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Previously, we found that astaxanthin (AST) elicited an anti-inflammatory response in an
experimental atopic dermatitis (AD) model. However, the use of AST was limited because of
low bioavailability and solubility. We hypothesized that liposome formulation of AST could
improve this. In this study, we compared the anti-inflammatory and anti-dermatotic effects of
liposomal AST (L-AST) and free AST. We evaluated the effect of L-AST on a phthalic
anhydride (PA)-induced animal model of AD by analyzing morphological and
histopathological changes. We measured the mRNA levels of AD-related cytokines in skin
tissue and immunoglobulin E concentrations in the serum. Oxidative stress and transcriptional
activities of signal transducer and activator of transcription 3 (STAT3) and nuclear factor (NF)-
kB were analyzed via western blotting and enzyme-linked immunosorbent assay. PA-
induced dermatitis severity, epidermal thickening, and infiltration of mast cells in skin
tissues were ameliorated by L-AST treatment. L-AST suppressed AD-related inflammatory
mediators and the inflammation markers, inducible nitric oxide synthase (iNOS) and
cyclooxygenase (COX)-2 in PA-induced skin conditions. Oxidative stress and expression of
antioxidant proteins, glutathione peroxidase-1 (GPx-1) and heme oxygenase-1 (HO-1), were
recovered by L-AST treatment in skin tissues from PA-induced mice. L-AST treatment
reduced transcriptional activity of STAT3 and NF-kB in PA-induced skin tissues. Our results
indicate that L-AST could be more effective than free AST for AD therapy.

Keywords: astaxanthin, liposome, atopic dermatitis, oxidative stress, signal transducer and activator of
transcription 3, nuclear factor-kB
INTRODUCTION

Atopic dermatitis (AD) is a common chronic inflammatory skin disease characterized by mass
release of cytokines (1). Stimulated keratinocytes release cytokines and chemokines associated with
innate immunity, such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-1b, IL-33,
chemokine (C-C motif) ligand (CCL)17, and CCL22 (2). Released mediators have been described
to attract macrophages, type 2 T helper cells, and group 2 innate lymphoid cells, which secrete IL-4
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and IL-13 to induce immunoglobulin E (IgE) production (3, 4).
Mast cells also contribute to AD development and IgE leads to
the activation of mast cells through the release of cytokines into
skin lesions (5). Thus, the reduction of these cytokines could be
an important approach for AD therapy.

The skin is the largest organ of the human body, protecting it
from harmful environmental factors, such as chemicals, biologic
materials, and allergens. These external materials are known to
cause oxidative stress by inducing the generation of reactive
species in keratinocytes (6). Inflammatory responses are
triggered by oxidative stress through the upregulation of
proinflammatory cytokines (7). A previous study showed that
TSLP, which is a trigger factor for the pathogenesis of AD, was
increased by reactive oxygen species (ROS) in AD tissues (8). A
clinical study indicated that the levels of various antioxidants,
such as superoxide dismutase (SOD), glutathione peroxidase
(GPx), and glutathione (GSH), were substantially decreased in
patients with AD compared to healthy controls (9). Thus,
increased oxidative stress could contribute to the development
of AD.

Signal transducer and activator of transcription 3 (STAT3)
and nuclear factor (NF)-kB are critical transcription factors that
regulate inflammatory responses; they activate inflammation-
related genes, such as cyclooxygenase (COX)-2, tumor necrosis
factor (TNF)-a, and IL-6 (10). It is noteworthy that STAT3 is
critical for regulating IgE levels and IgE-based allergen
sensitization, as well as mast cell degranulation to release
cytokines (11, 12). Thus, targeting STAT3 and NF-kB could be
a useful approach for AD treatment. The NF-kB inhibitor IMD-
0354 alleviated experimental AD in NC/Nga mice through the
inhibition of AD-related cytokines and infiltration of
inflammatory cells (13). Topical NF-kB decoy oligonucleotides
were shown to block chronic AD-like skin inflammation by the
downregulation of Th1 and Th2 cytokines (14). Topical
application of Momelotinib, a novel Janus kinase (JAK)1/JAK2
inhibitor, suppressed STAT3 signaling, the release of pro-
inflammatory cytokines, total serum IgE levels, and mast cell
infiltration, and thus improved the symptoms of AD (15).

