to any vehicle, working standalone or together with other
sensors, to enhance the environment perception capabilities and improve the traffic safety.

Keywords: obstacle detection; measurement model; monocular vision; camera calibration

1. Introduction

In today’s mobile and connected world, transportation and driving face multiple difficult
challenges. As the roads become increasingly crowded, the energy sources become more and more
insufficient, the problem of pollution becomes a world emergency, and the number of road fatalities is
still too high, the industry turns towards automation to increase the transportation efficiency and safety.

Autonomous vehicles, also called intelligent vehicles, are a hot topic of research, and the
manufacturers aim at completely removing the driver from behind the steering wheel, and the steering
wheel completely. Such a vehicle has to have a detailed awareness of its surroundings, of its location,
of the road conditions, of the traffic signs and restrictions applied in the particular area, and of the
other mobile traffic participants such as vehicles, pedestrians, or bicycles. This awareness is usually
achieved by employing multiple types of sensors and algorithms, and fusing their results.

A versatile sensor for sensing the driving environment is the camera, as it can perceive both static
elements of the traffic environment such as signs, lanes, and fences, and also dynamic ones such as
vehicles and pedestrians. A detailed survey of environment perception for intelligent vehicles, focused
mainly on camera sensors, is presented in [1].

While completely autonomous vehicles are still struggling with technical, legal, and acceptance
issues, recent technological advancements in both hardware and software facilitate the development of

Sensors 2020, 20, 1280; d0i:10.3390/s20051280 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8156-7313
https://orcid.org/0000-0002-4515-8114
http://dx.doi.org/10.3390/s20051280
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/5/1280?type=check_update&version=2

Sensors 2020, 20, 1280 2 of 26

modern driver assistance systems. These systems, based on perceiving the surroundings by means of
sensors, are aimed at improving the safety of traffic participants, while making the job of the driver
easier, without taking complete control of the vehicle and making the driver obsolete. The active
and passive safety systems found in vehicles are based on various sensors, including cameras, lidars,
or radars. The sensors can be used independently, for basic functions such as emergency braking or
automatic distance keeping, or their information can be fused into a more detailed description of the
environment, for a higher degree of automation of the driving process.

Sensors such as radars or lidars are called active sensors, or time-of-flight sensors. They emit
electromagnetic waves in different directions, and measure the round trip time, thus measuring the
distance. They are accurate, and produce 3D data that is easy to interpret and use. However, they have
some disadvantages, such as reduced field-of-view (especially in the case of radar), the need to be
placed outside of the vehicle for the uninterrupted path of the beam (especially for laser), reduced
definition when the area covered is broad (due to spacing of the scanning rays), and the high cost.
The use of such sensors requires that either the vehicle is already equipped with them from the factory,
or that a professional mounts them.

Cameras are sensors that are available anywhere and to everyone, and can be placed easily inside
vehicles. When two or more cameras observe the same scene, the 3D information can be directly
reconstructed by means of triangulation, leading to the process of stereovision. Unfortunately, setting
up a stereovision system requires rigid mounting of the cameras with respect to each other, and
accurate calibration. On the other hand, a single camera can be easily set up behind the windshield
(like a dashcam), or above the dashboard, usually as an internal camera of a mobile phone placed there
for navigation assistance.

Computer vision algorithms designed for using a single camera are called monocular vision
algorithms. A single camera produces streams of images, either monochrome or color, with a
field-of-view that depends on the camera’s lens. These images can be processed either independently,
or as part of a sequence. From these images, specialized algorithms can extract relevant regions and
objects (segmentation), or identify the types of objects (recognition, classification). Recent developments
in the field of deep learning, especially in the form of Convolutional Neural Networks (CNNs), have
significantly increased the accuracy of segmentation and recognition of objects from single images, and
have even made progress towards direct extraction of 3D information without the need of stereovision.
However, the problem of measuring and tracking 3D objects using a single camera, a very important
aspect of using the camera as a driving assistance sensor, is still not completely solved.

The 3D object detection task represents a challenge and is essential for accurate perception of
the 3D world in which we live in. Acquiring 3D data is facilitated in recent years by the availability
of cost effective measurement and perception sensors. 3D object detection and tracking has become
increasingly popular also due to the advancement of deep learning-based techniques. 3D detection
refers to obtaining information regarding the object position, orientation and size in the 3D scene.
While extracting 3D object information from monocular images is a difficult task due to the limitation
of the sensor, it is a goal worth pursuing due to the wide availability of such sensors and the ease of
setting them up.

This paper presents a framework for extracting and tracking obstacle 3D data from the surrounding
environment of a vehicle in traffic, using as sensor a generic camera. The system combines the strength
of CNN-based segmentation with generic probabilistic modeling of the environment—the dynamic
occupancy grid. Additional sensorial information, in the form of the observing vehicle’s speed and
yaw rate, which can be acquired either from sensors equipping a smart mobile device, or from reading
the CAN bus of the vehicle, is used in the process of tracking, for prediction, and in the process of
automatic calibration.

The main contributions presented in this paper are the following:

Sensors 2020, 20, 1280 3 of 26

- A method for generating the probabilistic measurement model from monocular images, based
on CNN segmentation, which takes into account the particularities, uncertainties, and limitations of
monocular vision;

- A method for automatic calibration of the extrinsic and intrinsic parameters of the camera,
without the need of user assistance; and

- The integration of automatic calibration and measurement model generation into a scene tracking
system that is able to work with any camera to perceive the obstacles in real traffic.

The presented system can be easily fitted to any vehicle, working standalone or together with
other sensors, to enhance the environment perception capabilities and improve the traffic safety.

2. Related Work

Scene perception and understanding represents a major challenge for autonomous vehicles or
robots. Deep learning-based techniques represent efficient tools that can aid in the process of image
analysis and are used for tasks such as: object detection, classification, or semantic segmentation.
Semantic segmentation of a traffic scene means interpreting the image and understanding what it
contains. For this purpose, convolutional neural networks outperform traditional methods based on
image processing. An important progress in the field of segmentation is presented in [2], and is based
on the introduction of a CNN architecture called U-Net that features layers that encode the information
and an equal number of layers for decoding it. Training this CNN for the task of segmentation requires
pairs of images: the color image of the observed road scene and the labeled image where each object
class is illustrated with a different color. In [3], the authors present a CNN architecture that improves
prediction speed and is based on the same “encoder-decoder” style.

Neural networks can also be trained to provide inference regarding the depth map of the scene
from a single image as input. This is actually achieved by training with 3D data obtained from
publicly-available databases that provide stereovision information, such as the one described in [4].
Depth estimation is treated as a supervised regression problem, where a CNN is able to estimate
depth from color images. In [5] the authors are able to generate the corresponding “right” image
from the “left” one by training with a set of paired left-right images obtained from a stereo-camera
setup. The disparity (depth) image can be generated directly by a CNN, as was initially published
in [6]. A better approach is presented in [7], where the authors are able to generate the “left” image
from the “right”, but also vice-versa: the “right” image from the “left” one from a stereo-camera rig.
The paper also presents a cost function named “left-right consistency” that facilitates the training
process. The main drawback of these methods is the fact that they do not handle well the moving
objects in the scene. Still, recent methods [8] have overcome these limitations and are able to provide
information regarding the speed of the ego-vehicle or even the objects in the scene.

Other methods try to use neural networks to extract 3D data for individual objects in the scene.
In [9] the authors have trained a CNN that has a 2D bounding box as input, and is able to predict
the 3D bounding box of the vehicles. This approach is improved in [10] by using a different cost
function for regressing the local orientation. The idea is to generate bins and to regress the local object
orientation as the correction needed to be applied to the center of a bin. Another idea is to extract
the 3D information from the Inverse Perspective Mapping image (IPM, or bird’s-eye view). Such a
method was presented in [11], where the authors map the features extracted from a color image into
the bird’s-eye view image of the scene. All of these methods perform image-based 3D object detection,
and usually have a lower accuracy than lidar-based methods. Paper [12] introduced an approach called
“pseudo-lidar”, where the depth image features are represented similarly to lidar features. The idea
is to replicate the LIDAR signal using features extracted from cameras and then to use lidar-based
methods to extract the 3D information.

In order to use a camera as a sensor for environment perception, the relation between the camera
pixels and the environment has to be known. The relation is established by camera calibration in the
world reference frame (the world being, most of the time, relative to our own vehicle). Caltech [13]

Sensors 2020, 20, 1280 4 of 26

offers a calibration toolbox that is widely used in controlled environments and is based on the use of a
reference pattern with a known size. However, for a vision system to be easily set up by the average
user, automatic calibration is desired.

