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We sought to determine whether machine learning and natural language processing (NLP) applied to electronic
medical records could improve performance of automated health-care claims-based algorithms to identify
anaphylaxis events using data on 516 patients with outpatient, emergency department, or inpatient anaphylaxis
diagnosis codes during 2015–2019 in 2 integrated health-care institutions in the Northwest United States. We
used one site’s manually reviewed gold-standard outcomes data for model development and the other’s for
external validation based on cross-validated area under the receiver operating characteristic curve (AUC), positive
predictive value (PPV), and sensitivity. In the development site 154 (64%) of 239 potential events met adjudication
criteria for anaphylaxis compared with 180 (65%) of 277 in the validation site.Logistic regression models using only
structured claims data achieved a cross-validated AUC of 0.58 (95% CI: 0.54, 0.63). Machine learning improved
cross-validated AUC to 0.62 (0.58, 0.66); incorporating NLP-derived covariates further increased cross-validated
AUCs to 0.70 (0.66, 0.75) in development and 0.67 (0.63, 0.71) in external validation data. A classification
threshold with cross-validated PPV of 79% and cross-validated sensitivity of 66% in development data had cross-
validated PPV of 78% and cross-validated sensitivity of 56% in external data. Machine learning and NLP-derived
data improved identification of validated anaphylaxis events.

anaphylaxis; electronic health records; health outcome identification; machine learning, supervised;
postmarketing product surveillance; predictive modeling

Abbreviations: ARIA, Active Risk Identification and Analysis System; AUC, area under the receiver operating characteristic
curve; BART, Bayesian additive regression trees; CI, confidence intervals; EHR, electronic health record; FDA, Food and Drug
Administration; ICD-10-CM, International Classification of Diseases Tenth Revision, Clinical Modification; ICD-9-CM, Interna-
tional Classification of Diseases Ninth Revision, Clinical Modification; KPNW, Kaiser Permanente Northwest; KPWA, Kaiser
Permanente Washington; LASSO, least absolute shrinkage and selection operator; NLP, natural language processing; PPV,
positive predictive value.

Anaphylaxis is a rare but severe allergic reaction with
rapid onset, often caused by exposure to medications,
food, or venom, and can be life-threatening (1). Life-
time US prevalence estimates range from 0.05% to 2% (2)
and incidence is increasing (3–7). Anaphylaxis mortality
rates are stable overall but are increasing for medication
exposure (8), the most common cause of fatal anaphylaxis
(1, 9, 10).

Models capable of accurately identifying anaphylaxis in
real-world health data could contribute importantly to medi-
cal product safety surveillance. Since 2008, the Sentinel Ini-
tiative of the US Food and Drug Administration (FDA) has
developed a powerful set of analytical tools and the world’s
largest multisite distributed database to monitor the safety of
FDA-approved medical products using real-world data (11–
13). A key component of Sentinel is the Active Risk Identi-
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fication and Analysis (ARIA) System (12, 14, 15), designed
to support semiautomated targeted surveillance of medi-
cal products without the need to manually review medical
records. ARIA analyses have successfully informed many
FDA regulatory decisions (16) but have been insufficient for
monitoring health outcomes of interest with delayed or com-
plex clinical presentation (17, 18) such as anaphylaxis (19).

To date, most attempts to accurately identify anaphylaxis
events using automated algorithms applied to structured
medical claims data have had limited success (20). This
is in part due to the challenges of diagnosing a condition
with diverse clinical presentation (19), reliance on structured
medical claims data (21, 22), and the practice of “rule-out”
coding (23). An algorithm published by Walsh et al. in 2013
(22) intended to improve identification of anaphylaxis in
FDA safety surveillance studies using structured diagnosis,
procedure, and encounter data. It achieved a positive predic-
tive value (PPV) of 63.1% when evaluated on 122 potential
anaphylaxis events across 8 health-care settings (22). This
was an improvement over prior algorithms (24) but remained
insufficient for use in FDA ARIA analyses, which generally
require PPV ≥80%. In general, diagnosis codes appear to
identify anaphylaxis events with high sensitivity but lack
specificity (25). Misclassification of anaphylaxis events is a
major barrier to disease surveillance efforts and can prevent
clinicians from identifying actionable health risks.

To overcome these limitations models must better dis-
criminate between actual and potential anaphylaxis events.
Applying machine learning to rich, text-based electronic
health record (EHR) data has been successful in other clin-
ical domains (26–31), and Bi et al. (32) have argued in
the Journal that such methods may improve accuracy in
epidemiologic investigations. Text mining has been shown
to improve ascertainment of other rare conditions such as
rhabdomyolysis (33). Ball et al. (34) and Yu et al. (35)
have found that information extracted from EHRs about
exposures, comorbidities, presenting symptoms, treatments,
and disease severity appearing in chart notes may be useful
for identifying actual anaphylaxis. Recent studies have used
natural language processing (NLP) and machine-learning
methods to improve the identification of anaphylaxis events
but did not include external populations to validate their
findings (21, 36).