Astaxanthin (3,3’-dihydroxy-b,b-carotene-4,4’-dione; AST) is
a xanthophyll carotenoid usually found in microalgae and
crustaceans, such as krill and shrimp (16). Previous studies
have shown that AST is pharmacologically effective against
various diseases, including cardiovascular, gastrointestinal,
liver, neurodegenerative, and skin diseases, via its anti-oxidant
and anti-inflammatory activities (17, 18). Our previous reports
revealed that AST inhibited oxidative stress and inflammation
via inactivation of STAT3 and NF-kB in ethanol-induced liver
injury and lipopolysaccharide-induced neuroinflammation (19,
20). Topical application has been shown to provide advantages
by reducing side effects, drug abuse and toxicity, allowing for
high-dose application, while being easy to use, and avoiding first-
pass metabolism (21, 22). Moreover, the topical route is well-
suited for sustained and controlled delivery over a prolonged
period (21). With respect to skin diseases, topical application
directly at the site of skin inflammation is indicated. However,
astaxanthin has poor water-solubility, thus limiting direct
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application to the skin (23, 24). To solve this problem,
liposomal formulation improves its solubility by conjugation
with phospholipid structures (25).

In this study, we investigated the effect of liposomal AST (L-
AST) on the prevent ion of AD v ia inhib i t ion of
skin inflammation.
MATERIALS AND METHODS

Preparation of Liposomal Astaxanthin
AST, purchased from GDE Co., Ltd. (Siheung, Korea), was
mixed with 70% ethanol at room temperature (21–25°C), and
insoluble materials were removed using Whatman filter paper.
Phosphatidylcholine (from Soy) was dissolved in 95% ethanol,
and insoluble materials were removed using Whatman filter
paper. AST and phosphatidylcholine were mixed at a 1:4 ratio
using a high-pressure homogenizer (Microfluidizer™, cooling
temperature: −15~–20°C/1,000 bar/3 cycles; 11-6094A000,
Microfluidics Corp., MA, USA). After mixing, ethanol was
removed via vacuum distillation. The solution was transferred
to a 5 mm stainless steel plate after which all liquid components
were removed using a vacuum freeze dryer. The solids from
which the liquid components had been removed were collected
and stored at room temperature to prepare L-AST for use in the
experiment. The particle size of the L-AST produced was on
average 64.5 ± 2.8 nm, which was determined using a particle size
analyzer (ELS-Z, Otsuka electronics, Osaka, Japan).

Animal Housing and Ethical Approval
Animal experiments were performed in accordance with the
guidelines for animal experiments of the Institutional Animal
Care and Use Committee (IACUC) of the Laboratory Animal
Research Center at Chungbuk National University, Korea. The
experimental protocol was approved by the IACUC of the
Laboratory Animal Research Center at Chungbuk National
University, Korea (Ethical approval No. CBNUA-1304-19-01).
Male SKH-1 mice (also known as HR-1 hairless mice) were
obtained from Daehan Bio Link Co., Ltd. (Eumsung, Korea) and
housed at controlled temperature (21–25°C), relative humidity
(55 ± 10%), and 12 h light-dark cycles. Food and purified tap
water were provided ad libitum.

Phthalic Anhydride (PA)-Induced
AD Development
SKH-1 mice (8-week-old males) were randomly divided to five
groups. PA solution (5%, 200 ml) was applied on the dorsal skin
three times a week for 4 weeks. AST (1 mg/ml; 200 ml) or L-AST
(0.5 and 1 mg/ml; 200 ml) was applied 3 h after every PA
treatment. Vehicle-treated mice were used as a control. PA,
AST, and L-AST were dissolved in acetone:olive oil (AOO)
solution (4:1 ratio, v/v). The clinical score for each group was
determined as none (0), mild (1), moderate (2), or severe (3)
according to the average score of each symptom, i.e., erythema
(redness), scaling, and itching, for each mouse.
December 2020 | Volume 11 | Article 565285
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Measurement of Body and Lymph
Node Weight
During the experimental period, the body weight of mice was
measured once a week over the course of 4 weeks using an
electronic scale (Mettler Toledo, Greifensee, Switzerland). Skin
draining lymph nodes were collected and weighed using a
precision electronic balance (FX-200i; A&D Korea, Seoul, Korea).