One of the most useful clues for computing automatically the position and orientation of the
camera with respect to the world reference frame is the vanishing point (VP). In [14] the authors
determine the vanishing point from road traffic images from a single camera by using lane lines. This
method relies on a priori information regarding the camera height and lane width. This approach uses
a single camera that is placed in a fixed position and where only the objects in scene are dynamic. They
also rely on the flat road assumption, which is thoroughly used in the literature by other scientists.
If the camera is mounted on a vehicle, then the bird’s-eye view image must be stabilized, due to the
trepidations and vibrations caused by the uneven road surface. A method for stabilizing the Inverse
Perspective Mapping (IPM) image is presented in [15], where the vanishing point is computed at
each frame acquired from the camera. The pitch and yaw angles are determined from the VP and
used to recompute the projection matrix that is used to generate the IPM image. Detecting the VP in
road images can be done by using geometric properties: extracting line segments, computing their
intersection, and determining the VP using a voting scheme and texture properties (extracting relevant
features in images, usually with Gabor filters and analyzing their orientations [16,17], and employing
voting schemes). Optical flow can also be used to calibrate cameras, as presented in [18]. The idea is to
determine relevant features in consecutive frames and to extract the line segments from them. These
lines will generally intersect in the vanishing point if the vehicle is travelling straight and on a flat
road surface.

Environment perception systems generally use multiple sensorial input data, usually coupled
with optical flow analysis. Such an approach is presented in [19] and is based on a stereovision camera
setup. The dynamic vehicles from the road traffic scene are detected using the correlation between
the stereo data and the feature-based optical flow. Paper [20] represents another method for vehicle
detection and tracking using the fusion of stereo data and optical flow vectors. Other solutions that
provide detection and tracking rely on neural networks for the detection part, as well as for the tracking.
In [21], the authors provide a method for tracking using Long Short Term Memory (LSTM) neural
networks, but the main disadvantage is that it heavily depends on datasets and the availability of
training data. The authors mention that the tracking is trained using imagery from realistic video
games (synthetic data).

3. Materials and Methods

The overview of the solution is presented in Figure 1. The input data is composed of image
sequences acquired from a single monocular camera, and speed and yaw rate information that can
be acquired from either the vehicle’s on-board sensors, or from a mobile phone equipped with GPS
and gyroscope.

In order to detect the obstacles on the road, the system has to be calibrated. The focal distance of
the camera is calibrated once, by analyzing lateral displacements between consecutive frames as the
vehicle rotates, knowing the rotation speed from the yaw rate sensors. After enough samples have
been collected, the focal length is computed, as described in Section 3.5.

After the calibration of the focal length, the acquired images are submitted to a convolutional
neural network for semantic segmentation, separating the road areas from the obstacle areas. The road
areas are further processed by identifying the lane delimiter markings, which are then used for height
and pitch angle calibration, as described in Section 3.5. The pitch angle is further refined by computing
the image’s vanishing point, which is also used for computing the camera’s yaw angle with respect to
the longitudinal axis of the host vehicle.

Using the calibrated parameters, the CNN-based segmented image is mapped in the bird’s-eye
view, and the scans delimiting the road and the obstacle areas are identified and refined. Based on

Sensors 2020, 20, 1280 5 of 26

these scans, the probabilistic measurement model is generated. The whole process is described in
Section 3.2.

The probabilistic measurement model is used to update the world model, which is detailed in
Section 3.1. In the update process, the speed and yaw rate of the host vehicle are combined with the
past state to generate a prediction, which is updated by the measurement, as described in Section 3.3.
From the updated world model, which consists of cells occupied by dynamic particles, individual
objects are extracted, as presented in Section 3.4.

Yes

Focal
length
known?

Image, speed and yaw

S CNN based segmentation Pitch update
rate acquisition

Camera height and pitch
calibration Measurement model computation

World model update

Focal length calibration

L]

Calibrated

Objects extraction

Figure 1. Overview of the self-calibrating obstacle detection system.
3.1. The Probabilistic World Model

The 3D world model that surrounds a vehicle in traffic is complex and dynamic, containing
obstacles of many shapes, moving in various ways. Some of the obstacles are observable (visible),
and some are partly or completely occluded. A probabilistic model of the world must be able to
represent all these aspects by encoding the probability of the obstacle’s existence, and the probability
density of the obstacle’s speed, while allowing for efficient inference. Occupancy grids are a good
compromise between descriptive power and inference efficiency. While they disregard the obstacle’s
height, they allow probabilistic modeling of the existence of the obstacles (the occupancy), and the
multi-hypothesis representation of the speed. Additionally, they can be easily updated by measurement
data, if a suitable measurement model is used.

The particle-based dynamic occupancy grid [22,23] provides an efficient and intuitive method for
representing the occupancy probability of a cell, by means of dynamic world building blocks called
“particles”, as seen in Figure 2. The number of particles assigned to a grid cell is equivalent to the
probability of the cell to be occupied by an obstacle, and each particle has a speed vector, allowing the
population of the particles in the cell to also depict a multi-modal probability density of the obstacle’s
speed. The inference mechanism follows the typical prediction-measurement-update tracking cycle,
the prediction being achieved by moving particles from one cell to another based on their speed vector,
and the measurement based update being achieved by multiplying, creating or removing particles
based on the agreement of the prediction with the measurement data.

Sensors 2020, 20, 1280 6 of 26

Figure 2. Particle-based probabilistic world model. The occupied cells in front of the camera are parts
of two vehicles moving in the same direction as our own vehicle.

For the system proposed in this paper, the world is modeled as 120 x 500 cells occupancy grid,
each cell representing a 20 X 20 cm area of the road, as seen in bird’s-eye view. The camera is assumed
to be positioned in the middle of this grid, facing forward, meaning that half the grid is not observable
directly, but can only be predicted from the observed cells. This model allows us to predict the position
of obstacles when they are out of the field-of-view of the camera, and also makes the system ready to
be used with an additional camera facing towards the rear.

The grid cells can hold at most N¢ = 100 particles. This number is a parameter of the algorithm,
controlling the accuracy of the estimation (more particles produce better estimations of occupancy and
speed) at the expense of computation time. The cells that hold more than 75 particles are considered to
be occupied and will be subsequently grouped into individual objects.

3.2. Computing the Probabilistic Measurement Model

The probabilistic measurement model is the occupancy probability derived from measurement
data, used to update the world model. Formally, the measurement model is the conditional probability
of the sensor measurement with respect to the world state. As the world model is based on cells and
their occupancy state (occupied or free), the measurement model must provide a likelihood for the
measurement related to each cell, under the assumption that the cell is either occupied or free. In order
to compute these conditional probabilities, the measurement data must be mapped into the grid space.

Some sensors, such as radar, lidar or sonar, provide data that is easier to map in the world space,
because their data is already 3D. A single camera provides a 2D image, containing a lot of information,
but no direct mapping to the 3D space, and no direct identification of obstacle areas at sensor level
(as opposed to a laser ray that will either encounter an obstacle and measure the distance towards it,
or not).

Mapping the image information to the grid space will require first the identification of the obstacle
areas using convolutional neural networks. The convolutional neural network (CNN) used in our
solution is based on the U-Net architecture [2], having 5 layers for encoding the data and 5 layers
for decoding. The network also features a central layer between the encoding and decoding layers.
A typical encoder layer consists of the following operations: convolution using a 3 X 3 kernel, and batch
normalization followed by ReLU (Rectified Linear Unit) activation. These three operations are applied
again, and then they are followed by a max pooling layer (with a 2 X 2 stride). The middle layer has
the same operations, minus the max pooling, whereas a typical decoder layer features up-sampling
(deconvolution) with a 2 X 2 kernel, and concatenation with the homologous layer from the encoder.
The decoder layer then features another deconvolution layer (with a 3 X 3 kernel), batch normalization,
and ReLU activation, each applied three times. The final output of the network is given by the sigmoid
activation function applied to a 1 X 1 convolution result in the last layer. Both the input and the output

Sensors 2020, 20, 1280 7 of 26

images have the same size, 256 X 256 pixels. Figure 3 presents a visual representation of the CNN
segmentation process.

Cany # Nom Upsampling - mokd
' & el 'm,pw [+ heemn & ReLl ' * g

Figure 3. Segmenting the scene using the U-Net convolutional neuronal network.

The network was trained for a total of 50 epochs using the binary cross-entropy loss function.
Training is automatically stopped if there is no improvement (in this case it was stopped after 34 epochs).

