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Abstract: Human cytomegalovirus (HCMV) encodes 22 mature microRNAs (miRNAs), which regu-
late a myriad of cellular processes, including vesicular trafficking, cell cycle progression, apoptosis,
and immune evasion, as well as viral gene expression. Recent evidence points to a critical role for
HCMV miRNAs in mediating latency in CD34+ hematopoietic progenitor cells through modulation
of cellular signaling pathways, including attenuation of TGFβ and EGFR signaling. Moreover, HCMV
miRNAs can act in concert with, or in opposition to, viral proteins in regulating host cell functions.
Here, we comprehensively review the studies of HCMV miRNAs in the context of latency and
highlight the novel processes that are manipulated by the virus using these small non-coding RNAs.
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1. Introduction

Human cytomegalovirus (HCMV), a prototypic member of the beta-herpesvirus
family, has a large, double-stranded DNA genome of approximately 230 kbp that encodes
for greater than 170 proteins, as well as numerous long and small non-coding RNAs [1–3].
CMVs have co-evolved with their hosts over millions of years, and as such a careful balance
between virus replication, viral latency, and host immune control has emerged. This
intricate balance between virus and host results in a CMV seroprevalence of approximately
40–90% across different human populations [4]. While T-cell-mediated immunity helps
keep viral replication in check in an immunocompetent host [5,6], immunocompromised
individuals, such as those undergoing solid organ or hematopoietic stem cell transplants,
are susceptible to CMV reactivation from latency and virus replication in numerous tissues
and organs, causing significant morbidity and mortality [7,8].

CMVs can infect a remarkable breadth of cell types [9,10] and diverse transcriptional
programs are elicited that represent distinct modes of infection. In many cell types, such
as fibroblasts and smooth muscle cells, CMVs undergo lytic replication, whereby viral
gene expression follows a strict program of immediate early (IE) followed by early (E)
and then late (L) genes [11]. Subsequent virion assembly and egress results in the release
of new virus particles that can go on to infect neighboring or infiltrating cells. A much
more protracted replication cycle happens in endothelial and epithelial cells, which may be
sources of long-term viral shedding and immune stimulation [12].

CMV latency, defined by maintenance of viral genomes in the absence of new virion
production, is established when infected monocytes traffic to the bone marrow and seed
infection of CD34+ hematopoietic progenitor cells (HPCs). The mechanisms by which
the virus enters and exits latency have long been unclear, and the difficulty in enriching
for rare latently infected cells in vivo has limited the study of natural latency. However,
the development of in vitro systems that mimic aspects of the bone marrow stroma and
maintain HPCs in their progenitor state has allowed for investigation into the role of
specific gene products in latency and reactivation [13–21]. Transcriptional profiling during
latent infection has suggested widespread, although very mild, gene expression from the
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latent genome [22–24]. Reactivation from latency occurs following encounters with external
stimuli, such as proinflammatory cytokines, which alter the intracellular environment in a
manner that favors efficient re-expression of IE, E, and L viral gene products [19,25–27]. The
signaling pathways and viral and cellular gene products required for reactivation continue
to be investigated and cellular differentiation along the myeloid lineage is necessary for
navigating the reactivation process [27,28]. HCMV drives myeloid-specific differentiation,
as well as trafficking of infected HPCs out of the bone marrow and their differentiation
into tissue-specific macrophages through unknown mechanisms, which leads to the full
cascade of viral gene expression and production of new infectious virions [5].