Immunohistochemistry (IHC)
IHC was conducted as described previously (26). The slides were
stained with specific primary antibodies. Mast cells were stained
using toluidine blue solution (IHC world, Ellicott City, MD,
USA). The average of epidermal thickness and the number of
mast cells was calculated by a single measurement of six different
fields (non-overlapping) in each group. Information on the
antibodies used is provided in Supplementary Table S1.

Western Blot Analysis
Western blot analysis was performed as previously described
(26). The membrane was incubated with specific primary
antibodies directed against the following proteins: p50, GPx-1,
heme oxygenase (HO)-1, STAT3, histone H1 and b-actin (Santa
Cruz Biotechnology, CA, USA), p65, inducible nitric oxide
synthase (iNOS) and COX-2 (Abcam, Cambridge, MA, USA),
and p-IkBa, IkBa and p-STAT3 (Cell Signaling, Beverly, MA,
USA). Histone H1 and b-actin were used as loading controls.
Band intensities were measured using the Fusion FX7 image
acquisition system (Vilber Lourmat, Eberhardzell, Germany).
Western blot band intensities were quantified using ImageJ
software (NIH; Bethesda, MD, USA). Information on the
antibodies used is provided in Supplementary Table S1.

Quantitative Real-Time PCR (RT-qPCR)
RT-qPCR was performed as described previously (26). Briefly, total
RNA was collected from mouse skin tissues or lymph nodes using
the RiboEX RNA Extraction Kit (GeneAll Biotechnology, Seoul,
Korea) and cDNA was synthesized using the High-Capacity RNA-
to-cDNAkit (Applied Biosystems, Foster City, CA,USA). RT-qPCR
was performed using specific primers with the StepOnePlus™ PCR
System (Applied Biosystems, Foster City, CA, USA). Levels of
mRNA were normalized to the 18S sequence, which was used as a
house-keeping control. The fold change between groups was
determined for all targets using the 2DDCt method. Specific primer
sequences are described in Supplementary Table S2.

Serum IgE Assay
Bloodwas collected fromsacrificedmice and serumwas isolated via
centrifugation (3,500 rpm for 7 min at 4°C) using blood collection
tube (BD Microtainer®, Franklin Lakes, NJ, USA). Serum levels of
mouse IgE were measured using the ELISA kit of KOMA Biotech
(Seoul, Korea) according to the manufacturer’s protocol.

Oxidative Stress Assay
Hydrogen peroxide (H2O2) was measured using the Hydrogen
Peroxide Assay Kit (Biovision, Milpitas, CA, USA). The levels of
GSH and oxidized glutathione (GSSG) were analyzed using the
Frontiers in Immunology | www.frontiersin.org 3
GSH/GSSG Ratio Detection Assay Kit (Abcam, Cambridge, MA,
USA). Malondialdehyde (MDA) levels were measured using
TBARS Assay Kit according to the manufacturer’s instructions
(Cayman, Ann Arbor, MI, USA).

Statistical Analysis
All experiments were repeated at least three times to ensure
reproducibility of the results. Statistical analysis was performed
with GraphPad Prism 4.03 software (San Diego, CA, USA). Group
differences were analyzed by one-way analysis of variance followed
by Tukey’s multiple comparison test. All values are presented as
the mean ± SD. Significance was set at a p < 0.05 for all tests.
*Control vs. PA; †PA vs. PA + AST1, PA + L-AST0.5, and PA + L-
AST1; ‡PA + AST1 vs. PA + L-AST0.5 and PA + L-AST1.
RESULTS