For training the network, we used the state-of-the-art datasets for semantic segmentation:
Cityscapes [24], KITTI [3], Berkeley Deep Drive [25], and Mapillary Vistas [26]. We used a total of more
than 31,000 images, from all four datasets combined. The images with less than 2500 annotated road
pixels were filtered out, resulting in 28,000 images for training and 3500 images used for validation
during training. All images and labels were scaled down to 256 X 256 pixels. The main objective being
to determine the drivable road area, we have only used the road class from the datasets, meaning
that the image pairs used for training have the following structure: the input image (color image of
the road scene, three channels) and the label image (single channel, with the road annotated as 255,
and the background/non-road annotated with 0).

The CNN-based semantic segmentation is able to reliably find the road and the generic obstacle
areas of a color input image (Figure 4a), generating a grayscale image of the same size, with the bright
regions depicting the most likely obstacle areas (Figure 4b).

These results must be mapped in the grid bird’s-eye view space, by a homography transformation
that takes into account the intrinsic and extrinsic parameters of the camera with respect to the world
coordinate system. The calibration of these parameters is discussed in Section 3.5. The mapping from
the perspective image space to the grid space will also take into consideration the limitations of the
camera’s field-of-view (the camera does not cover a rectangular area, but a cone), and the occlusion of
the road in front of us by the vehicle’s hood (which is classified as obstacle, as seen from Figure 4b).
The following steps are taken:

1. Find the topmost point of the hood area, as seen from Figure 4b. Using this row coordinate,
we generate a mask to depict the useful area of the perspective image, as shown in Figure 4c.

2. Map the useful area mask to the grid space, using the transformation homography. Every grid area
point that projects outside the perspective image, or projects in the black areas of the usefulness
mask, will be set to the value 0, and all other points will be set to value 255. The result is the grid
space visibility mask, shown in Figure 4d, and will be further denoted by M.

3. Map the segmented perspective image to the grid space, using the transformation homography.
The grid cells that overlap values of zero in the visibility mask will be set to zero, and the other
will be set to their corresponding segmented perspective value. The result is shown in Figure 4e,
and will be further denoted by B.

By using visibility masks, we avoid considering the hood of our own vehicle as an obstacle.
Additionally, in a later processing stage, the visibility mask will help us establish the probabilities of
the grid cells to be free or occupied.

Sensors 2020, 20, 1280 8 of 26

(b) (c) (d) (e)

(@)

Figure 4. Transforming the perspective color image into usable measurement: (a) Perspective color

image; (b) segmented image, highlighting the obstacle areas (white) and the free area (black); (c) useful
area mask; (d) grid visibility mask; (e) bird’s-eye view of the segmented image.

As seen from Figure 4, the bird’s-eye view mapping is only partially useful for retrieving the 3D
information about the segmented obstacle areas, due to the fact that most obstacle points are not on the
road and; therefore, they will not obey the assumption of zero height that is used for the homography
mapping. The obstacle areas will be severely distorted, and as they approach the horizon line in the
image space, they will be mapped to infinity in the bird’s-eye view space. The only useful points for
measurement are, therefore, the contact points between the obstacle and the road. In the segmented
bird’s-eye view image these points are the transition points between dark and bright areas. Another
problem is that not even the transition points are always points of contact between obstacles and road.
For example, a car touches the road with its wheels, but the space between them is above the road.
Projected in the grid space, a car’s contour will present two “spikes” closer to the observer, and a gap
between them.

For all the reasons described above, the grid space projection of the segmented image will undergo
the processing steps described in Algorithm 1, with the aim of extracting the contours (or “scans”) of
the obstacle areas as accurately as possible. We assume that the grid row coordinate is proportional to
the forward distance from the camera, and the grid column coordinate is proportional to the lateral
distance, and the camera is located at coordinates (Ycam = 0, ccam = wg/2), wp being the width of the
bird’s-eye view image B. The threshold Tp is used to discriminate between obstacle and road areas, as
the result of the CNN classification is an image of continuous grayscale values.

The first step is to transform the image into scans, an array of distances computed for each viewing
angle, from 0° to 180° (the area in front of the camera). After the distance from the camera to the
nearest obstacle structure is computed for every angle from 0° to 180°, only a subset of these angles will
have a valid distance. For the angles that are outside of the camera’s field-of-view, and for the angles
that cast rays that do not meet obstacles in the XZ range defined by the bird’s-eye view transformation,
the assigned distance will remain the invalid infinity (a very large numerical value). The end points
of the rays will form polygonal lines, which look like the ones in Figure 5a. The contours look fuzzy,
due to the problem of incomplete contact between the obstacle and the road, and due to segmentation
errors that are sometimes amplified by perspective remapping.

In order to overcome the fuzziness, we will generate convex hulls of the polylines. A danger
when generating convex hulls is that it is possible to join distinct obstacles together, and “fill in” real
free space. To avoid this, the polylines are split into clusters: Only adjacent rays of similar distance will
be part of the same cluster. The resulted clusters are similar to the ones shown in Figure 5b. Now the
convex hull can be generated by iteratively scanning groups of three rays and replacing the middle
ray, if it has a higher distance than its neighbors, to the mean of the neighbors. The result is shown in
Figure 5c.

Sensors 2020, 20, 1280 9 of 26

@ (b) ©

Figure 5. Generating the convex scans from the segmented bird’s-eye view image: (a) The scan lines
generating by identifying transition areas along polar rays; (b) clustering of the scan lines; (c) convex
hulls of the clusters; (d) binary image generated from extracted scans.

Algorithm 1: Extraction of convex scan lines

O ® N @

W W W W W W WINRNNDNDNDNRNDNDNDNR R R 2
SR OPN POV PIIFTTEDNE OO0 PN E WP

Input: bird eye view segmented image B
Output: polar distances d(a), for each anglea =0... 180
Foreacha=0... 180

d(a) := D_inf /| Distance for each angle, initially infinity
End For
For each row 7 and column cof B/ Compute distance to obstacle for each ray
If B(r,c)>Tg

a(r, ¢) := atan2 (*-rcam, C-Ccam) * 180/t // angle of the ray for the obstacle cell
aj := |a(r,c) +0.5]

d; = \/(r - rmm)2 + (c— cmm)2 // distance on the ray for the cell
d(a;) := min (d(a;), d;) / keep minimum distance for a ray
End If
End For
Foreacha:=0... 180
K(@):=0 // Cluster label for each angle a, initially 0
End For
N:=0 // Number of clusters, initially 0
Fora:=1... 180 // Cluster the rays
If d(a)<D_inf
If |d(a)-d(a-1)|<Tk and K(a-1)>0 /| Distance test
K(a) := K(a-1)
Else
N :=N+1
K@) =N
End If
End If
End For
Changed := true
While Changed /| Convex hull generation, for each cluster

Changed := false
Fora:=1... 179
If d(a)<d(a-1) and d(a)<d(a+1) and K(a)=K(a-1)=K(a+1) /If middle ray is longer

d(a) := (d(a-1) + d(a+1))/2 /| Replace middle ray with neighbors mean
Changed := true // Scan again
End If
End For
End While
Return d

Sensors 2020, 20, 1280 10 of 26

In Algorithm 1, B is the input grayscale image, the remapped CNN result, and the output d is the
distance (in grid units) for each viewing angle a. The clustering process uses an array K, which stores
the cluster label for each ray of angle a. The number of clusters, N, is incremented when two adjacent
rays of significant distance difference are found (the difference is compared to the clustering threshold
Tx, set by trial and error to an equivalent grid distance for the world distance of 3 m). Each valid ray
(with a distance that is not infinite) will have a non-zero label assigned to it.

The resulted convex distances d can be used to generate a border image, as seen in Figure 5d.
However, in order to compute the measurement model the convex ray distances themselves are
more useful.

The measurement model must incorporate the measurement errors, uncertainties, and limitations.
As the measurement is based on detecting the contact point between the obstacle and the road,
transposed in the bird’s-eye view space, the following errors and limitations are taken into consideration:

(1) The longitudinal errors along the observation rays: These errors are caused by the limits of the
inverse perspective mapping, or, more specific, by the uncertainty of estimating the distance to an
object when knowing only its position in a perspective image. We use Equation (1) to quantify this
expected error. The derivation of this equation is presented in [22].

o(z) = h(l + (%)Z)oa + o, (1)

In Equation (1), & is the camera height above the road plane, z is the estimated distance to the
obstacle, and 0 is the angular resolution error, which can be caused by either the limited resolution
of the image, which limits the accuracy of the measurement of the vertical angle of sight for the
obstacle contact point with the road surface, or by the pitching motions of the ego-vehicle. For this
parameter, a value of 0.1° was chosen experimentally. By oy we denote an error that accounts for the
non-angle related sources (imperfect segmentation, non-planar road, etc.), and this value is set, also
experimentally, to 0.1 m.