Over the past two decades, miRNAs have emerged as potent and cell-type-specific
regulators of the host cell environment. These miRNAs are small, ~22 nucleotide non-
coding RNAs that post-transcriptionally regulate gene expression [29]. Mature miRNAs
are generated from hairpin secondary structures that arise from longer RNA polymerase
II or polymerase III transcripts [30]. In the nucleus, primary (pri-) miRNAs are cleaved
into precursor (pre-) miRNAs via the microprocessor complex, consisting of DGCR8 and
the ribonuclease Drosha. Pre-miRNAs are then exported to the cytoplasm, whereupon a
second cleavage event by the RNAse III endonuclease Dicer results in miRNA duplexes.
The miRNA is subsequently loaded into an argonaute (Ago) protein, thereby releasing the
passenger strand, and forming the minimal RNA-induced silencing complex (RISC). RISC
utilizes the miRNA seed sequence region (nucleotides 2 through 8) to recognize and bind
complementary regions of targeted transcripts. Association of RISC with a target RNA
results in translational repression through inhibition of translation initiation or elongation
factors or mRNA decay through recruitment of deadenylation factors [31,32]. Because
of the short regions of complementarity utilized by miRNAs, they have the capacity to
target up to hundreds of different genes [33], making them powerful regulators of gene
expression. In fact, individual deletion of most major cellular miRNA families results in a
wide array of defects in eukaryotic organisms [34–36].

miRNAs are encoded not only by eukaryotic organisms but also viruses, which
utilize small RNAs to aid in their replication cycles [37]. Of the over 250 identified viral
miRNAs to date, most are encoded by members of the herpesvirus family, including alpha,
beta, and gamma herpesviruses. The first herpesvirus miRNAs were identified in cells
latently infected with Epstein–Barr virus (EBV) [38] and subsequent functional studies
have implicated the EBV miRNAs in latency maintenance [39–41]. Alpha and gamma
herpesvirus miRNAs are found clustered in viral genomic regions that are known to
be expressed during latency, suggesting roles in maintaining latent infection [42–45]. In
contrast, CMV miRNAs are encoded throughout the viral genome rather than in discrete
locations associated with CMV latent gene expression [46,47]. These observations would
suggest roles for CMV miRNAs at multiple stages throughout infection; however, these
discrepancies may also be due to our still-limited understanding of CMV gene expression
during latent infection in vivo.

In order to successfully establish a latent infection, HCMV must enter CD34+ HPCs,
maintain its genome, and simultaneously support essential cellular functions to avoid cell
death and detection by the innate and adaptive immune responses. Moreover, reactivation
requires that the viral genome remains responsive only to appropriate reactivation cues
while avoiding sub-optimal activation signals. Their non-immunogenic nature, along with
the ability to target potentially hundreds of different transcripts, suggests that HCMV
miRNAs could be key regulators of protein expression during latency, where other viral
factors may not reach the expression threshold necessary to exert their functions. Notably,
targets of HCMV miRNAs have been identified that play key roles in regulating CD34+

HPC proliferation and hematopoiesis, along with entry into and exit from latency.

2. HCMV miRNAs Expressed In Vitro and In Vivo

HCMV miRNAs were first described by Pfeffer et al. [48], who identified 9 pre-
miRNA sequences in lytically infected cells; these were later independently confirmed by
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multiple groups [46,47,49]. Subsequently, next-generation sequencing analysis of lytically
infected human fibroblasts revealed 22 mature HCMV miRNAs arising from a total of 12
pre-miRNAs (Figure 1) and further confirmed incorporation of the HCMV miRNAs into
RISC [47]. miRNA expression has also been assessed in latently infected CD14+ monocytes
and CD34+ HPCs using qRT-PCR [15,50–52]. These studies demonstrated that all HCMV
miRNAs are expressed and abundantly detected at early times after infection of CD34+

HPCs (2–4 dpi). However, by 10–14 dpi, only a few miRNAs, such as miR-UL112-3p,
miR-UL22A, and miR-UL148D, remain abundantly detectable. Given that only ~1 in 1000
to 1 in 10,000 cells contain viral genomes capable of reactivation [53], the expression pattern
of HCMV miRNAs in truly latently infected cells awaits the ability to detect and enrich for
these cells.
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Figure 1. Schematic of microRNAs (miRNAs) encoded by Human cytomegalovirus (HCMV). (A) Locations and orientations
of pre-miRNAs are shown as black arrows on the HCMV genome. TRL/S, tandem repeat long/short; UL/S, unique
long/short; IRL/S, internal repeat long/short. (B) List of pre-miRNAs, associated mature miRNAs, and corresponding
mature miRNA sequences are shown.