Our motivation and the motivation of the 2013 Walsh
study (22) are the same: to improve automated algorithms
for identifying anaphylaxis in postmarketing FDA safety
studies. Our novel contributions are incorporating rich EHR
data and using data-driven machine-learning methods for
model development. We evaluate our models using V-fold
cross-validated performance metrics, as well as assessing
performance in external data. The latter helps assess gener-
alizability to other settings within the Kaiser network. This
work is part of a larger effort to enhance FDA Sentinel
medical product safety surveillance capability (17).

METHODS

Setting and study sample

This predictive modeling activity used data from Kaiser
Permanente Washington (KPWA); we used data from Kaiser

Permanente Northwest (KPNW) for external validation.
KPWA delivers care to about 700,000 people in Washington
State and Idaho through integrated care (“HMO”) and tra-
ditional insurance plans, with most hospital and emergency
department care provided through contracts with non-Kaiser
regional hospitals, thereby constituting a diverse source
of inpatient data. KPNW delivers integrated care to about
600,000 people in northwest Oregon and southwest Wash-
ington State, including outpatient, emergency department,
and inpatient care.

We planned to generate gold-standard outcome data for
approximately 250 potential anaphylaxis events in each
study site (500 total), the maximum number feasible within
our study’s resource constraints. In KPWA, we used data
from health-care encounters to develop structured data
covariates, NLP-derived covariates, and multiple models
for identifying validated anaphylaxis events. To assess the
reproducibility (external validation) of these models, we
then applied them without modification to data from KPNW.

To identify potential anaphylaxis events during October
1, 2015, through March 31, 2019, for patients ≥1 year
of age, we translated the International Classification of
Disease, Ninth Revision, Clinical Modification (ICD-9-
CM), code sets and logic published by Walsh et al. (22)
(Web Appendix 1, available at https://doi.org/10.1093/aje/
kwac182) to International Classification of Disease,
Tenth Revision, Clinical Modification (ICD-10-CM), codes
following the method described by Fung et al. (37),
including a recommended clinician review and curation
step (Web Appendix 2 and Web Tables 1 and 2). Potential
anaphylaxis events included emergency department or
inpatient encounters with anaphylaxis diagnoses (“path
1”), and outpatient encounters with anaphylaxis diagnoses
plus, on the same day from any setting, diagnosis codes
for bronchospasm, stridor, or hypotension, and/or procedure
codes for cardiopulmonary resuscitation, epinephrine, or
diphenhydramine injection (our “path 2”). Each patient
contributed 1 potential anaphylaxis event: their earliest
qualifying path-1 encounter or, if none existed, their
earliest qualifying path-2 encounter. Our path-1 and path-2
criteria are thus comparable to Walsh’s criteria A and B,
respectively, facilitating a direct comparison of our results
to those reported by Walsh in these 2 strata.

The KPWA sample (n = 239) included 161 path-1
encounters in 15 non-Kaiser, externally operated regional
hospitals from whom we obtained medical records (59% of
all qualifying path-1 encounters), and 78 path-2 encounters
documented in the KPWA EHR (a 42% random sample).
The KPNW sample included all 277 path-1 and -2
encounters documented in the KPNW EHR.

Gold standard creation

At both study sites, we conducted medical records reviews
to determine whether potential events met National Institute
of Allergy and Infectious Disease (NIAID) clinical criteria
for anaphylaxis (gold standard) (19). At KPWA these deter-
minations were made by 2 physician adjudicators (J.S.F.,
M.A.B.) using methods described previously (25). To
improve efficiency, at KPNW 2 trained abstractors rendered
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determinations following a protocol developed by KPWA
and KPNW clinicians and implemented in RedCAP (avail-
able at https://github.com/kpwhri/Sentinel-Anaphylaxis).
A KPNW clinician (A.H.F.) adjudicated any charts that
abstractors considered ambiguous. KPNW abstractor
determinations were concordant in 88% of a random subset
of 16 charts independently reviewed. The same notes used
for chart review were used to generate NLP-derived data.

Structured data and covariates

Guided by clinical domain expertise (J.S.F., M.A.B.),
informatics knowledge (D.S.C., R.L.J.), and observed
distributions in KPWA data—but without knowledge of
gold-standard determinations—we manually engineered
structured covariates we judged useful for distinguishing
actual from potential anaphylaxis events in automated
models. Constrained by our sample size, we operationalized
a modest-sized set of 47 structured covariates. These
included demographics, setting for the qualifying health-
care encounter, potential cause of anaphylaxis (food,
medication, blood product or vaccine, or unspecified), recent
immunotherapy or imaging with intravenous contrast, clini-
cal interventions (e.g., epinephrine, vasopressors, cardiopul-
monary resuscitation, intubation, tryptase labs, immunology
follow-up), history of allergic reactions, and history of
competing diagnoses, including angioedema, chronic
respiratory disease, and serious infection (Web Appendix
3 and Web Table 3). We operationalized these covariates
identically in KPWA and KPNW Sentinel Common Data
Model data, standardized representations of encounters,
diagnoses, procedures, and medications extracted from
medical claims records and EHR equivalents (13, 17, 38).