(2) The limitations of observationfvisibility: As the measurement is expressed by distances along
viewing rays, there is no knowledge about the environment beyond the point where the ray reaches the
obstacle. Assuming that along a ray cast at angle a (from 0° to 180°) we have the obstacle at distance
d(a), as computed by Algorithm 1, and that an obstacle has a minimum depth w, we can define the
occupancy probability along a ray as:

0, if z<d(a)
Pideat(a, z) =3 1, if z>d(a) andz < d(a) + w .)
05, ifz>d(a) +w

Equation (2) states that we are certain that the cells are free before we hit the obstacle, we are
certain that they are occupied for at least a small depth w after the obstacle is reached, and beyond
that distance the probabilities of the cells being free or occupied are equal, 0.5. This equation does not
take into account the sources of measurement errors, but only the occlusion caused by the first visible
obstacle to the ones behind it.

In order to account for possible segmentation errors, the values 0 and 1 in Equation (2) are replaced
by po and 1-py, respectively, where py is a small value, experimentally set to 0.05. In order to account for
the distance uncertainty errors, quantified by Equation (1), we define a Gaussian convolution kernel
G(a), based on the standard deviation computed from Equation (1), as:

1 _ (i—i0)22
G(a,i) = —————¢ 20@)", 3)
(@1) o(d(a)) V2r

Sensors 2020, 20, 1280 11 of 26

In Equation (3), o(d(a)) is the distance standard deviation computed by Equation (1) based on the
distances estimated using Algorithm 1 for each viewing angle a. This kernel encodes the spread of
the probability of the obstacle’s existence around the estimated value, accounting for the increasing
measurement uncertainty with the distance. By convolving the idealized probability pigea1(a) with this
kernel, we obtain the realistic probability values for the obstacle’s existence along the ray of the angle a:

Preal(@) = Pigeat (@) * G(a), 4)

The index z is omitted in Equation (4) as the convolution operation is applied to the whole array
of probabilities for a given angle a. The steps of the measured occupancy probability computation for a
single ray are presented in Figure 6.

d(a)
N e " pideu/(a/z}

AN

4

preal(a) :pideal{a) *G(G)

z

Figure 6. Computing the measured occupancy probability for a single ray for a given angle a.
The obstacle is at the distance d(a), before the obstacle the area is considered free, and beyond the
obstacle (of a minimum depth w) the state of the cells is unknown. The distance measurement error is
encoded in the Gaussian kernel G(a) that will convolve the probability array.

The next step is to map these polar coordinate probabilities into the Cartesian grid space. Each
row of the grid will get an assigned probability, using Algorithm 2.

Algorithm 2: Creation of the measurement probability grid

Input: polar probabilities preq)(a)
visibility mask M
Output: measurement grid probabilities pmeasured (7,€)

1. For each grid row r
2. For each grid column ¢
3. If M(r,c)>0 JIf cell is visible, compute probability
4. ag := atan2 (r-fcam, € — Ccam) * 180/ // Floating point value of the ray angle
5. ag = |ay| / Lower integer bound of the ray angle
6. ay = |ag // Upper integer bound of the ray angle
7. z¢ = \/(r - rmm)2 + (c- cmm)2 // Floating point value of distance on ray
8. 20 := | Zf | // Lower integer bound of distance
9. z1 1= |zf /| Upper integer bound of distance
10 pmeastlreci(r,c) := LinearInterpolation(preal, 40, 41, 20, 21, a¢, 2¢) /] 4 point
" interpolation
11. Else
12. Pmeasured (7,€) :== 0.5 /| Cell not visible, probability is default 0.5
13. End if
14. End For
15. End For
16. Return pmeasured

In Algorithm 2, the grid is assumed to be larger than the observable scene, and the position of the
camera, which is the point from where the rays are cast, is located in the grid at coordinates (¥cam, Ccam)-
In our implementation, the camera is located in the middle of the tracked grid. The row and column

Sensors 2020, 20, 1280 12 of 26

coordinates r and ¢ are used to compute a distance z¢ and an angle 4y, as floating point values, for each
observed grid cell (as indicated by the visibility mask M, depicted in Figure 4d). Because indexing the
polar probability matrix pyea(4,2) requires integer coordinates, the function LinearInterpolation is used
to compute a weighted mean of the p;o, values of the integer neighbors of zf and as. This way, we will
ensure a complete and smooth coverage of the grid cells with measurement probability values.

The process of generating the measurement probability grid is depicted in Figure 7. The grid area
behind the camera is assumed to be invisible and; therefore, the visibility mask M has zero values.

Invisible area, M(r,c)=0 Visible area, M(r,c)>0
Probability is 0.5 to be occupied Probability computed by p,..(a,z)

Figure 7. Computing the measurement occupancy probability values for all the grid cells. The cells
that are not observable (M(r,c) = 0) have a default 0.5 value of the probability, while the other have the
probability decided by the rays cast from the camera point that meet obstacle areas.

3.3. Updating the World State

Before measurement, the probability of a grid cell at coordinates (7, c) to be occupied is given by
the number of particles in that cell, particles that have been moved using the motion equations of the
ego-vehicle (the forward movement expressed by the speed, and the angular movement expressed by
the yaw rate), and the motion equations of the particles themselves (uniform motion based on constant
speed, combined with random alterations of the position and speed), as described in [23]. We will
denote this predicted probability as ppredicted (7, ¢), the ratio between the number of predicted particles
in the cell and the maximum capacity of the cell. If more particles are moved in the cell in the process of
prediction, the particles in excess of the cell capacity N¢ are discarded, so that always ppredicted (7,¢) < 1.

After the measurement data is processed, each grid cell will have assigned a measured occupancy
probability value pmeasured (7, ¢). The updated probability of the cell to be occupied is subsequently
computed using Equation (5):

redi 7, €)Pmeasured ", €
p(r,c) = Ppred cted (7, €)Pmeasured (7, €) .)
Ppredicted (7, ¢)Pmeasured (7, €) + (1 ~ Ppredicted (r,c)) (1 = Pmeasured (7,¢))

As the true state of the grid is represented by its component particles, the probability computed by
Equation (5) is just an intermediate step towards adjusting the particle population of each cell. In order
to comply with the computed probability p(r, c), the number of particles in the cell must be adjusted
to match the product between p(z, c) and N¢, N¢ being the maximum capacity of a cell (100 in our
implementation). If the current number of particles in the cell, resulted after prediction, is lower than
the target number, the particles are randomly multiplied. If the current number of particles is higher
than the target, particles are randomly eliminated [23]. The random elimination or multiplication will
preserve the probability distribution of the cell’s speed.

For a smoother estimation, we used an additional step before the particle multiplication/deletion
process, consisting of a Gaussian smoothing of the p(r,) grid.

Sensors 2020, 20, 1280 13 of 26

3.4. Identifying Individual Objects

The updated occupancy grid is segmented into individual objects by proximity-based labeling.
Clusters of occupied neighboring cells are extracted, and cuboids are fitted to them. The speeds of
each cell, resulted from the speeds of individual particles within the cell, are used to estimate the speed
and orientation of the resulted cuboid. If the speed of the cuboid is too low, or the standard deviation
computed from the individual cell speeds is too high, the object is reported as static and no orientation
is computed for it.

There are two improvements to the classical labeling algorithm that ensure a better estimation of
the cuboids, and reduce the number of false positives:

- The dynamic cells are not grouped together with static cells, and also they are not grouped
together with cells that have a speed that differs significantly in magnitude or orientation.

- The particles that are newly created in a cell that previously had no particles are not taken into
consideration when the cell is judged to be occupied or free.

The process of identification of individual objects is depicted in Figure 8.

v

Cuboids on perspective image

Occupancy grid Label grid

Figure 8. Identifying individual objects from the updated occupancy grid. The cells with high-occupancy
probability are considered for clustering (labeling). The cells that have a significant average speed of
their particles are considered dynamic, and will create dynamic objects, while the others will create
static objects.