HCMV miRNAs have been examined as potential biomarkers and as a means to
predict CMV DNAemia in a number of disease settings, including during hematopoi-
etic and solid organ transplantation. HCMV miRNAs have been detected in plasma
and serum [54–59], whole blood [60], extracellular vesicles isolated from serum [61],
saliva [62], and purified monocytes and PBMCs [52] in healthy and diseased individ-
uals. The most commonly detected miRNAs, miR-US25-1, miR-UL112-3p, and miR-UL22A,
are also amongst the most highly expressed during lytic and latent infection. HCMV
miRNAs have also been detected in astrocytic tumors [63] and glioblastoma tissue [64].

3. HCMV miRNAs Involved in Latency Establishment and Maintenance

In order to establish latency, expression of the viral IE proteins, essential for launching
the lytic cascade of viral gene expression, must be suppressed. HCMV miRNAs are
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involved in inhibiting IE gene expression through a variety of mechanisms. One of the
first identified targets of HCMV miR-UL112-3p is the UL123 transcript, encoding the
major immediate early lytic protein IE72; pre-expression of miR-UL112-3p limits IE72
protein levels and limits viral DNA copy numbers in infected cells [65]. Further studies
demonstrated that mutation of the miR-UL112-3p binding site within the UL123 transcript
alleviated miR-UL112-3p-mediated reduction of IE72 protein levels [66]. Interestingly,
infection of CD14+ monocytes with the IE72 miR-UL112-3p binding site mutant revealed
that miRNA targeting of IE72 is not needed for latency establishment or reactivation
in vitro, but is important to limit IE gene expression and cytotoxic T cell recognition [67].
Thus, miR-UL112-3p targeting of IE72 may play an important role in maintaining the
pool of latently infected cells within the host (Figure 2). Although not directly tested
in the context of latent infection, miR-UL112-3p also targets HCMV UL112/UL113 and
UL120/UL121 [65]. Moreover, other HCMV miRNAs target viral transcripts, potentially
contributing to the establishment or maintenance of latent infection. Additionally, miR-
US5-1 and miR-US5-2 target US7 [68], while miR-UL36 targets UL138 [69]. Of note, an
miR-US5-2 homolog (miR-Rh183-1) encoded by Rhesus CMV (RhCMV) also targets the
RhCMV US7 homolog (Rh186) [70]. The region encompassing this miRNA can be removed
from the viral genome and the virus can still infect rhesus macaques and induce T cell
responses to heterologous antigens [71], suggesting that reducing US7 expression through
miRNA targeting is not essential for infection in vivo.

In addition to directly regulating HCMV genes, HCMV miRNAs target a wide array
of cellular transcripts, thereby altering the host cell environment during the establishment
of latency. Pan et al. [51] showed that a miR-UL148D mutant virus was unable to establish
latency in CD34+ HPCs and instead underwent a lytic infection cycle. The authors identified
one direct target of miR-UL148D, IER5, which regulates the CDK-1 phosphatase CDC25B.
During infection of CD34+ HPCs with a miR-UL148D mutant, levels of IER5 protein were
significantly increased, while CDC25B showed a concordant decrease in expression. Studies
have shown that CDC25B activates CDK-1 through dephosphorylation [72], which in turn
inhibits transcription of HCMV UL123 (IE72) [73]. Using the myeloid cell line Kasumi-3,
the authors show that infection with the miR-UL148D mutant virus does not inhibit IE1
gene expression due to the enhanced phosphorylation of CDK-1 that occurs upon reduced
CDC25B expression [51] (Figure 2). Thus, by interfering with expression of a cellular
immediate early response gene, HCMV miR-UL148D indirectly regulates viral IE gene
expression and latency establishment.

