
Submitted 28 July 2015
Accepted 27 December 2015
Published 2 February 2016

Corresponding author
Andrea Gori, agori.mail@gmail.com

Academic editor
Mónica Medina

Additional Information and
Declarations can be found on
page 10

DOI 10.7717/peerj.1606

Copyright
2016 Gori et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Physiological response of the cold-water
coral Desmophyllum dianthus to thermal
stress and ocean acidification
Andrea Gori1,2, Christine Ferrier-Pagès2, Sebastian J. Hennige1, Fiona Murray1,
Cécile Rottier2, Laura C. Wicks1 and J. Murray Roberts1

1Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, Scotland,
United Kingdom

2Coral Ecophysiology, Centre Scientifique de Monaco, Monaco, Principality of Monaco

ABSTRACT
Rising temperatures and ocean acidification driven by anthropogenic carbon
emissions threaten both tropical and temperate corals. However, the synergistic
effect of these stressors on coral physiology is still poorly understood, in particular
for cold-water corals. This study assessed changes in key physiological parameters
(calcification, respiration and ammonium excretion) of the widespread cold-water
coral Desmophyllum dianthusmaintained for∼8 months at two temperatures
(ambient 12 ◦C and elevated 15 ◦C) and two pCO2 conditions (ambient 390 ppm
and elevated 750 ppm). At ambient temperatures no change in instantaneous
calcification, respiration or ammonium excretion rates was observed at either pCO2
levels. Conversely, elevated temperature (15 ◦C) significantly reduced calcification
rates, and combined elevated temperature and pCO2 significantly reduced respiration
rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which
provides information on the main sources of energy being metabolized, indicated
a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates
under control conditions, to less efficient protein-dominated catabolism under
both stressors. Overall, this study shows that the physiology of D. dianthus is more
sensitive to thermal than pCO2 stress, and that the predicted combination of rising
temperatures and ocean acidification in the coming decades may severely impact this
cold-water coral species.

Subjects Ecology, Marine Biology
Keywords Cold-water corals, Thermal stress, Ocean acidification, Coral calcification,
Coral respiration, Coral excretion

INTRODUCTION
Increases in anthropogenic carbon emissions, leading to rising sea temperatures and
ocean acidification, have resulted in extensive tropical coral bleaching (e.g., Hoegh-
Guldberg, 1999;Mcleod et al., 2013) and decreased coral calcification rates (e.g., Gattuso
et al., 1998; Chan & Connolly, 2012;Movilla et al., 2012; Bramanti et al., 2013). The com-
bination of rising temperatures and ocean acidification are substantial threats for corals
in the next few decades (Hoegh-Guldberg et al., 2007; Silverman et al., 2009; Erez et al.,
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2011). While considerable research efforts have focused on tropical and temperate corals,
less is known about the effects of ocean warming and acidification on cold-water corals
(CWC) (e.g., Guinotte et al., 2006; Rodolfo-Metalpa et al., 2015 and references therein).
These corals are among the most important ecosystem engineering species (sensu Jones,
Lawton & Shachak, 1994) in the deep sea, where they build three-dimensional frameworks
(Roberts, Wheeler & Freiwald 2006) that support a highly diverse associated fauna (Henry
& Roberts, 2007; Buhl-Mortensen et al., 2010). Scleractininan CWC are most commonly
distributed at temperatures between 4 ◦C and 12 ◦C (Roberts, Wheeler & Freiwald,
2006), and show species-specific responses to temperatures above their natural thermal
range. For instance, elevated seawater temperatures increased calcification in the non-
reef forming Dendrophyllia cornigera (Naumann, Orejas & Ferrier-Pagès, 2013; Gori et
al., 2014a); had no effect on calcification in the solitary coral Desmophyllum dianthus
(Naumann, Orejas & Ferrier-Pagès, 2013); and had either no effect on the reef-forming
Lophelia pertusa calcification (Hennige et al., 2015) or induced mortality (Brooke et al.,
2013) depending upon the site of origin and change in temperature.

In comparison to thermal stress, CWC seem to have a general capacity to withstand
ocean acidification under experimental time periods of up to 12 months. Decreases in
pH did not affect calcification rates in both the reef forming L. pertusa andMadrepora
oculata (Form & Riebesell, 2012;McCulloch et al., 2012;Maier et al., 2012;Maier et al.,
2013a; Hennige et al., 2014; Hennige et al., 2015;Movilla et al., 2014a), or the non-reef
forming D. cornigera, D. dianthus (Movilla et al., 2014b; Rodolfo-Metalpa et al., 2015),
Caryophyllia smithii (Rodolfo-Metalpa et al., 2015) or Enallopsammia rostrata (McCulloch
et al., 2012). However, whether calcification can be sustained indefinitely remains unclear,
as seawater acidification has been shown to affect coral metabolism (Hennige et al., 2014),
increasing energy demand (McCulloch et al., 2012), and leading to up-regulation of genes
related to stress and immune responses, energy production and calcification (Carreiro-
Silva et al., 2014). Coral responses to ocean acidification may also depend on seawater
temperature (e.g., Reynaud et al., 2003; Edmunds, Brown & Moriarty, 2012), and evidence
is now emerging that only when these two factors are combined (as is likely with future
climatic changes), do the real effects of ocean change become apparent (Reynaud et al.,
2003; Roberts & Cairns, 2014).