3.5. Automatic Camera Calibration

The proper operation of the algorithms presented in the previous sections relies on two key
components: A good segmentation of the observed scene, to identify the obstacle pixels and the
drivable pixels in the perspective image; and the suitable homography between the perspective image
and the grid space. The segmentation can work on any image, without the need of calibration, but in
order to establish the relation between the grid space and the segmentation results, the projection
matrix of the camera is needed. Formally, a 3D point of coordinates (X, Yw, Zw) is projected to the
image point of coordinates (u, v) by:

u XW
s
Y
Ug =P w . (6)
S ZW

Sensors 2020, 20, 1280 14 of 26

The projection matrix is derived from the rotation matrix Rwc, the translation vector Ty, and the
intrinsic parameters matrix A:
P = A[Ryc Twcl- @)

The rotation matrix takes into consideration the camera rotation angles pitch () and yaw (¢):

1 0 0 cosp 0 sing
Rwc=| 0 cosa -sina | 0 1 0 . (8)
0 sina cosa —singp 0 cosgp

The translation vector takes into account the camera height above the road plane, h:

0

Tew =| —h | ©)
0

Twc = ~RwcTew. (10)

For the intrinsic parameter matrix A, we will assume that the principal point is in the middle of
the image (at position H/2, W/2, H being the image height and W being the image width), and the only
unknown parameter is the focal length (in pixels) f:

f 0 W/
A=|o0 f H/2 | (11)
00 1

Our simplified intrinsic-extrinsic camera model requires the following parameters to be estimated:
the focal length f, the camera height &, the pitch angle a and the yaw angle ¢.

The focal length acts like a scaling factor, relating the angular displacements in the 3D world to
image pixel coordinates. For example, if the camera is rotated around the vertical axis Y by a certain
angle Ag, the position of a projected world point in the image will shift on the image column axis u by:

Au = —fAg. (12)

If the vehicle or the imaging device is equipped with a yaw rate sensor (any vehicle equipped with
ESP has an on-board yaw rate sensor that can be read using the CAN bus, and most mobile phones
or tables are equipped with a gyroscope which can be used to measure angular speeds), the angular
difference between frames can be computed by multiplying the yaw rate with the time between frames:

Ap = AL, (13)

The pixel displacement Au can be measured by analyzing the displacement of image columns
average brightness between frames, or can be computed by using any optical flow algorithm. Knowing
the pixel displacement and the angular displacement, the focal length can be estimated:

J— (14)
QAt

Ideally, if the lateral displacement of the same feature between two consecutive frames can
be determined accurately, the focal distance can be computed instantly. However, there are errors
in determining all the factors involved, and many frames have an insignificant amount of rotation
between them, leading to numerical instability. For these reasons, the focal length is estimated for
multiple frames, the frames that have no significant yaw rate are excluded, and the final result is the

median value of the list of estimated focal values. More details are presented in [27].

Sensors 2020, 20, 1280 15 of 26

For the extrinsic parameters h (camera height) and « (pitch angle), we will analyze the distribution
of a known 3D structure’s apparent width in the image space, as a function of the image line coordinate.
A convenient structure that is easy to recognize and has a quasi-standard size is the lane that our
vehicle travels on. The edges of the already-segmented road surface are used to find the boundaries
of the current lane, by searching from the image center column towards left and right until an edge
is found. This approach is very fast, and, even if it is susceptible to errors (some edges are not lane
delimiters, some delimiters have no clear edges) it will provide enough valid lane width candidates to
be used for calibration.

A vote matrix, of the same size as the original perspective image, was used to count each occurrence
of a lane width (defined as the distance between the right and the left edge), for a certain row. Every
time a lane delimiter edge pair is found, the value in the voting matrix at coordinates (row, width) is
incremented. The process continues for multiple frames, so that a clear linear dependency between the
row and the lane width can be established, as seen in Figure 9.

(a) (b) ()

Figure 9. Finding the linear dependency between the lane width in the perspective image and the

Lane width in pixels

image row: (a) Perspective image, (b) detected lane widths, and (c) voting matrix counting lane width
and image row pairs, shown as a heat map.

The voting matrix was then analyzed by means of the Hough transform, to find the best fitting
line to encode the relation between the image row and the lane width (Figure 10). In the Hough
accumulator, each pixel of the (row, width) voting matrix is weighted by its value (the number of
examples of the same row and width that have been encountered).

vp— horizon row

I, —lane width at image bottom
L

‘
Image row

Lane width in pixels

Figure 10. Fitting a line to the voting matrix, to establish the linear variation of lane width with the
image row. The intersection of the line with the zero column is the horizon row, and the intersection
with the zero row is the lane width at the bottom of the image.

The row coordinate where the linear width distribution intersects the 0 column is the horizon row
(see Figure 10), where all road structures become point-like. This row is also the geometric locus of

Sensors 2020, 20, 1280 16 of 26

the vanishing point. We will denote this coordinate by vy. Knowing vy and the focal length f, we can
estimate the pitch angle of the camera:

H
2~ %

f

The intersection of the lane width line with the 0 row is the expected lane width at the bottom row
of the image (see Figure 10). This width, denoted by [;,, depends on the camera height above the road
plane. Thus, we can compute the camera height as:

tana = (15)

h= Dcos(g —a-— 6), (16)

where a is the already computed pitch angle, 0 is half of the vertical angular field-of-view of the camera
(depends on the focal length and the image height), and D can be computed as:

VA + (H/2)L

D= —, (17)
Iy
where L is a standard lane width for the region/city.

The yaw angle is found by detecting the vanishing point in the perspective image. The vanishing
point is the point where the parallel 3D road lines meet in the image space, and is located around the
already estimated horizon row. The vanishing point is found by voting along gradient direction of
the road edges. As the edges converge in the vanishing point, the votes will create a maximum in the
voting space, which is restricted around the vy row.

The process of finding the vanishing point, of coordinates (ug, vy), is depicted in Figure 11.

VP (ug, Vo)

Figure 11. Finding the vanishing point (VP). The road edges will vote in the area around the already
estimated horizon row, and the position with the maximum votes will be selected as the vanishing point.

From the estimated vanishing point, the yaw angle ¢ can be computed:

w
7~ 4o

f

At this point all the required parameters can be computed. Parameters such as the focal length, the
height of the camera above the road plane, and the yaw angle are static, and once they are calibrated

tangp = (18)

they can be used in the obstacle detection process. However, one has to ensure that they are estimated
based on sufficiently representative image data; therefore, enough frames have to be analyzed for
estimating the focal distance and for generating the row vs. width voting space. For example, the focal

Sensors 2020, 20, 1280 17 of 26

distance calibration requires the vehicle to make turns, so driving for minutes in a straight line will not
be enough, and calibration of height and pitch requires enough lanes, seen in different positions in the
image space, so that the voting space in Figure 9 will show a clear linear dependency. Calibrating the
yaw angle from the vanishing point detection also requires multiple results, to filter out noise and also
to exclude the scenarios where our vehicle changes lanes or makes turns, and therefore the direction
pointed by the road edges will not coincide with the direction of our vehicle’s heading. Thus, for
measuring the yaw angle Equation (18) is applied for multiple frames, and a median value of the result
is chosen.

A parameter that is constantly changing is the pitch angle, either due to the road sloping upward
or downward, or due to imperfections in the road or to our maneuvers of acceleration or braking,
which make the vehicle’s body oscillate. The amplitude of the pitch angle change can be more than
1°; therefore, corrections have to be constantly applied. If we denote by v; the row coordinate of the
horizon line obtained from lane width analysis (the “static” horizon), and by v; the row coordinate of
the vanishing point obtained at frame 7, we can compute a pitch correction angle Ax; for each frame:

0p — 0
7

More details about the calibration process can be found in [27].

AO(Z‘ = (19)

4. Evaluation and Performance

4.1. Data Acquisition

The development and testing process of the algorithms was based mostly on data acquired by
our own recording application, written in Java and deployed on Android powered mobile devices.
The application was able to interface with the following resources of the mobile phone: camera,
accelerometer, gyroscope, geo-magnetic sensor, and position sensor (GPS or GLONASS depending on
the used device).

The mobile device’s main camera was used for acquiring images of the traffic scene. We used the
main camera that is usually placed in the back of the device due to its better sensor and resolution.
The other sensorial data was acquired using the available Android API’s and the data is saved on
the internal storage in a text file using the current timestamp as the name. The same name was used
when saving the current image/frame from the camera. Therefore, the sequences can be analyzed both
locally on the device and also offline, on better hardware during the development of the algorithms.
We acquired a total of over 115,200 images grouped into 27 sequences in various weather conditions,
during different moments of the day and, in the city, rural road and highway scenarios. A figure
containing all the GPS traces from the recorded trips in our home city and its surroundings is illustrated
in Figure 12.