Latency establishment and maintenance require that the infected cells block host apop-
totic responses. High-throughput analysis of HCMV miRNA targets in lytically infected
human fibroblasts identified multiple targets related to apoptosis signaling, including FAS,
FADD, CASP3, and CASP7 [74]. Additional studies performed in the absence of infection
or using cell lines that are not permissive for HCMV latency have suggested that HCMV
miRNAs can inhibit apoptosis through suppression of SLC25A6/ANT3 [75] and immediate
early gene X-1 (IEX1) [76]. More recently, HCMV miR-US5-1 and miR-UL112-3p were
shown to target FOXO3a [77], a member of the mammalian Forkhead Box O family of
transcription factors that promotes mitochondrial-dependent and -independent mecha-
nisms of apoptosis induction [78,79]. FOXO3a binds to the promoters of pro-apoptotic
regulators such as Bcl-2-like protein 11 (Bim) and stimulates its expression [80]. The activity
of FOXO3a is regulated by PI3K/AKT and MEK/ERK signaling, which mediate phospho-
rylation and translocation of FOXO3a to the cytoplasm [81–83]. The FOXO3a transcript
is downregulated by HCMV miR-US5-1 and miR-UL112-3p and the protein is targeted
for phosphorylation and inactivation by the HCMV FLT3L homolog UL7 [77]. Both the
miRNAs and UL7 are expressed at early times post-infection of CD34+ HPC [15,77] and
reduce FOXO3a levels and activity to limit the induction of apoptosis [77] in this cell type
(Figure 2). This study demonstrates a coordination between an HCMV protein and HCMV
miRNAs to promote survival of infected cells in a way that supports the establishment of
HCMV latency.
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Figure 2. A model of Human cytomegalovirus (HCMV) microRNA (miRNA) regulation of latency
establishment. Following viral entry into a CD34+ hematopoietic progenitor cell (HPC), HCMV
immediate early (IE) gene expression must be silenced and host cell signaling must be remodeled
to prevent apoptosis and immune recognition to promote latent HCMV infection. Furthermore,
miR-UL112 directly targets HCMV immediate early gene IE72 to avoid recognition by cytotoxic T
cells [67], while miR-UL148D targets Immediate early response 5 (IER5) to indirectly regulate IE
gene expression through Cyclin-dependant Kinase-1 (CDK-1) [51]. In addition, a cellular miRNA
family expressed in CD34+ HPCs targets HCMV IE86 to prevent lytic replication [84]. Additionally,
miR-US5-1 and miR-UL112 act synergistically with HCMV US7 to downregulate Forkhead Box O3
(FOXO3a) and thereby prevent apoptosis during latency establishment [77]. HCMV proteins are
shown in green and HCMV miRNAs are shown in red.

While limiting IE gene expression and preventing apoptosis are critical steps in latency
establishment, very little is known about the viral and cellular factors required to maintain
the latent genome in CD34+ HPCs. Recently, TGFβ signaling was identified as an important
antiviral response during latency that affects viral genome maintenance [16]. HCMV miR-
UL22A-5p and miR-UL22A-3p target SMAD3, a key transcription factor downstream of
TGFβ binding to the TGFβ receptor (Figure 3). HCMV lacking the miR-UL22A hairpin does
not block canonical TGFβ signaling in CD34+ HPCs and fails to reactivate from latency.
Further examination determined that miR-UL22A mutant genomes were lost during latency,
accounting for the lack of reactivation. A miR-UL22A mutant virus engineered to express an
shRNA targeting SMAD3 from the miR-UL22A locus reverted the ∆miR-UL22A phenotype
to that of wild type (WT)—canonical TGFβ signaling was blocked in CD34+ HPCs and
viral genomes were maintained and capable of reactivation [16]. These data indicate that
targeting SMAD3 is an essential function of miR-UL22A during latent infection of CD34+