Effects of L-AST Treatment on
Experimental AD Development
PAexposure isknowntocause irritation,potentially leadingtoallergic
skin diseases, such as contact dermatitis andADby inducing allergy-
related cytokines, chemokines, and IgE (27, 28). To investigate
whether L-AST had an improved potential to prevent AD
compared to AST, we used a PA-induced AD model. As shown in
Figure 1A, we induced experimental AD. First, we measured the
changes inbodyweightover thecourseof theexperimentalperiod.No
substantial bodyweight changeswere detected upon eitherASTor L-
AST treatment (Figure 1B). Next, we compared the associated AD
symptoms, consisting of erythema (redness), scaling, and itching, for
eachgroup. ItwasrevealedthatADsymptomsandclinicalscoreswere
increased in the PA-induced group (Figures 1C, D). However, these
symptomsandscoreswere significantly reduceduponASTtreatment
(Figures 1C, D). L-AST treatment further reduced PA-induced AD
developmentinmicewhencomparedwithAST-treatedmice(Figures
1C, D). As shown in Figure 1D, AST dyed the skin surface red,
whereas L-AST did not color the skin.Western blot analysis showed
that the reduction in the expression of the inflammation markers
COX-2and iNOSwasmorepronounced inL-ASTtreatedmicewhen
compared to AST treatedmice (Figure 1E).

Effect of L-AST Treatment on AD-Like
Skin Inflammation
Histological analysis of the skin tissues showed thatASTandL-AST
treatment reduced epidermal thickening in PA-induced skin
tissues, with L-AST being more effective than free AST (Figure
2A). The reduction in PA-induced mast cell infiltration was also
more pronounced in L-AST-treatedmice than inAST-treatedmice
(Figure 2A). We further investigated the weight of skin draining
lymphnodes, which serve as an indicator of skin inflammation. The
result showed that AST and L-AST moderately and sufficiently
reduced the PA-induced increase in lymph node weight and length
(major axis), respectively (Figure 2B). Various inflammatory
cytokines and chemokines are critical factors for AD
development (2). Therefore, we analyzed AD-related mediators of
PA-induced skin conditions. RT-qPCR analysis showed that the
December 2020 | Volume 11 | Article 565285

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Improved Effects of L-AST on AD Development
A B

D

E

C

FIGURE 1 | Liposomal astaxanthin inhibits PA-induced atopic dermatitis. (A) Experimental schedule of PA-induced atopic dermatitis model. Mice were treated with
5% PA solution three times a week for 4 weeks. AST or L-AST were applied 3 h after every PA treatment. (B) Body weight changes during 4-week experiment.
(C, D) The morphological changes in mice after 4-week treatment as described in the Materials and Methods. Bar graphs indicate clinical score (C). n = 6. The
photographs are representative of each group of mice (D). (E) Expression of inflammation markers, COX-2 and iNOS, in skin tissues of each group. #1–3 refer to
skin tissues of the different mice in the same group. †,‡p < 0.05, ‡‡p < 0.01 and ***,†††p < 0.001.
A

B

FIGURE 2 | Liposomal astaxanthin reduces epidermal thickening, lymph node weight, and expression of inflammatory markers. (A) Histological changes in mice
after 4-week PA treatment. Bar graphs indicate epidermal thickness and mast cell number. n = 6. (B) Changes of skin draining lymph node weight and length (major
axis) of each group. n = 6. †,‡p < 0.05, **,††,‡‡p < 0.01, and ***,†††,‡‡‡p < 0.001.
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expression of Th2-related cytokines and chemokines, including
TSLP, IL-4, IL-5, IL-13, IL-31, IL-33, CCL17, and CCL22, was
increased in PA-induced skin tissues, but treatment with AST
reduced the expression of these cytokines (Figure 3A).
Furthermore, L-AST suppressed Th2-related mediators more
effectively (Figure 3A). The increase in PA-induced Th1
cytokines, such as TNF-a, IL-1b, and IL-6, was markedly reduced
in skin tissues of L-AST-treated mice compared to AST-treated
mice (Figure 3B). Next, we evaluated serum levels of IgE, an
indicator of allergic inflammation. Serum IgE was increased in
PA-treated mice; these PA-induced serum IgE levels were
significantly reduced in AST-treated mice (Figure 3C). L-AST
was more efficient in decreasing serum IgE levels than free AST
(Figure 3C). Further analysis indicated that L-AST treatment
reduced AD-related cytokine levels (IL-1b, IL-6, IL-4, and IL-13)
in lymph nodes to a greater extent than AST treatment
(Supplementary Figure S1).