Sensors 2020, 20, 1280 18 of 26

Popesti DJ109A

DN1J A Mera
~

Valea Chintaului

vistea Dj10sT

DC142C 5

-H"h-h‘q_Zgna Industriald
Est

Bulgaria

Someseni

Suceagu

Buna Ziua Borhanci DNIN

Borhanci. SDDDT

Luna de 5us
Becas

Figure 12. The GPS traces for all the trips recorded in Cluj-Napoca, Romania, and the near surroundings.

The dataset containing the recorded trips is publicly available at [28].
Besides our acquired sequences, publicly-available datasets were used for testing individual
modules of the obstacle detection framework.

4.2. Segmentation Results

The CNN-based segmentation was evaluated using the validation set from CityScapes [24].
The Intersect Over Union (IoU) score that we obtained is 0.91 and the state-of-the-art [29] from Google
achieves 0.98, as seen in Table 1. The result of our method is thresholded with a fixed value, we do not
post-process or refine the segmentation mask.

Table 1. Evaluating segmentation with state-of-the-art, using the Intersect Over Union (IoU)
performance metric.

CNN Model IoU score (road class only)
DeepLab [29] 0.986
E-Net [30] 0.974
Proposed CNN-trained multi-class 0.922
Proposed CNN-trained single-class (road only) 0.911

The evaluation is done using a network trained to predict a single class (road only). We found that
by training for multiple classes the score can increase (0.92 vs. 0.91). Another aspect is that the current
state-of-the-art methods rely on training to predict for the full 19 classes from the dataset, and they
also rely on bigger input images both for prediction and training. We chose to favor prediction speed
by using smaller input images.

While investigating the low IoU scores from the evaluation, we found that the validation and
training sets contain significant labeling errors, as seen in Figure 13.

Sensors 2020, 20, 1280 19 of 26

(a) (b) (c)

Figure 13. Examples of wrong annotations in the CityScapes [24] and Berkeley Deep Drive [25] datasets.

Left column, (a)—input image, center column, (b)—prediction, right column, (c¢}—ground truth images
containing errors.

The CNN trained by us on multiple datasets is able to correctly segment the input images, even
though the ground truth labeling is not always accurate, and these images might affect some of the
metrics. Our system is robust enough to be used in a monocular perception system as the first step to
create a measurement map of the scene, and it can always be improved by more training.

4.3. Calibration Results

Automatic camera calibration of height and pitch and yaw angles is the first step to be taken when
a new camera setup is encountered. We performed three tests using different vehicles and cameras of
our own, and we also performed tests on the KITTI (Karlsruhe Institute of Technology and Toyota
Technological Institute) dataset [4], which includes information about the camera height. The results
are presented in Table 2.

Table 2. Self-calibration results for camera height and pitch angle computation.

Scenario Estimated Ground Truth Pitch Angle
Camera Height (mm) Camera Height (mm) (degrees)
Own setup test 1 1268 1250 -1.68°
Own setup test 2 1234 1200 -3.8°
Own setup test 3 1468 1480 2.97°
KITTI setup 1649 1650 —0.85°

Our test data, and the KITTI dataset, do not include information about the ground truth pitch
and yaw angle. Therefore, the only way to assess that computed pitch or yaw angles are correct is to
construct the projection matrix, use it for generating bird’s-eye view images, and analyze the resulted

Sensors 2020, 20, 1280

20 of 26

images. A good pitch angle will result in IPM images where the lane lines are parallel, and a good yaw
angle results in lanes being vertical while driving on a straight road, as can be seen in Figure 14.

Figure 14. Generating the Inverse Perspective Mapping (IPM) image using the calibration data.

4.4. Obstacle Detection Results

The obstacle detection algorithm was also evaluated using the publicly-available KITTI tracking
dataset. The results on trips labeled 0005, 0010, 0011, and 0018 are illustrated below in Table 3.
We computed the mean absolute error between the 3D location of the object detected by our approach
and the ground truth from KITTI dataset. The evaluation is done on the Z-axis only, which represents
the distance to the detected obstacle and is highly relevant for depth estimation using monocular
approaches. Matching the objects is done using IoU applied to the bounding boxes and we have filtered
out objects that appear elongated (our system may detect sidewalks or other types of continuous
obstacles). Evaluation is done on different distance intervals and the range of our system is limited

to 50 m.

Table 3. Mean Absolute Error (MAE) analysis on trips from KITTI dataset.

Distance Range KITTI 0005 KITTI 0010 KITTI 0011 KITTI 0018
(m) MAE (m) MAE (m) MAE (m) MAE (m)
0-10 - - 0.8 -
10-20 1.30 2.6 3.29 3.91
20-30 3.65 2.74 5.59 5.59
30-40 2.07 6.03 11.72 6.2
40-50 2.08 4.35 19.06 9.32

For the same trips we have also computed the detection rate, the results being presented below,

in Table 4.

Table 4. Detection rate evaluation on trips from KITTI dataset.

Distance Range KITTI 0005 KITTI 0010 KITTI 0011 KITTI 0018
(m) Detection Rate (%) Detection Rate (%) Detection Rate (%) Detection Rate (%)
0-10 - - 97.56 -
10-20 100 94.73 97.25 79.2
20-30 89.62 62.78 82.95 74.4
30-40 76.95 51.85 40.73 74.71
40-50 60 5.35 31.46 47.05

Sensors 2020, 20, 1280 21 of 26

The obstacle detection algorithm was also evaluated using a video sequence from a previous
research project, consisting of calibrated pairs of images acquired using a binocular camera setup.
The ground truth is created from the tracked objects using stereovision-based algorithms, which are
able to detect generic objects, regardless of their type, and measure their 3D position with a high degree
of accuracy. Table 5 presents the results of this test.

Table 5. MAE and detection rate compared with a stereo-vision-based sequence.

Distance Range (m) Mean Absolute Error (m) Detection Rate (%)
0-10 0.78 88.66
10-20 1.37 96.03
20-30 2.62 92.32
30-40 7.21 80.61
40-50 17.44 57.43

The grid covers a road width of 24 m, meaning that in some cases the objects on the sides are
not detected. The scanning algorithm also induces limitations regarding occluded vehicles: A vehicle
that is behind another vehicle will not be seen by our measurement model generation algorithm,
while a stereovision based algorithm will see parts of it. The detection rate in the nearest distance
interval (0-10 m) is affected by the fact that the contact points between the obstacles and the road are
often occluded by the ego-vehicle’s hood. At the other extreme, for larger distances, the expected
error of the monocular system is high, meaning that the occupancy probability of the grid is low and
therefore the objects are not always detected, especially when they pass in and out of the detection
range. The stereovision system has multiple advantages over a monocular vision system: the obstacle
features are directly extracted as 3D points, no assumptions about the obstacles touching the road
are necessary, and the detection range is determined by the camera parameters alone (focal length
and baseline). There is no doubt that when available, stereovision is superior. However, setting up a
stereovision system is difficult, as the cameras need to be precisely synchronized and calibrated and,
therefore, most off-the-shelf cameras or mobile phones cannot be used for this purpose, and also the
skills required for setting such a system up are beyond the level of the average vehicle user.

We have attempted to compare our system with existing detection approaches that are based
on a monocular camera and available on mobile devices. Many such solutions have extremely poor
performance, or are not maintained or updated, and thus were not suitable for comparison. Table 6
presents the results while running on the same image sequence where we manually counted the number
of detected vehicles between our system and the mobile application UGV Driver Assistance [31].
The total number of vehicles in the sequence was 89. While exploring other similar solutions on mobile
platforms, we found that the UGV application is one of the best and it is mostly based on a CNN that is
able to offer bounding box predictions for vehicles present in the scene.

Table 6. Detection analysis compared with a commercial mobile app.

Number of . o Number of False False Discovery
Vehicles Detected Detection Rate (%) Positive Detections Rate (%)
Ours 88 92.6 5 0.05
UGV [31] 87 91.5 49 34.0

From Table 6 we may observe that the other approach offers a higher detection rate due to the
efficiency of the CNN to produce bounding boxes from images. The main downside is that sometimes
it may offer too many predictions, it tends to “overshoot” and produce a lot of false-positive detections.
We illustrate some comparison examples in the following figure.

From Figure 15 we can observe that, depending on the training data, the CNN might sometimes
offer completely false predictions (as can be seen in the last figure of the second column), or it may

Sensors 2020, 20, 1280 22 of 26

sometimes even miss detections due to the reduced features (especially darker vehicles, as can be
seen in the first figure of the second column). Our proposed solution has a reduced range, due to the
limits of the world model, but the detections are robust, especially due to the fact that they are tracked
over time.