HPCs in order to maintain viral genomes capable of reactivation. Altogether, the studies
described here emphasize the complexities surrounding HCMV miRNA regulation of both
host and viral factors that contribute to the ability of HCMV to enter into and maintain
latency in CD34+ HPCs.
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4. HCMV miRNAs Involved in Regulating CD34+ HPC Proliferation and
Myelopoiesis

In order to regulate latency in CD34+ HPCs, the virus must participate in maintaining
the quiescent state of the progenitor cell. Conversely, upon reactivation stimuli, the virus
drives cell differentiation through the myeloid lineage. Additionally, because HCMV is
not known to tether its genome to the host chromosomes during cell division, HCMV also
actively limits the proliferation of the infected HPC. Thus, the virus carefully manipulates
the homeostasis of infected CD34+ HPCs to aid in specific steps of its lifecycle, and evidence
is emerging to suggest this occurs in part through the actions of viral miRNAs.

HCMV miR-US22 targets EGR-1 [15], which is an important modulator of CD34+ HPC
proliferation [85]. EGR-1 is critical for promoting “stemness”—self renewal and a lack of
differentiation—of CD34+ HPCs in the bone marrow niche in vivo [86,87]. Expression of
an EGR-1 shRNA phenocopies the effect of miR-US22 in limiting proliferation of CD34+

HPCs [15]. Given that miR-US22 is not expressed during latent infection, this suggests
that expression of miR-US22 either at the initial stages of infection or upon reactivation is
important for limiting the proliferation of cells harboring viral genomes.
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Figure 3. A model of Human cytomegalovirus (HCMV) factors that contribute to latency maintenance.
Host cell signaling is modulated by HCMV proteins and microRNAs (miRNAs) to evade immune
detection, limit proliferation, and suppress myeloid differentiation. Furthermore, miR-UL148D in-
hibits activin signaling to limit pro-inflammatory cytokine release from the latently infected cell [50].
Additionally, miR-US5-2 targets the transcriptional repressor NGFI-A-binding protein 1 (NAB1) to
increase Transforming Growth Factor beta (TGFβ) production and secretion, resulting in myelosup-
pression. However, miR-UL22A blocks the TGFβ pathway to protect the infected cell from the effects
of TGFβ and to maintain viral genomes during latency [16]. Moreover, miR-US25-1 also prevents the
loss of viral genomes during latency by targeting the GTPase Ras homology family member A (RhoA)
and inhibiting proliferation of latently infected CD34+ hematopoietic progenitor cells (HPCs) [88].
HCMV miRNAs are shown in red.
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As an additional mechanism to limit cell proliferation during latent infection, HCMV
miR-US25-1 targets RhoA, a GTPase critical for regulating actin dynamics [88]. miR-US25-1
directly targets the 3′ UTR of RhoA, thereby reducing protein expression, attenuating
downstream signaling through myosin light chain II, and limiting the formation of the
contractile ring required for cytokinesis (Figure 3). Notably, ∆miR-US25-1-infected CD34+

HPCs proliferate significantly more than WT-infected cells, and reactivate from latency with
a lower frequency compared to WT. Given that the ∆miR-US25-1-infected cells proliferate
more extensively, the lower frequency of reactivation is due to a lower proportion of
genome-containing cells at the end of the latency culture [88]. Thus, miR-US25-1 targeting
of RhoA uncovers a novel means of enriching for viral-genome-containing cells during
latency. Along with RhoA, additional cell cycle regulators have been identified as targets of
miR-US25-1 [89], suggesting that the miRNA may regulate proliferation during infection
using multiple mechanisms.