Effect of L-AST Treatment on Oxidative
Stress
Previous studies have shown that oxidative stress is related to AD (7,
9). Furthermore, AST possesses antioxidant properties (29).
Therefore, we evaluated oxidative stress in PA-induced skin
conditions. The level of MDA, a marker of lipid peroxidation, was
elevated by PA treatment, but reduced by the application of free AST
and L-AST (Figure 4A). Additionally, PA-inducedH2O2 levels were
alleviated by free AST and L-AST treatments (Figure 4A). In
addition, decreased GSH levels and GSH/GSSG ratios were
recovered by the treatment of AST and L-AST (Figure 4A).
Treatment with the latter resulted in enhanced suppression of
oxidative stress compared to AST treatment (Figure 4A). We
further investigated the expression of antioxidant-related genes,
such as GPx-1 and HO-1. Western blot analysis showed that
reduced expression of HO-1 and GPx-1 was recovered by AST in
PA-inducedmice (Figure 4B). L-ASTwasmore effective in reversing
GPx-1 and HO-1 expression levels compared to free AST
(Figure 4B).

Effect of L-AST Treatment on STAT3 and
NF-kB Signaling Activation
STAT3 and NF-kB are both involved in various inflammatory
diseases including AD. Recent studies demonstrated that ROS
induced the activation of STAT3 and NF-kB signaling (30, 31). To
investigate whether L-AST treatment further inhibited STAT3 and
NF-kB activation in a PA-induced AD model, we analyzed the
activation of STAT3 and NF-kB using western blot and IHC
analysis. PA-treated mice were characterized by an increase in the
phosphorylationof IkBaandSTAT3 incytoplasmic fractions, andby
nuclear translocation of p50 and p65, as revealed by comparing
cytoplasmic and nuclear fractions (Figure 5A). In contrast, AST
treatment inhibited STAT3 and NF-kB activation (Figure 5A). In
addition, L-AST treatment suppressed the activation of STAT3 and
NF-kBmore efficiently than freeAST (Figure5A). Similar towestern
blot analysis, IHC showed that AST treatment reduced
phosphorylation of STAT3 and p65 in skin tissues upon PA
treatment (Figure 5B). Moreover, L-AST was more potent than
Frontiers in Immunology | www.frontiersin.org 5
AST in inhibiting the activation of STAT3 and p65 in PA-induced
skin conditions.
DISCUSSION

AD is a chronic inflammatory skin disease, which is characterized
by increased IgE levels and inflammatory cytokine expression (32,
33). Targeting of AD-related inflammatory mediators and anti-
inflammatory compounds are promising approaches for AD
therapy (34). Previous studies reported that green tea extracts
from tannase digests inhibited skin inflammation and mast cell
infiltration in house dust mite antigen-induced AD-like lesions
(35). Ethanol extracts of Ampelopsis brevipedunculata rhizomes
inhibitedanAD-like skin inflammation throughdownregulationof
serum IgE levels and expression ofTNF-a, interferon (IFN)-g, IL-4,
IL-13, and IL-31 in a BALB/c AD model (36). In a previous study,
we also found that Centella asiatica reduced PA-induced AD
through its anti-inflammatory effects (37). In line with these
findings, in our present study, significantly reduced AD-related
cytokine release was observed in the L-AST-treated group. These
data indicate that L-AST constitutes a promising candidate for the
development of a therapeutic agent for AD treatment.

Oxidative stress has been associatedwith inflammatory diseases
(30). Accordingly, endogenous and environmental pro-oxidants
could induce ROS, causing oxidative damage, such as DNA
modifications, lipid peroxidation, and inflammatory responses
(38). However, the relationship between oxidative stress and AD
is not clear. Previous reports were in support of suppression of
oxidative stress being capable of alleviating AD. N-acetyl-L-
cysteine, a precursor of GSH, decreased the levels of IL-4, IL-5,
and IFN-g in Th2 cells (39). A clinical study showed that MDA
levels were increased, but antioxidant parameters, including SOD,
GSH, GPx, and vitamins (A,C, and E), were significantly decreased
in blood samples from patients with AD compared to healthy
controls (9). It has been reported that urinary concentrations of
pentosidine and 8-hydroxy-2’-deoxyguanosine were higher in
patients with AD compared to the controls (40). Furthermore,
our data revealed that treatment with free AST or L-AST could
decrease the levels of MDA and H2O2, but resulted in an increased
GSH/GSSG ratio. These factors implicated that inhibition of
oxidative stress may contribute to preventing AD.