This study focused on the combined effects of increased temperature and pCO2 on
key physiological processes of the cosmopolitan solitary CWC D. dianthus (Cairns &
Zibrowius, 1997) sampled in the deep waters of the Mediterranean Sea. Calcification,
respiration, and ammonium excretion were quantified in corals maintained over∼8
months under a combination of conditions that replicated ambient temperature and
pCO2 levels (12 ◦C—390 ppm,Movilla et al., 2014b), and elevated temperature and
pCO2 levels predicted in the IPCC IS92a emission scenarios (15 ◦C—750 ppm, following
Riebesell et al., 2010). We hypothesize that the combination of elevated temperatures
and pCO2 will have a greater impact on coral calcification, respiration and excretion
than single stressors. Analysis of the ratio of respired oxygen to excreted nitrogen (O:N),
which is a physiological index providing information on the main sources of energy being
metabolized (Sabourin & Stickle, 1981; Yang et al., 2006; Zonghe et al., 2013), was used to
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Figure 1 The cold-water coralDesmophyllum dianthus. Photo by A Gori.

reveal whether corals are mainly metabolizing proteins, carbohydrates or lipids, giving a
further indication of coral stress under the experimental conditions.

MATERIALS AND METHODS
Coral collection and maintenance
Specimens of D. dianthus (Esper, 1794) (Fig. 1) were collected in the Bari Canyon (Adri-
atic Sea, Mediterranean Sea, 41◦17.2622′N, 17◦16.6285′E, 430 m depth) by the Achille M4
and Pollux III ROVs, and kept alive on board the RV ‘Urania’ during the cruise ARCA-
DIA (March 2010). Corals were transported to the Centre Scientifique de Monaco (CSM,
Monaco, Principality of Monaco, CITES permit 2012MC/7725) and maintained there for
∼35 months in 50 L continuous flow-through tanks, with seawater pumped from 50 m
depth at a rate of 20 L h−1. Water temperature was maintained close to in situ conditions
(12± 1.0 ◦C), and powerheads provided continuous water movement within the tanks.
Corals were fed five times a week with frozenMysis (Crustacea, Eumalacostraca) and
adult Artemia salina (Crustacea, Sarsostraca). For experimental work, 12 specimens
of D. dianthus were transferred to Heriot-Watt University (Edinburgh, Scotland, UK,
CITES permit 2012MC/7929), and kept under collection site ambient conditions for
∼2 months before beginning the experimental incubations. Corals were then placed
into ambient temperature and pCO2 (12 ◦C—390 ppm) levels, and predicted future
conditions following the IPCC IS92a emission scenarios (Riebesell et al., 2010): ambient
temperature and elevated pCO2 (12 ◦C—750 ppm), elevated temperature and ambient
pCO2 (15 ◦C—390 ppm), and elevated temperature and pCO2 (15 ◦C—750 ppm).
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For each treatment, there were three replicate systems of∼80 L tanks, holding one
coral each. The tanks were equipped with pumps and filtration units to ensure adequate
water mixing and filtration. Tanks were closed systems, filled with seawater collected
from the east coast of Scotland (St. Andrews), with partial water changes (20%) every two
weeks. Ambient and mixed elevated pCO2 air mixes were bubbled directly into the tanks
as described by Hennige et al. (2015). Gas mixing was achieved to target levels, by mixing
pure CO2 with air plumbed from outside of the laboratory building in mixing vessels.
Mixed or ambient gas was then supplied to appropriate experimental systems. Target
gas levels were checked and adjusted daily using a LI-COR 820 gas analyzer calibrated
using pre-mixed 0 and 750 CO2 ppm gases (StG gases). All replicate systems were
housed in darkness within a temperature-controlled room at 9 ◦C± 0.5 ◦C, and water
temperatures in the systems (12 ◦C± 0.5 ◦C and 15 ◦C± 0.5 ◦C) were controlled through
Aqua Medic T-computers and titanium heaters (Aqua Medic TH-100). Experimental
system temperature, salinity (YSI 30 SCT) and pH(NBS) (Hach HQ 30D) were measured
and recorded throughout the duration of experiment. Average pH(NBS) (±standard
deviation) values for each treatment (pooled between 3 replicate tanks) over this 8 month
period were: 12 ◦C—380 ppm= 7.96± 0.06; 12 ◦C—750 ppm= 7.92± 0.06; 15 ◦C—
380 ppm= 7.97± 0.04; and 15 ◦C—750 ppm= 7.90± 0.06. Further details about the
incubation systems are available in Hennige et al. (2015), which support routine pH(NBS)
measurements and highlight the stability of these systems over prolonged time periods
(Table S1). Corals were fed 3 times a week with a controlled supply of 2 krill (Gamma
frozen blister packs) per polyp per feeding event.