NLP-derived data and covariates

Based on review and discussion of 50 KPWA charts, our
clinical (J.S.F., M.A.B.) and informatics (D.S.C., B.L.H.,
D.J.C.) experts manually curated an initial custom dictionary
of concepts they considered useful for identifying validated
anaphylaxis events. Botsis and Ball (39) showed that auto-
mated approaches can similarly be used to identify relevant
anaphylaxis concepts. We therefore augmented this initial
dictionary with Unified Medical Language System (UMLS)
(40) concepts appearing in ≥3 of 6 published anaphylaxis
knowledge base articles (41–46) following the “concept
collection” method described by Yu et al. (47). Our final
dictionary (Web Appendix 4 and Web Table 4) was enriched
with synonyms from the UMLS Metathesaurus (40, 48)
synonyms (e.g., dyspnea synonyms “breathing difficulty”
and “shortness of breath”), and synonyms discovered in
KPWA charts by NLP-assisted manual review (49) (e.g., the
misspelled dyspnea synonym “couldn’t breath”).

We then identified all instances of these dictionary terms
in the KPWA corpus using a locally developed NLP sys-
tem implementing an approach similar to that of Apache
cTAKES (50, 51) and a KPWA-tailored version of the Con-
Text algorithm (52) to distinguish affirmative mentions (i.e.,
those not negated, historical, hypothetical or about some-
one other than the patient). The KPWA corpus for path-1

encounters originated as paper print-outs of EHR notes
from 15 regional non-Kaiser medical facilities, which we
converted to electronic text using Tesseract optical character
recognition (53) and a context-sensitive spelling correction
model (54, 55) trained on KPWA chart notes. The KPWA
path-2 corpus (as well as the entire KPNW corpus) was
extracted from the KPWA (and KPNW) Epic Clarity EHR
databases in electronic format.

Next, in consultation with clinical experts (J.S.F., M.A.B.),
informaticists (D.S.C., B.L.H., D.J.C.) used KPWA’s NLP-
generated data to manually engineer a large set of candi-
date NLP-derived covariates. Illustrative examples of these
covariates included:

• Rules indicating signs and symptoms from multiple
organ systems (e.g., evidence of skin/mucosal tissue
involvement and either respiratory compromise or
reduced blood pressure)

• Mentions of individual symptom categories (e.g., skin/
mucosal tissue involvement)

• Counts of affirmative anaphylaxis mentions normalized
by chart length

• Mentions of cardiopulmonary resuscitation
• Mentions of multiple epinephrine injections

We implemented multiple versions of many covariates;
some requiring only one mention of a concept while others
required at least 2 mentions, a commonly used “counting
rule” (56). We engineered 468 candidate NLP-derived
covariates.

To mitigate risks of model overfitting, an informaticist
(D.S.C.) used frequency distributions in the KPWA sample
(without knowledge of gold-standard determinations) and
expert judgment to select a reduced set of 100 NLP-derived
covariates (Web Appendix 5 and Web Tables 5 and 6).
Additionally, so that we could explore during model devel-
opment whether clinical expertise alone was an effective
approach to covariate selection, two clinicians (M.A.B.,
J.S.F.) selected an alternative set of 25 NLP-derived covari-
ates (16 of which were not among the 100 informaticist-
selected covariates; Web Appendix 5 and Web Table 6).
Although some gold-standard data is commonly used during
NLP covariate engineering (57–59), we conducted all NLP
development without knowledge of gold-standard determi-
nations, thereby reserving all gold-standard data for model
development and validation.

Analytical data set

We used SAS, version 9.4 (SAS Institute, Inc., Cary,
North Carolina), and the KPWA NLP system to generate
the 43 structured and 116 NLP-derived covariates using the
KPWA Sentinel Common Data Model data and corpus. We
packaged and transported to KPNW via GitHub (60) this
same SAS code and NLP system and used it to generate
identical versions of the structured and NLP-derived
covariates using KPNW Sentinel Common Data Model
data and corpora. To avoid missing data issues, we defined
all covariates—structured and NLP-derived—as counts
(including zero) or binary indicators of whether evidence
specified in the covariate’s operational definition existed.

Am J Epidemiol. 2023;192(2):283–295

https://github.com/kpwhri/Sentinel-Anaphylaxis


286 Carrell et al.

Machine-learning modeling methods and evaluation

We used R (version 3.6.3; The R Foundation, Indianapo-
lis, Indiana) (61) to develop several models for each of 3
partially overlapping sets of covariates: 1) structured covari-
ates only, 2) structured plus all 116 NLP-derived covariates,
and 3) structured plus 25 clinician-selected NLP covariates.
For each set of covariates, we evaluated 25 machine-learning
algorithms. The first 24 were pairings between 3 covariate
selection strategies and eight algorithms. The 3 covariate
selection strategies were:

1. Least absolute shrinkage and selection operator
(LASSO) (62), retaining covariates with nonzero
coefficients in the model that minimized the cross-
validated loss

2. Partitioning around medoids (63), using the silhou-
ette width to identify the optimal number of clusters
between 5 and 20, then retaining each cluster medoid

3. Retaining all variables (Retain-All)

The 8 modeling algorithms were:

1. Logistic regression
2. Elastic net, area under the receiver operating charac-

teristic curve (AUC) loss (Elastic Net) (62)
3. Gradient-boosting machine with a maximum tree

depth of 4, AUC loss (gradient-boosting machine
1) (64)

4. Gradient-boosting machine with a maximum tree
depth of 2, AUC loss (gradient-boosting machine
2) (64)

5. Bayesian additive regression trees with regularization
parameter k = 1 (BART1) (65, 66)

6. Bayesian additive regression trees with regularization
parameter k = 2 (BART2) (65, 66)

7. Neural network with 1 node in one hidden layer (neu-
ral network 1) (67, 68)

8. Neural network with 2 nodes in one hidden layer
(neural network 2) (67, 68)

Our twenty-fifth algorithm was Super Learner (SL), an
ensemble method that calculated an optimal weighted
combination of predictions from the other 24 models
(69, 70).

Prior to modeling, we excluded from consideration 27 (4
of 47 structured and 23 of 116 NLP) covariates that had
low variation, defined as ≥99% of observations having the
same value and correlation with the outcome <0.05 (Web
Appendix 6).

We evaluated cross-validated performance of the KPWA-
developed models in KPWA data (15-fold cross-validated)
and, separately, in KPNW data. Our global performance
metric was cross-validated area under the receiver operat-
ing characteristic curve (cross-validated AUC) weighted to
account for path-specific sampling probabilities. For the best
performing models, we also calculated cross-validated sen-
sitivity, specificity, positive predictive value (PPV), negative
predictive value, F1 score (the harmonic mean of PPV and
sensitivity), and F0.5 score (the harmonic mean of PPV and
0.5 × sensitivity) at cutpoints between the 10th and 95th
quantiles of predicted risk from each model. To identify

the important predictors in the model we ranked them by
variable importance defined as the marginal mean difference
in predicted probability associated with a 1-unit change in
a binary covariate or a 1-standard-deviation change in a
nonbinary covariate.

Our primary analysis compared the best performing
model using only structured data covariates to the best
performing model using structured data and all NLP-
derived covariates. In secondary analyses, we evaluated
the performance of: 1) the best performing model using all
structured data covariates and the clinician-selected set of
25 NLP-derived covariates, and 2) a main-terms logistic
regression model using only structured data covariates,
representing a conventional model approach.

This Sentinel activity is a public health surveillance activ-
ity conducted under the authority of the FDA and, accord-
ingly, was not subject to institutional review board oversight
(71–73).

RESULTS

Cross-validated results in KPWA data

Table 1 summarizes patients included in the study. Out
of 239 potential anaphylaxis events at KPWA, 154 (64%)
met clinical criteria for validated anaphylaxis; 180 of 277
(65%) potential events at KPNW met validation criteria.
Sampling fractions and corresponding weights for rescaling
results to all study-eligible encounters are in Web Appendix
7 and Web Table 7. After excluding low-variation covari-
ates, 43 structured and 93 NLP-derived covariates remained.
Depending on the covariate selection method (LASSO, par-
titioning around medoids, or Retain-All) and data set (struc-
tured or structured and all NLP), 7–43 structured covariates
and 13–93 NLP-derived covariates were included in models
(Web Appendix 8 and Web Tables 8 and 9).

There were no statistically significant standardized
mean differences between covariates from the development
(KPWA) and validation (KPNW) sites (Web Appendix 9
and Web Table 10). Associations between each candidate
predictor and the outcome are reported in Web Appendix 10
and Web Table 11.

Weighted cross-validated AUCs and 95% confidence
intervals (CIs) for KPWA models considering only struc-
tured data, or structured data and all NLP data, are
summarized in Table 2. Overall model performance varied
considerably by algorithm, variable selection method, and
data set, but the addition of NLP-derived covariates clearly
improved performance. The best performing structured
data model, a neural net with 1 node in one hidden layer
using LASSO variable selection, yielded a weighted cross-
validated AUC of 0.62 (95% CI: 0.58, 0.66; Table 2, A).
When structured data were augmented with all NLP-derived
data, the BART2 model with LASSO variable selection
performed best, yielding a cross-validated AUC of 0.71
(95% CI: 0.66, 0.76; Table 2). The same BART2 model with
Retain-All variable selection performed similarly (cross-
validated AUC = 0.70, 95% CI: 0.66, 0.75). The Super
Learner did not improve performance further. Variable im-
portance rankings for selected models are in Web Appendix
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Table 1. Characteristics of Patients and Potential Anaphylaxis Eventsa in the Study Samples for the Algorithm
Development Site (Washington) and the External Validation Site (Pacific Northwest), Kaiser Permanente, 2015–
2019

KPWA (n = 239b) KPNW (n = 277)