STAT3 and NF-kB are transcriptional factors significantly
contributing to the development of AD as they play important
roles in the regulation of AD-related inflammatory mediators (14,
41). Several STAT3 inhibitors, such as momelotinib, a novel JAK1/
JAK2 inhibitor, and the JAK inhibitor JTE-052 downregulated the
STAT3-specific signal, release of pro-inflammatory cytokines, total
serum IgE levels, and mast cell numbers, and concomitantly
improved the symptoms of AD (15, 42). NF-kB inhibitors
alleviated AD-like skin inflammation by inhibiting of inflammatory
regulators and the infiltration of immune cells (13, 14). Our results
showed that L-AST inhibited phosphorylation of IkBa and STAT3,
as well as nuclear translocation of p50 and p65 in PA-induced skin
conditions. These data suggest that L-AST-mediated inhibition of
STAT3 and NF-kB could be essential for its anti-AD effect.
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FIGURE 3 | Liposomal astaxanthin suppresses skin inflammation. (A) mRNA expression of Th2-related cytokines, TSLP, IL-4, IL-5, IL-13, IL-3
expression of Th1-related cytokines, TNF-a, IL-1b, and IL-6, in skin tissues. n = 4. (C) The serum concentration of IgE. n = 6. †,‡p < 0.05, **††
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A

B

FIGURE 4 | Liposomal astaxanthin alleviates oxidative stress in PA-induced skin tissues. (A) MDA levels, H2O2 levels, total GSH, and GSH/GSSG ratio in skin
tissues. n = 6. (B) Expression of antioxidant-related markers, GPx-1, and HO-1, in skin tissues. #1–3 refer to skin tissues of the different mice in the same group.
†,‡p < 0.05, **,††,‡‡p < 0.01, and ***,†††,‡‡‡p < 0.001.
A

B

FIGURE 5 | Effect of liposomal astaxanthin on STAT3 and NF-kB signaling in PA-induced AD model. (A) Expression of phosphorylated STAT3 and IkBa in whole
tissue lysates and nuclear translocation of p50 and p65 in nuclear fractions by Western blot analysis in skin tissues. #1–3 refer to skin tissues of the different mice in
the same group. (B) Representative IHC images showing phospho-STAT3 and phospho-p65 in PA-induced skin tissues.
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Topical administration has several advantages for treatment
of skin diseases. Transdermal delivery can avoid metabolism of
drugs by the liver, reduce side effects, and achieve local effects
(43). Topical administration of AST effectively inhibited UV-
induced ocular photokeratitis and AD-like skin inflammation
(44, 45). Nevertheless, AST is both hydrophobic and hydrophilic
and has poor water-solubility, rendering it unsuitable for skin
application. To overcome this problem, various methods have
been developed (46). Among them, liposome formulation is
widely used for skin delivery systems as it is associated with
increased drug solubilization (46). Additionally, liposome
formulation could increase the transdermal delivery of AST. As
demonstrated by many studies, liposome formulations are
superior to the free forms with regard to skin delivery (47). A
previous study indicated that liposomal adenosylcobalamin
hydrogel improved skin permeation and reduced AD
symptoms more efficiently than the non-liposomal type in a
dichloronitrobenzene-induced AD mouse model (48). It has also
been reported that liposomal betamethasone exerted stronger
increased anti-inflammatory actions in patients with AD than in
controls (49). It needs to be confirmed in future studies whether
L-AST has increased skin permeability compared to AST.

This study demonstrated that L-AST treatment could prevent
inflammatory cytokine release and oxidative stress in a PA-
induced AD model more efficiently than free AST. Thus,
liposomal formulation enhances the therapeutic efficacy of AST
and has more practical applicability.
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