Figure 15. Comparison with a CNN-based detector running on mobile devices. Left column—our
approach, right column—UGYV Driver Assistant.

4.5. Running Time

The algorithms are integrated in a C++ application that runs on a generic GPU equipped PC.
The application framework can be run on both Windows and Linux operating systems. The neural
network used for segmentation was developed and trained using Python, and then successfully
exported and integrated in the C++ application.

The entire processing flow, including CNN segmentation, particle creation, and grid state update,
and visualization of the results is done in 70-80 ms, depending on the number of objects in the scene.
The processing alone, without visualization of intermediate and final results, takes between 40 and
50 ms.

Screenshots of the application are shown in Figure 16. The system is able to detect cars, pedestrians,
bicyclists, and even continuous structures like fences, in multiple scenarios and weather conditions.

Sensors 2020, 20, 1280 23 of 26

Figure 16. Eight examples with different scenarios from the processing system, each displaying the
extracted cuboids and the segmented road surface (left), the color-coded particles in the top-down image
view (center) and the particles projected in the color input image (right). Top row—detecting moving
vehicles; second row—detecting bicycles; third row—detecting pedestrians; bottom row—detecting
obstacles at night (left) or in the rain (right).

A video of the system running on our own sequences in various scenarios is available at [28].

4.6. Comparison with Other Obstacle Detection Techniques

In Table 7 we present a comparison of our system with other state-of-the-art object detection
methods, based on features and capabilities.

Table 7. Feature comparison with state-of-the-art obstacle detection techniques.

Support Generic

Method Sensor Self-Calibration Detect Petecf Muligple Obstacle
Speed Orientation .

Sensors Detection
Mono 3D [9] Monocular No No Yes No No
OFT-Net [11] Monocular No No Yes No No
3DOP [32] Stereovision No No Yes No No
Danescu et al. [23] Stereovision No Yes Yes Yes Yes
Lietal. [33] Lidar No No Yes Yes No
Hu et al. [21] Monocular No No Yes No No
Ours Monocular Yes Yes Yes Yes Yes

The first two methods presented in Table 7, described in [9] and [11], are based on convolutional
neural networks. Their main limitation is the reliance on obstacle classes for the extraction of 3D
information and orientation and, therefore, they are limited to detecting obstacle categories as seen

Sensors 2020, 20, 1280 24 of 26

by the network during training. The method described in [32] uses stereovision along with CNNs to
generate 3D object proposals, in the form of oriented cuboids, after the scene is processed at voxel level.
The method presented in [23] is based on stereo-vision cameras and dynamic occupancy grids, being
one of the main ideas behind the results described in the current paper. While the stereovision brings
useful 3D information, allowing for a higher detection range and accuracy, it requires very precise,
offline calibration, and does not integrate easily other information sources.

The method described in [33] is based on lidar sensor data. The 3D point cloud representation is
converted into a 2D representation, which is then analyzed using a fully-connected CNN to generate
the oriented bounding boxes of the obstacles. This method is able to achieve generic obstacle detection,
and to integrate multiple 3D point data sources as input. Still, using the lidar requires calibration,
and also brings the other specific disadvantages of the sensor, such as the need of professional mounting
on the vehicle’s exterior.

The solution from [21] employs a CNN for candidate region extraction, then uses another CNN
for orientation and size estimation and, in the end, makes use of the LSTM neural network to track
the detections. The main drawback is that it heavily relies on training data, the authors even mention
that they used extensive synthetic images during the training and development of the approach.
The approach is limited to the obstacle types learned by the detection CNN; therefore, it is not generic.
The solution does handle vehicle occlusions well.

The method presented by us in this paper is based on a single camera, but has the advantage that
it can self-calibrate during normal driving (given a sufficient number of frames), it can detect the speed
and orientation of the detected obstacles, and it supports any type of obstacle on the road surface,
meaning that it is a generic obstacle detection. The grid representation also has the advantage that it can
support multiple sensorial data, meaning that it can easily be extended by adding multiple cameras.

The work presented in this paper represents a generic obstacle-tracking framework based on a
monocular camera. A numeric comparison with other state-of-the-art monocular vision methods on
publicly-available databases is difficult, because our system requires continuous video sequences, with
timestamps and speed and yaw rate data, in order to self-calibrate and then track objects, and these
sequences must also have ground truth-detected objects. The 2D detection and evaluation from
the popular KITTI framework cannot be used in our case in order to compare with other methods.
Additionally, valuation on the KITTI 3D object detection dataset is also not achievable at this moment,
due to the fact that the evaluation is done on random images, whereas our system requires images
from the same sequence in order to initialize the particle filter and to perform the tracking and then the
3D extraction. Furthermore, the 3D object detection dataset uses three classes: car, pedestrian and
cyclists. Whereas the work in this paper proposes a more generic framework that is able to detect any
kind of obstacle on the road surface and is not limited to just three classes. We intend to add basic
classification in future work.

Running the evaluation on the KITTI 3D vehicle tracking set is also not feasible due to the fact that
the dataset is oriented towards the performance of identification of objects as unique persistent entities
across frames, and not towards 3D measurement, while our approach does not assign individual
tracking IDs to each tracked obstacle, but measures its position, size, and speed. We do, however, plan
to address this issue in the near future.

5. Conclusions

We have presented a complete solution for the perception of generic obstacles on the road using
monocular vision, which combines the segmentation power of the convolutional neural networks
with the dynamic environment description power of the occupancy grids. The main contribution of
this paper is the description of the steps required to generate a useful probabilistic sensor model for
the monocular camera, so that the segmented information from the image space can be used in the
world’s space as approximated by the occupancy grid. Additionally, because camera calibration is
both essential for establishing the relation between the 3D world and the image space, and also a step

Sensors 2020, 20, 1280 25 of 26

that most users of a vision system will gladly avoid, we proposed an automatic calibration technique
that does not need user assistance, and only assumes that the user will mount the camera facing in the
general direction of the vehicle’s traveling direction.

Combining CNN-based segmentation, occupancy grid tracking, and automatic calibration, we
achieved a real-time vision system that works on most traffic scenarios, is able to detect and measure
the obstacles within the reasonable accuracy limitations expected from a monocular vision system, and
which can be extended to support multiple cameras or ranging sensors such as laser or radar.

Author Contributions: Conceptualization, R.I. and R.G.D.; methodology, R.I.and R.G.D.; software, R.L; validation,
R.L, writing, R.G.D. and R.L, funding acquisition, R.G.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by a grant of Ministry of Research and Innovation, CNCS - UEFISCDI, project
number PN-III-P1-1.1-TE-2016-0440, within PNCDI III.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zhu, H.; Yuen, K.-V;; Mihaylova, L.; Leung, H. Overview of Environment Perception for Intelligent Vehicles.
IEEE Trans. Intell. Transp. Syst. 2017, 18, 2584-2601. [CrossRef]

2. Ronneberger, O.; Fischer, P,; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5-9 October 2015; pp. 234-241.

3. Romera, E.; Alvarez,].M.; Bergasa, L.M.; Arroyo, R. ERFNet: Efficient Residual Factorized ConvNet for
Real-Time Semantic Segmentation. IEEE Trans. Intell. Transp. Syst. 2018, 19, 263-272. [CrossRef]

4. Geiger, A.; Lenz, P; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI,
USA, 16-21 June 2012; pp. 3354-3361.

5. Xie, J.; Girshick, R.; Farhadi, A. Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional
neural networks. In Proceedings of the European Conference on Computer Vision—ECCV 2016, Amsterdam,
The Netherlands, 11-14 October 2016; pp. 842-857.

6. Garg, R; Kumar, V,; Reid, I. Unsupervised CNN for single view depth estimation: Geometry to the rescue.
In Proceedings of the Computer Vision - ECCV 2016, Amsterdam, The Netherlands, 11-14 October 2016;
pp. 740-756.

7. Godard, C.; Aodha, O.M.; Brostow, G.J. Unsupervised Monocular Depth Estimation with Left-Right
Consistency. Computer Vision and Pattern Recognition. Available online: http://openaccess.thecvf.com/
content_cvpr_2017/html/Godard_Unsupervised_Monocular_Depth_CVPR_2017_paper.html (accessed on 26
February 2020).

8. Casser, V,; Pirk, S.; Mahjourian, R.; Angelova, A. Depth Prediction Without the Sensors: Leveraging Structure
for Unsupervised Learning from Monocular Videos. In Proceedings of the AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2-7 February 2018; pp. 8001-8008.