Characteristic
No. % No. %

Sex

Female 139 58.2 171 61.7

Male 100 41.8 106 38.3

Age group, years

1–19 64 26.8 52 18.8

20–65 136 56.9 184 66.4

≥66 39 16.3 41 14.8

Race

Asian 35 14.6 24 8.7

Black or African American 19 8.0 12 4.3

Other/multiple races 9 3.8 4 1.4

White 155 64.9 212 76.5

Unknown 21 8.8 25 9.0

Ethnicity

Hispanic 13 5.4 24 8.7

Eligibility path

Path 1: ED/inpatient anaphylaxis diagnosis 161 67.4 163 58.8

Path 2: outpatient anaphylaxis diagnosis 78 32.6 114 41.2

Validated anaphylaxis

Yes 154 64.4c 180 65.0d

No 85 35.6 97 35.0

Abbreviations: ED, emergency department; KPNW, Kaiser Permanente Northwest; KPWA, Kaiser Permanente
Washington.

a Each patient contributed 1 potential anaphylaxis event to the study sample.
b Structured data were available for 239 KPWA patients, and natural language processing data were available

for 236 patients; natural language processing data was not generated for 3 KPWA patients because their clinical
notes were not available.

c Percentage “Yes” = positive predictive value; the 95% confidence interval is 58%–70%.
d Percentage “Yes” = positive predictive value; the 95% confidence interval is 59%–71%.

11 and Web Table 12. For the model considering structured
and all NLP covariates, the 5 most important structured
covariates (all negatively associated with actual anaphy-
laxis) were: 1) number of prior years with allergic reaction
diagnoses, 2) allergic reaction diagnosis in the prior year,
3) same-day exposure to any imaging procedure, and dis-
charge prescriptions for 4) antihistamines or 5) corti-
costeroids (Web Appendix 11, Web Table 12, and Web
Appendix 3). The 5 most important NLP-derived covari-
ates (all positively associated with actual anaphylaxis)
were: 1) ≥2 affirmative mentions of hypotension; 2) any
description of respiratory compromise and reduced blood
pressure in close proximity to mentions of either sudden
onset, epinephrine administration, anaphylaxis diagnosis,
or admission for observation; 3) ≥2 affirmative mentions
of skin/mucosal involvement and either respiratory com-
promise or reduced blood pressure in close proximity

to mentions of anaphylaxis diagnosis; 4) ≥2 affirmative
mentions of wheezing; and 5) descriptions of skin/mucosal
involvement and reduced blood pressure in close proximity
to mentions of either sudden onset, epinephrine adminis-
tration, anaphylaxis diagnosis, or admission for observation
(Web Appendix 11, Web Table 12, and Web Appendix 5).

Plots of cross-validated AUC for selected KPWA models
are in Web Appendix 12. The best performing model
incorporating the 25 clinician-selected NLP covariates (Web
Appendix 5) achieved a cross-validated AUC of 0.67 (95%
CI: 0.63, 0.71; additional details are in Web Appendix 12
and Web Table 13), roughly half-way between the best
structured data model (cross-validated AUC = 0.62, 95%
CI: 0.58, 0.66) and the best model incorporating all NLP-
derived covariates (cross-validated AUC = 0.71, 95% CI:
0.66, 0.76; additional details are in Web Appendix 12 and
Web Table 13).
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Table 2. Cross-Validated Weighteda Area Under the Receiver Operating Characteristic Curve for Models Predicting Anaphylaxis Case Status
Based on Structured Data and Structured and Natural Language Processing Data, Kaiser Permanente Washington, 2015–2019

Covariate Selection Strategy

Data Set and Algorithm LASSO PAM Retain-All

AUC 95% CI AUC 95% CI AUC 95% CI

Structured data

Logistic regression 0.58b 0.541, 0.627 0.58b 0.541, 0.627 0.56 0.522, 0.606

Elastic Net 0.59 0.544, 0.630 0.57 0.531, 0.615 0.61 0.562, 0.650

GBM 1 0.58 0.533, 0.623 0.57 0.528, 0.618 0.58 0.538, 0.624

GBM 2 0.56 0.513, 0.601 0.57 0.526, 0.614 0.60 0.557, 0.645

BART 1 0.59 0.544, 0.628 0.56 0.518, 0.602 0.59 0.552, 0.636

BART 2 0.59 0.552, 0.636 0.57 0.532, 0.616 0.59 0.551, 0.635

NNET 1 0.62b 0.578, 0.660 0.58 0.537, 0.627 0.58 0.533, 0.617

NNET 2 0.56 0.516, 0.602 0.53 0.489, 0.573 0.57 0.525, 0.609

Super Learnerc 0.58b (95% CI: 0.537, 0.625)

Structured and NLP data

Logistic regression 0.64 0.598, 0.690 0.66b 0.615, 0.705 0.49 0.436, 0.536

Elastic Net 0.66 0.618, 0.710 0.65 0.605, 0.695 0.65 0.604, 0.694

GBM 1 0.60 0.559, 0.649 0.61 0.566, 0.654 0.68 0.630, 0.724

GBM 2 0.60 0.559, 0.649 0.62 0.577, 0.665 0.67 0.626, 0.718

BART 1 0.70 0.653, 0.747 0.66 0.611, 0.699 0.69 0.641, 0.731

BART 2 0.71b 0.663, 0.757 0.65 0.607, 0.697 0.70c 0.658, 0.750

NNET 1 0.57 0.527, 0.617 0.62 0.572, 0.662 0.58 0.537, 0.621

NNET 2 0.63 0.589, 0.677 0.65 0.608, 0.698 0.66 0.609, 0.701

Super Learnerc 0.69b (95% CI: 0.642, 0.734)

Abbreviations: AUC, area under the receiver operating characteristic curve; BART, Bayesian additive regression trees; CI, confidence interval;
GBM, gradient-boosting machine; LASSO, least absolute shrinkage and selection operator; NLP, natural language processing; NNET, neural
network; PAM, partitioning around medoids.

a Based on weighting of observations to account for biased sampling in Paths 1 and 2.
b These results are featured in the Results and Discussion section of this paper.
c Weighted combination of predictions from the other 24 models using this feature set.