HCMV-infected CD34+ HPCs not only show significant reduction in proliferation,
but specific myeloid differentiation programs are also blocked by infection. For many
years, it has been observed that HCMV infection is myelosuppressive, both in vitro and
in vivo [16,90–94], but the mechanisms surrounding this myelosuppression were unknown.
Recently, it was determined that latently infected CD34+ HPCs secrete the myelosuppres-
sive cytokine TGFβ [16,95]. TGFβ expression is negatively regulated by the transcriptional
repressor NAB1, which brings HDAC2 and other chromatin modifiers to the TGFβ pro-
moter [96,97]. NAB1 is a target of HCMV miR-US5-2, and expression of either miR-US5-2
or a NAB1 siRNA induced the expression and secretion of TGFβ and limited myeloid
colony formation in CD34+ HPCs [16] (Figure 3). In support of these findings, a miR-US5-2
mutant virus showed decreased TGFβ secretion and enhanced proliferation and myeloid
colony formation compared to WT-infected CD34+ HPCs. Thus, through increased TGFβ
production via downregulation of a transcriptional repressor, miR-US5-2 is capable of
mediating myelosuppression in the local microenvironment during latent infection. Inter-
estingly, HCMV also blocks canonical TGFβ signaling through targeting SMAD3 using
the latently-expressed miRNAs miR-UL22A-5p and -3p (see above). Thus, while the virus
stimulates TGFβ secretion, it protects itself from the consequences of TGFβ signaling
within the infected cell (Figure 3). These data illustrate the incredible power that HCMV
miRNAs can exert during latent infection to regulate both the intracellular and extracellular
environment.

5. HCMV miRNAs Involved in Reactivation from Latency

Reactivation from latency is a complex and multistep process that results in attenuation
of host signaling pathways important for latency maintenance and the stimulation of other
pathways involved in viral gene expression and cellular differentiation. Modelling HCMV
reactivation from latency in CD34+ HPCs in vitro has proved technically difficult, and thus
less is known about the role of HCMV miRNAs in this process. However, one HCMV
miRNA implicated in the reactivation process is miR-US22, which targets the immediate early
transcription factor EGR-1. Expression of miR-US22 reduces EGR-1 protein levels and blocks
the EGFR/MEK/ERK-mediated stimulation of an EGR-1 transcriptional reporter [15]. Buehler
et al. [14] determined that EGR-1 is involved in the expression of the latency-associated gene
UL138. UL138 plays a role in maintaining the surface expression of EGFR and enhancing
signaling through the MEK/ERK/EGR-1 pathway. Consequently, a feed-forward loop of
EGFR signaling–UL138 expression forms during HCMV latency that is critical for maintaining
the latent state [14,98]. While miR-US22 is not detected during latent infection of CD34+

HPCs [15], it is thought to be re-expressed following reactivation when viral gene expression
is re-initiated. The miR-US22-mediated downregulation of EGR-1 may contribute to breaking
the EGFR-UL138 signaling loop, and thus augmenting the viral reactivation process, although
this remains to be directly tested. Additionally, miR-US5-2, through downregulating the
EGFR adaptor protein GAB1, also indirectly regulates EGR-1 and UL138 expression [99];
however, the relevance of this interaction in latency and reactivation remains to be investigated.
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Collectively, these studies highlight a role for EGFR signaling as a critical switch between
HCMV latency and reactivation [14,15,99]. Modulation of this signaling pathway at multiple
stages of the viral life cycle is accomplished by an intricate interplay between HCMV proteins
and miRNAs (Figure 4).
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Figure 4. A model of Human cytomegalovirus (HCMV) microRNA- (miRNA)-mediated reactivation
from latency. Reactivation from latency requires myeloid differentiation and attenuation of host cell
signaling important for latency maintenance. HCMV miRNAs target multiple components of the Epi-
dermal growth factor receptor (EGFR)/Mitogen activated protein kinase kinase (MEK)/Extracellular
signal-regulated kinase (ERK) signaling pathway to interfere with UL138 expression. HCMV UL138
promotes EGFR signaling, which is critical for latency maintenance [98]. EGFR signaling through
Early growth response-1 (EGR-1), in turn, promotes expression of HCMV UL138, creating a feed-
forward loop [14]. Although miR-US22 is not expressed during latency, it may instead act to block
EGFR signaling during the early steps of reactivation [15]. Furthermore, miR-US5-2 also inhibits a
component of the EGFR pathway and may contribute to HCMV reactivation [99]. HCMV proteins
are shown in green and HCMV miRNAs are shown in red.