9. Chen, X,; Kundu, K,; Zhang, Z.; Ma, H.; Fidler, S.; Urtasun, R. Monocular 3D Object Detection for
Autonomous Driving. Available online: https://www.cs.toronto.edu/~{}urtasun/publications/chen_etal
cvprl6.pdf (accessed on 26 February 2020).

10. Mousavian, A.; Anguelov, D.; Flynn, J.; Kosecka, J. 3D Bounding Box Estimation Using Deep Learning and
Geometry. Available online: https://zpascal.net/cvpr2017/Mousavian_3D_Bounding_Box_CVPR_2017_paper.
pdf (accessed on 26 February 2020).

11. Roddick, T.; Kendall, A.; Cipolla, R. Orthographic Feature Transform for Monocular 3D Object Detection.
British Machine Vision Conference. arXiv 2019, arXiv:1811.08188.

12. Wang, Y.; Chao, W.-L.; Garg, D.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-lidar from visual depth
estimation: Bridging the gap in 3d object detection for autonomous driving. arXiv 2018, arXiv:1812.07179.

13. Caltech Calibration Toolbox. Available online: http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed
on 16 December 2019).

http://dx.doi.org/10.1109/TITS.2017.2658662
http://dx.doi.org/10.1109/TITS.2017.2750080
http://openaccess.thecvf.com/content_cvpr_2017/html/Godard_Unsupervised_Monocular_Depth_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Godard_Unsupervised_Monocular_Depth_CVPR_2017_paper.html
https://www.cs.toronto.edu/~{}urtasun/publications/chen_etal_cvpr16.pdf
https://www.cs.toronto.edu/~{}urtasun/publications/chen_etal_cvpr16.pdf
https://zpascal.net/cvpr2017/Mousavian_3D_Bounding_Box_CVPR_2017_paper.pdf
https://zpascal.net/cvpr2017/Mousavian_3D_Bounding_Box_CVPR_2017_paper.pdf
http://www.vision.caltech.edu/bouguetj/calib_doc/

Sensors 2020, 20, 1280 26 of 26

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Wang, K.; Huang, H.; Li, Y.; Wang, F.Y. Research on lane-marking line based camera calibration. In Proceedings
of the 2007 IEEE International Conference on Vehicular Electronics and Safety, Beijing, China, 13-15 December
2007; pp. 1-6.

Zhang, D.; Fang, B.; Yang, W.; Luo, X; Tang, Y. Robust inverse perspective mapping based on vanishing point.
In Proceedings of the 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics
(SPAC), Wuhan, China, 18-19 October 2014; pp. 458—463.

Russmusen, C. Texture-Based Vanishing Point Voting for Road Shape Estimation. Available online: http:
/fwww.bmva.org/bmvc/2004/papers/paper_261.pdf (accessed on 26 February 2020).

Kong, H.; Audibert, J.-Y.; Ponce,]J. Vanishing Point Detection for Road Detection. Available online:
https://www.di.ens.fr/willow/pdfs/cvpr09c.pdf (accessed on 26 February 2020).

Tan, S.; Dale, J.; Anderson, A.; Johnston, A. Inverse perspective mapping and optic flow: A calibration
method and a quantitative analysis. Image Vision Comput. 2006, 24, 153-165. [CrossRef]

Kollnig, H.; Nagel, H.-H. 3d pose estimation by directly matching polyhedral models to gray value gradients.
Int. J. Comput. Vision 1997, 23, 283-302. [CrossRef]

Barth, A.; Franke, U. Where will the oncoming vehicle be the next second? In Proceedings of the IEEE
Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4-6 June 2008; pp. 1068-1073.

Hu, H.-N.; Cai, Q.-Z.; Wang, D.; Lin, J.; Sun, M.; Kraehenbuehl, P,; Darrell, T.; Yu, E. Joint Monocular
3D Vehicle Detection and Tracking. Available online: http://openaccess.thecvf.com/content_ICCV_2019/
papers/Hu_Joint_Monocular_3D_Vehicle_Detection_and_Tracking ICCV_2019_paper.pdf (accessed on 26
February 2020).

Danescu, R.; Itu, R.; Petrovai, A. Generic Dynamic Environment Perception Using Smart Mobile Devices.
Sensors 2016, 16, 1721. [CrossRef] [PubMed]

Danescu, R.; Oniga, F.; Nedevschi, S. Modeling and Tracking the Driving Environment with a Particle-Based
Occupancy Grid. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1331-1342. [CrossRef]

Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B.
The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the Computer Vision
and Pattern Recognition, Vegas, NV, USA, 27-30 June 2016; pp. 3213-3223.

Yu, F; Xian, W.; Chen, Y,; Liu, F; Liao, M.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Video
Database with Scalable Annotation Tooling. arXiv 2018, arXiv:1805.04687.

Neuhold, G.; Ollmann, T.; Bulo, S.R.; Kontschieder, P. The Mapillary Vistas Dataset for Semantic
Understanding of Street Scenes. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22-29 October 2017; pp. 5000-5009.

Danescu, R.; Itu, R. Camera Calibration for CNN-based Generic Obstacle Detection. In Proceedings of the
19th EPIA Conference on Artificial Intelligence, Vila Real, Portugal, 3-6 September 2019; pp. 623-636.
Monocular Road Traffic Dataset. Available online: http://users.utcluj.ro/~{}razvanitu/dataset.html (accessed
on 18 December 2019).

Chen, L.C.;; Zhu, Y.; Papandreou, G.; Schroff, F; Adam, H. Encoder-Decoder with Atrous Separable
Convolution for Semantic Image Segmentation. Available online: https://eccv2018.org/openaccess/content_
ECCV_2018/papers/Liang-Chieh_Chen_Encoder-Decoder_with_Atrous_ECCV_2018_paper.pdf (accessed
on 26 February 2020).

Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time
Semantic Segmentation. arXiv 2016, arXiv:1606.02147.

UGV Driver Assistant. Available online: https://play.google.com/store/apps/details?id=com.infocomltd.
ugvassistant&hl=en (accessed on 10 February 2020).

Chen, X.; Kundu, K.; Zhu, Y.; Berneshawi, A.G.; Ma, H.; Fidler, S.; Urtasun, R. 3D Object Proposals for
Accurate Object Class Detection. Available online: https://papers.nips.cc/paper/5644-3d-object-proposals-
for-accurate-object-class-detection (accessed on 26 February 2020).

Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3d lidar using fully convolutional network. Robotics: Science
and Systems. arXiv 2016, arXiv:1608.07916.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.bmva.org/bmvc/2004/papers/paper_261.pdf
http://www.bmva.org/bmvc/2004/papers/paper_261.pdf
https://www.di.ens.fr/willow/pdfs/cvpr09c.pdf
http://dx.doi.org/10.1016/j.imavis.2005.09.023
http://dx.doi.org/10.1023/A:1007927317325
http://openaccess.thecvf.com/content_ICCV_2019/papers/Hu_Joint_Monocular_3D_Vehicle_Detection_and_Tracking_ICCV_2019_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2019/papers/Hu_Joint_Monocular_3D_Vehicle_Detection_and_Tracking_ICCV_2019_paper.pdf
http://dx.doi.org/10.3390/s16101721
http://www.ncbi.nlm.nih.gov/pubmed/27763501
http://dx.doi.org/10.1109/TITS.2011.2158097
http://users.utcluj.ro/~{}razvanitu/dataset.html
https://eccv2018.org/openaccess/content_ECCV_2018/papers/Liang-Chieh_Chen_Encoder-Decoder_with_Atrous_ECCV_2018_paper.pdf
https://eccv2018.org/openaccess/content_ECCV_2018/papers/Liang-Chieh_Chen_Encoder-Decoder_with_Atrous_ECCV_2018_paper.pdf
https://play.google.com/store/apps/details?id=com.infocomltd.ugvassistant&hl=en
https://play.google.com/store/apps/details?id=com.infocomltd.ugvassistant&hl=en
https://papers.nips.cc/paper/5644-3d-object-proposals-for-accurate-object-class-detection
https://papers.nips.cc/paper/5644-3d-object-proposals-for-accurate-object-class-detection
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Materials and Methods
	The Probabilistic World Model
	Computing the Probabilistic Measurement Model
	Updating the World State
	Identifying Individual Objects
	Automatic Camera Calibration

	Evaluation and Performance
	Data Acquisition
	Segmentation Results
	Calibration Results
	Obstacle Detection Results
	Running Time
	Comparison with Other Obstacle Detection Techniques

	Conclusions
	References