Figure 1 and Table 2 summarize incremental improve-
ment in performance attributable to machine-learning
methods, augmenting structured data with NLP-derived
EHR data, or both. The main-terms logistic regression
approach applied to all 43 structured data covariates
(Table 2, Retain-All), which we defined as a traditional
“baseline” modeling approach, achieved a cross-validated
AUC of 0.56 (95% CI: 0.52, 0.61). Logistic regression
with both of the other covariate selection strategies offered
improved cross-validated AUC (0.58, 95% CI: 0.54, 0.63).
Applying more sophisticated machine-learning methods to
the same structured data improved cross-validated AUC to
0.62 (95% CI: 0.58, 0.66; Table 2, algorithm neural network
1). Applying traditional regression methods to structured
and all NLP-derived data improved cross-validated AUC
to 0.66 (95% CI: 0.62, 0.71; Table 2). Incorporating both
machine learning and NLP-derived data in algorithm
development improved cross-validated AUC to 0.71 (95%
CI: 0.66, 0.76; Table 2).

External validation in KPNW data

We evaluated cross-validated AUC for each of the 75
KPWA-developed models in external data from KPNW
(Web Appendix 13 and Web Table 14). Results confirmed
that models using structured plus all NLP data were best at
identifying cases. However, the BART2-LASSO model (for
KPWA, cross-validated AUC = 0.71, 95% CI: 0.66, 0.76; for
KPNW, cross-validated AUC = 0.63, 95% CI: 0.59, 0.66)
generalized less well to KPNW than the BART2-Retain-All
model (for KPWA, cross-validated AUC = 0.70, 95% CI:
0.66, 0.77; for KPNW, cross-validated AUC = 0.67, 95%
CI: 0.63, 0.71). As shown in Figure 2, modest degradation in
performance in KPNW data was evident toward the middle
of the curve; model performance was comparable at both
sites toward the tails of the curve.

Figure 3 plots PPV and sensitivity for the KPWA BART2
Retain-All model at cutpoints between the 10th and 95th
percentiles of predicted risk in the KPWA and KPNW
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Figure 1. Weighted cross-validated area under the receiver operating characteristic curve for Kaiser Permanente Washington algorithms
identifying actual anaphylaxis events in Kaiser Permanente Washington data (2015–2019) using the best machine-learning approach applied
to structured and all natural language processing (NLP) data, traditional logistic regression approach applied to structured and all NLP data,
machine-learning approach applied to structured data only, and traditional logistic regression approach applied to structured data only.

data sets. Table 3 presents the same information along with
specificity, negative predictive value, F1 score, and F0.5
score. PPVs in both data sets generally increased gradually
and in tandem from lows of 67% to highs of 86% (KPWA)
or 98% (KPNW). Between the 35th and 50th percentiles
of estimated risk, PPVs in both sites are nearly identical
and increase gradually from 75% to near 80%. Sensitivity,
in contrast, decreases rapidly in both sites from highs over
90% to lows below 10%, with KPNW’s sensitivity 8%–10%
lower than KPWA’s between the 35th and 50th percentiles
of estimated risk (Figure 3 and Table 3). The ultimate use of
the classifications should guide the selection of a cutpoint
to achieve desired tradeoffs in sensitivity, specificity, PPV,
and negative predictive value. Web Appendix 14 and Web
Table 15 present detailed performance metrics for selected
models.

DISCUSSION

In this study, which included an external validation
population, we found that algorithms to identify anaphylaxis
from EHR data can benefit substantially from NLP-derived
data and machine-learning methods. Web Appendix 15
contains code and instructions for obtaining predictions
the BART-2 Retain-All model. Incorporating NLP data
improved both machine-learned algorithms (cross-validated
AUC of 0.71 vs. 0.62) and traditional regression algo-
rithms (cross-validated AUV of 0.66 vs. 0.58; Figure 1).

Similarly, machine-learned algorithms outperformed the
expert-curated Walsh algorithm (22), as well as traditional
regression algorithms, when applied to the same data (with
cross-validated AUCs of 0.71 vs. 0.66 in structured and
NLP-derived data and 0.62 vs. 0.58 in structured data only;
Figure 1).