6. HCMV miRNAs Involved in Evasion of Host Immune Responses

The most direct evidence of HCMV miRNA involvement in immune evasion during
latency comes from the study of miR-UL148D and one of its targets, the activin receptor
ACVR1B [50] (Figure 2). Using a monocyte infection model, Lau et al. [50] determined
that ACVR1B levels were increased in cells infected with a ∆miR-UL148D virus. While the
lack of miR-UL148D expression had no effect on latency or reactivation in this model (in
contrast to the work of Pan et al. [51], who demonstrated a lack of latency establishment in
CD34+ HPCs infected with a ∆miR-UL148D virus; see above), the authors demonstrated
a significant upregulation of IL-6 secretion in response to activin A stimulation when
miR-UL148D was deleted from the virus. Thus, miR-UL148D targeting of ACVR1B is
involved in limiting proinflammatory cytokine levels during infection of monocytes.
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Regulation of cytokine expression and release is a recurring theme among HCMV
miRNAs. As mentioned above, miR-US5-2 targets NAB1, enhancing secretion of TGFβ
during latent infection [16]. In lytic infection models, HCMV utilizes miR-US5-1 and
miR-UL112-3p to limit the production of IL-6 and Regulated upon Activation, Normal
T Cell Expressed and Presumably Secreted (RANTES) through regulation of IKKα and
IKKβ expression and signaling through NFκB [100]. Additionally, miR-UL148D reduces
production and secretion of RANTES by targeting the transcript directly [101]. As a
means to limit secretion of TNFα and likely other cytokines, HCMV miRNAs significantly
restructure the endocytic recycling compartment [102]. Although not all of these targets
have been validated in latency models, these miRNAs could play a significant role in
modulating the secretome of latently infected cells.

Finally, one of the earliest cellular targets identified for an HCMV miRNA is MHC
class I-related chain B (MICB), a ligand for NK cells that triggers degranulation and killing
of the interacting cell [103]. By targeting MICB for downregulation in infected cells, miR-
UL112-3p partially inhibits NK-cell-mediated cytotoxicity in vitro [103]. Whether targeting
MICB is important to protect latently infected cells from NK cell killing remains to be
determined.

7. Cellular miRNAs Involved in Regulating Latency

While viral miRNAs target cellular and viral genes to regulate latency and reactivation
in CD34+ HPCs, it is worth noting that specific cellular miRNAs are also involved in
regulating HCMV IE gene expression. Members of the miR-200 family, including miR-
200b, miR-200c, and miR-429, target the UL122 (IE86) transcript (Figure 2). Mutation
of the cellular miRNA binding site in the UL122 transcript resulted in increased IE86
protein expression and enhanced lytic replication in CD34+ HPCs [84]. The miR-200
family members are more highly expressed in less-differentiated cells; thus, these data
suggest that HCMV may have evolved to utilize cellular miRNAs to contribute to the
regulation of IE expression in specific cell types. How the virus overcomes this repression
during viral reactivation remains to be determined. HCMV latent infection downregulates
expression of miR-92a, resulting in increased GATA-2 and IL-10 expression, which enhances
viral DNA content in infected cells [104]. Additionally, miR-UL112-3p was found to
act cooperatively with the cellular miRNA miR -376a for optimal downregulation of
MICB during infection [105]. Finally, HCMV encodes a region between UL144 and UL145
that binds cellular miR-17 and miR-20a and reduces their levels during lytic infection.
Termed the miRNA decay element (miRDE), the function of this region is not completely
understood but may play a role in cell cycle regulation [106]. Since miR-17 family members
play important roles in CD34+ HPC biology [107], it is possible that the miRDE region has
important functions during HCMV latency that remain to be discovered.