Comparing our results to those of Walsh et al., the pro-
portion of potential anaphylaxis events validated by manual
review (i.e., PPV; see Table 1) at KPWA (64.4%, 95% CI:
58, 70) and KPNW (65.0%, 95% CI: 59, 71) are comparable
to the proportion validated in corresponding portion of the
Walsh sample (67.3%, 95% CI: 57.4, 76.2; criteria A and B
only) (22, p. 1209). Walsh speculated that removing from
their algorithm codes with observed PPVs ≤70% might
improve its PPV, and doing so yielded an empirical PPV of
75.0% with empirical sensitivity of 66%; however, without
external/cross-validation these empirical performance met-
rics may be overly optimistic (74). In contrast, our cross-
validated model yields cross-validated PPV of 79% when
cross-validated sensitivity is set at 66%, and cross-validated
sensitivity of 74% when cross-validated PPV is set at 75%.

This work also underscores the challenges of accurately
identifying anaphylaxis through automated algorithms. In
KPWA data, a cutpoint corresponding to approximately 80%
(78.7%) PPV had sensitivity of 65.8%; the same cutpoint
in external (KPNW) data yielded 78.1% PPV but sensitiv-
ity was attenuated (55.6%; Table 3). Sensitivity associated
with a desired level of PPV is an important consideration
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Figure 2. Cross-validated area under the receiver operating characteristic curve for the most generalizable high-performing machine-learning
model developed at Kaiser Permanente Washington (KPWA, 2015–2019) using structured and natural language processing–derived data
(Bayesian additive regression trees (BART) model 2 with Retain-All variable selection) evaluated in KPWA data and, separately, in Kaiser
Permanente Northwest (KPNW) data (2015–2019).

when designing studies that involve rare outcomes such as
anaphylaxis.

This study had several strengths, including the validation
of anaphylaxis events using established clinical criteria and
rigorous methods, and reporting of reliable cross-validated
performance metrics in the source population (75). Compar-
ing the AUC of the BART2-Retain-All model on the external
validation data (0.67) with the cross-validated AUC on the
original data (0.70) rather than the empirical AUC (0.89)
provided a valid demonstration of the model’s ability to
generalize well within the Kaiser network.

Limitations of this study should also be noted. Although
our model development site included data from a diverse
collection of inpatient facilities, we externally validated our
models in a single, integrated care setting, Kaiser Perma-
nente Northwest, where access to records facilitating NLP
was assured. To the extent that there are substantial dif-
ferences in documentation of anaphylaxis in other health-
care systems, the generalizability of our findings to those
other settings remains unknown. Our decision to manually
curate NLP covariates limits the algorithm’s scalability.
Using paper charts converted by optical character recogni-
tion introduced errors that may have had a negative impact
on NLP performance. Another important limitation of this
study was the modest sample size, a common challenge in
drug safety surveillance when events of interest are rare.
NLP and machine learning are “data hungry” methods that

generally perform best in big data sets. Large amounts of
data give both technologies opportunities to discover signals
among rich sets of covariates and model their potentially
complex relationships with the outcome of interest. The
relatively small sample size may have constrained algo-
rithm performance by limiting the number of covariates
that could be considered. Applying these same methods in
larger samples may yield better results, but increasing gold-
standard samples increases costs. In this study, minority
class size (i.e., the 85 KPWA nonevents) constrained model
development even more than the overall sample size. The
approximately 2:1 ratio of actual anaphylaxis events to non-
events (Table 1) means that 3 additional, costly chart reviews
are required to add a single (minority class) nonevent to the
sample. Our modest sample size also influenced our decision
not to use gold-standard training data during NLP covariate
engineering, which may have had a negative impact on
algorithm performance.

Other factors that may limit algorithm performance—
for anaphylaxis and other health outcomes of interest—
are ambiguity in clinical presentation and incompleteness
of EHR documentation. In prior work applying NLP to
anaphylaxis cases in Sentinel, reasons for misclassification
included errors in identifying timing, severity, or presence
of competing diagnoses (e.g., angioedema, asthma, chronic
obstructive pulmonary disease, serious infection), and the
presence of language consistent with anaphylaxis but also
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Figure 3. Model performance for classifying actual anaphylaxis events in Kaiser Permanente Washington (KPWA) data and Kaiser Permanente
Northwest (KPNW) data, 2015–2019 . The model, developed in KPWA data, was a Bayesian additive regression trees (BART) model 2 retaining
all covariates. Plotted values are cross-validated (CV) positive predictive value and sensitivity for increments of the predicted risk between the
10th and 95th percentiles.

other conditions (19). The rapid onset and responsiveness
of anaphylaxis to epinephrine treatment, often administered
in the field, further limit clinicians’ opportunities to directly
observe and document symptoms and progression critical to
accurate diagnosis. Such diagnostic challenges were evident
during our gold-standard creation, where 20% of KPWA
charts were assigned discordant case status or were subjec-
tively judged “difficult to adjudicate” by one or both inde-
pendent physician reviewers. This raises questions regarding
the potential upper limits of algorithm performance and may
account for the modest algorithm performance reported by
most others (20, 34, 35).

Several lessons from this study are relevant to broader
efforts to improve surveillance methods for rare outcomes
using EHR data and machine learning. First, this work
illustrated the strengths of applying data-adaptive machine
learning to a rich, high-dimensional set of covariates. A
traditional parametric modeling approach incorporating a
limited number of preselected covariates should no longer
be the sole method under consideration. Second, future
work should consider using automated NLP development
approaches (47, 76–78). Such approaches may reduce bur-
dens and operator-dependencies of manual NLP engineering
and be replicated more easily in multiple settings thereby
addressing site-specific textual heterogeneity and facilitat-
ing larger sample sizes by combining NLP data from mul-
tiple sites (79). Third, whenever possible, use of paper

charts should be avoided; converting paper charts via optical
character recognition is burdensome and introduces error in
a corpus.

As the quantity of EHR data available for research and
public health surveillance expands, other more sophisticated
but data-hungry machine-learning methods may be useful
for identifying rare, acute health outcomes (such as ana-
phylaxis) without burdensome manual feature engineering.
Long/short-term memory (LSTM) neural networks and bidi-
rectional encoder representations from transformers (BERT)
have been shown to improve classification models when
applied to data sets containing tens of thousands of the health
outcome of interest (80, 81).

In planned future work using our existing data, we will
we explore whether modeling approaches based on distant
supervision (77, 78) may be useful for shifting some of the
burden of generating strong NLP-derived predictors can be
shifted from humans to machines. We will also combine
KPWA and KPNW data in an attempt to improve sensitivity
and PPV, develop second-stage models designed to reduce
misclassifications, and investigate whether reducing hypoth-
esized heterogeneity in the covariate-outcome associations
by restricting to an adults-only study population can improve
performance. As we reported elsewhere, the distribution of
causes of anaphylaxis are different in children and adults
(25), and others have reported age-related differences in
anaphylaxis symptoms and comorbidities (82).
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Table 3. Cross-Validated Performance Metrics at Cutpoints of Predicted Risk from the Bayesian Additive Regression Trees, Retain-All Model
Developed Using Kaiser Permanente Washington Structured and All Natural Language Processing Data. Kaiser Permanente, 2015–2019

Cutpoint of
Predicted
Risk, %

KPWA Data KPNW Data

Sensitivity Specificity PPV NPV F1 F0.5 Sensitivity Specificity PPV NPV F1 F0.5

10 92.9 17.5 67.2 57.7 78.0 67.3 95.6 12.4 66.9 60.0 78.7 67.0

15 89.5 26.8 69.0 58.4 77.9 69.0 93.3 22.7 69.1 64.7 79.4 69.2

20 84.5 30.9 69.0 52.2 76.0 69.0 88.3 24.7 68.5 53.3 77.2 68.6

25 83.9 43.8 73.1 59.9 78.1 73.1 82.2 35.1 70.1 51.5 75.7 70.2

30 78.0 48.9 73.5 55.0 75.7 73.6 72.2 44.3 70.7 46.2 71.4 70.7

35 76.3 59.8 77.5 58.0 76.9 77.5 65.6 54.6 72.8 46.1 69.0 72.8

40 70.9 63.4 77.9 54.5 74.2 77.9 61.1 63.9 75.9 47.0 67.7 75.8

45 65.8 67.5 78.7 52.0 71.7 78.6 55.6 71.1 78.1 46.3 64.9 78.1

50 60.7 70.6 79.0 49.7 68.6 78.9 46.7 79.4 80.8 44.5 59.2 80.6

55 56.1 76.8 81.5 49.0 66.5 81.4 34.4 87.6 83.8 41.9 48.8 83.5

60 49.6 78.4 80.7 46.1 61.4 80.5 28.3 90.7 85.0 40.6 42.5 84.6

65 44.5 83.0 82.7 45.1 57.9 82.5 25.0 92.8 86.5 40.0 38.8 86.0

70 38.0 86.1 83.3 43.3 52.2 83.0 23.9 93.8 87.8 39.9 37.6 87.2

75 30.7 87.1 81.3 40.8 44.5 80.9 18.9 93.8 85.0 38.4 30.9 84.3

80 25.3 90.8 83.3 40.0 38.8 82.8 13.9 95.9 86.2 37.5 23.9 85.1

85 18.2 90.8 78.1 37.9 29.5 77.5 8.9 99.0 94.1 36.9 16.2 91.9

90 13.6 96.9 89.0 38.1 23.6 87.8 6.1 99.0 91.7 36.2 11.5 88.6

95 7.1 100.0 100.0 37.2 13.3 96.8 0.6 100.0 100.0 35.1 1.1 69.1

Abbreviations: F1, the harmonic mean of PPV and sensitivity; F0.5, the harmonic mean of PPV and 0.5 × sensitivity; KPNW, Kaiser
Permanente Northwest; KPWA, Kaiser Permanente Washington; NPV, negative predictive value; PPV, positive predictive value.

CONCLUSIONS

Identification of anaphylaxis, a rare and clinically com-
plex health outcome of interest to clinicians, epidemiologists,
and postmarketing medical product safety surveillance, is
improved by the addition of NLP-derived EHR data and
machine-learning approaches. Future anaphylaxis model-
ing work should attempt to assemble larger study samples,
exclusively use native EHR text, and automate some or
all aspects of NLP development to enhance scalability and
reduce development costs.
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