8. Conclusions and Future Perspectives

In comparison to other herpesviruses, the species specificity and challenges inherent in
HCMV latency model systems has hampered the understanding of HCMV miRNA targets
during latency. Despite these challenges, the role of HCMV miRNAs in manipulating
CD34+ HPC proliferation and myelopoiesis, as well as entry into and exit from latency, are
beginning to be appreciated (Table 1). While originally considered fine-tuners of protein
expression, study of HCMV miRNAs has uncovered a significant impact for these viral
small non-coding RNAs on the host cell and its microenvironment. Emerging evidence
points to a complex interplay between the viral proteins and miRNAs expressed during
latent infection in regulating signaling pathways to establish (Figure 2), maintain (Figure 3),
and reactivate from latency (Figure 4). It is inevitable that a more complete understanding
of the HCMV miRNA targetome during latent infection will uncover further novel and
exploitable means of viral miRNA regulation of host gene expression, providing greater
insight into how HCMV regulates CD34+ HPC biology.
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Table 1. Roles of Human cytomegalovirus (HCMV) microRNAs (miRNAs) in latency and reactivation. List of HCMV-
encoded miRNAs are shown along with their roles in latency and reactivation, or other roles not yet tested in cells that
support latent infection.

miRNA Role in Latency/Reactivation Other Roles

miR-US4-5p Unknown

miR-US4-3p Unknown Targets CASP7, may affect apoptosis signaling [74]

miR-US5-1

Inhibits apoptosis during latency establishment via
FOXO3a downregulation [77] Targets HCMV US7 [68]

Inhibits production of IL-6 and RANTES through IKKα
and IKKβ targeting [100]

Restructures the endocytic recycling compartment to limit
cytokine secretion [102]

Targets FADD, may affect apoptosis signaling [74]

miR-US5-2

Promotes TGFβ secretion by targeting the transcriptional
repressor NAB1, mediates myelosuppression [16] Targets HCMV US7 [68]

Targets GAB1 to indirectly regulation EGR-1 and HCMV
UL138 expression [99]

Restructures the endocytic recycling compartment to limit
cytokine secretion [102]

Targets FAS, may affect apoptosis signaling [74]

miR-UL22A-5p Targets SMAD3 to limit TGFβ signaling and maintain viral
genomes during latency [16]

miR-UL22A-3p Targets SMAD3 to limit TGFβ signaling and maintain viral
genomes during latency [16] Targets CASP7, may affect apoptosis signaling [74]

miR-US22
Disrupts EGFR-UL138 signaling loop by targeting EGR-1 to

induce viral reactivation [14]

Inhibits CD34+ HPC proliferation by targeting EGR-1 [15]

miR-US25-1 Targets RhoA to limit proliferation and maintain viral
genomes during latency [88]

miR-US25-2-5p Unknown

miR-US25-2-3p Unknown Targets CASP3, may affect apoptosis signaling [74]

miR-US29 Unknown

miR-US33 Unknown

miR-UL36 Unknown Targets HCMV UL138 [69]

miR-UL36-5p Unknown Targets SCL25A6/ANT3, inhibits apoptosis [75]

miR-UL36-3p Unknown Targets FAS, may affect apoptosis signaling [74]

miR-UL112-3p

Inhibits apoptosis during latency establishment via
FOXO3a downregulation [77]

Inhibits production of IL-6 and RANTES through IKKα
and IKKβ targeting [100]

Targets HCMV IE72 to limit IE gene expression and CTL
recognition [67] Targets HCMV UL112/113 and UL120/121 [65]

Limits NK cell-mediated cytotoxicity through MICB
targeting [103]

Restructures the endocytic recycling compartment to limit
cytokine secretion [102]

miR-UL148D

Promotes latency establishment by indirectly inhibiting IE
gene expression via IER5 downregulation [51] Targets RANTES [101]

Targets ACVR1B to limit proinflammatory cytokine
levels [50] Targets IEX1, inhibits apoptosis [76]
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