Physiological measurements
After 236 days under experimental conditions, four sets of incubations were performed,
one for each experimental condition to assess rates of calcification, respiration and
ammonium excretion. Each incubation started with the preparation of 1 L of 50 µm pre-
filtered seawater. 140 ml of this seawater was sampled for the initial determination of the
total alkalinity (TA) (120 ml) and ammonium concentration (20 ml) as described below.
The remaining filtered water was equally distributed between 4 incubation chambers
(200 ml each). One chamber was left without a coral polyp and used as a control. Three
other chambers housed one polyp, each from a different replicate system. Polyps were
incubated for six hours in the individual chambers that were completely filled (without
any air space) and hermetically closed, according to the standardized protocol developed
by Naumann et al. (2011). Constant water movement inside the beakers was ensured by a
teflon-coated magnetic stirrer. At the end of the incubation, 140 ml of seawater was taken
from each incubation chamber and split between storage vessels for the determination of
the final TA and ammonium concentration as described below.

Coral calcification rates were assessed using the alkalinity anomaly technique (Smith
& Key, 1975; Langdon, Gattuso & Andersson, 2010), assuming a consumption of 2
moles of alkalinity for every mole of calcium carbonate produced (Langdon, Gattuso
& Andersson, 2010). Seawater samples (120 ml) from before and after incubation, were
sterile filtered (0.2 µm) and fixed with HgCl2 to prevent further biological activity. TA
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was determined on 6 subsamples of 20 ml from each chamber using a titration system
composed of a 20 ml open thermostated titration cell, a pH electrode calibrated on
the National Bureau of Standards scale, and a computer-driven titrator (Metrohm 888
Titrando, Riverview, FL, USA). Seawater samples were kept at a constant temperature
(25.0± 0.2 ◦C) and weighed (Mettler AT 261, L’Hospitalet de Llobregat, Spain, precision
0.1 mg) before titration to determine their exact volume from temperature and salinity.
TA was calculated from the Gran function applied to pH variations from 4.2 to 3.0 as the
function of added volume of HCl (0.1 mol L−1), and corrected for changes in ammonium
concentration resulting from metabolic waste products (Jacques & Pilson, 1980; Naumann
et al., 2011). Change in the TA measured from the control chamber was subtracted from
the change in TA in the chambers with corals, and calcification rates were derived from
the depletion of TA over the 6 h incubation.

Respiration rates were assessed by measuring oxygen concentration in the incubation
chambers during incubations with optodes (OXY-4 micro, PreSens, Germany) calibrated
using sodium sulfite and air saturated water as 0 and 100% oxygen saturation values,
respectively. Variations in oxygen concentrations measured from the control chamber
were subtracted from those measured in the coral chambers, and respiration rates were
derived from the recorded depletion of dissolved oxygen over the incubation. Oxygen
consumption rates were converted to C equivalents (µmol) according to the equation
C respired =O2 consumed · RQ, where RQ is a coral-specific respiratory quotient equal
to 0.8 mol C/mol O2 (Muscatine, McCloskey & Marian, 1981; Anthony & Fabricius, 2000;
Naumann et al., 2011).

Excretion rates were assessed by determining ammonium concentration in seawater
samples (20 ml) that were sterile filtered (0.2 µm) and kept frozen (−20 ◦C) until
ammonium concentration was determined in 4 replicates per sample through spectroflu-
orometric techniques (Holmes et al., 1999, protocol B).

Results from calcification, respiration and ammonium excretion measurements were
normalized to the coral skeletal surface area (fully covered by coral tissue), to allow for
comparison with other coral species. The skeletal surface area (S) of each coral polyp was
determined by means of Advanced Geometry (Naumann et al., 2009) according to the
equation S= π · (r+R) ·a+π ·R2, where r and R represent the basal and apical radius of
each polyp respectively, and a is the apothem measured with a caliper (Rodolfo-Metalpa
et al., 2006). Finally, the O:N ratio was calculated for each coral from the results of the
measured oxygen respired and ammonium excreted in atomic equivalents (Yang et al.,
2006; Zonghe et al., 2013).

Statistical analyses
All results were expressed as means± standard error. Normal distribution of the residuals
was tested using a Shapiro–Wilk test performed with the R-language function shapiro.test
of the R 3.1.2 software platform (R Core Team, 2014). Homogeneity of variances was
tested by the Bartlett test performed with the R-language function bartlett.test. Differences
in the variation of TA, oxygen and ammonium concentration between control and exper-
imental chambers were tested by means of a Wilcoxon–Mann–Whitney test performed
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Table 1 Two-way ANOVA for comparison of calcification, respiration, ammonium excretion rates,
and O:N ratio among the experimental treatments; significant p-values are indicated with one (p-value
< 0.05), two (p-value < 0.01), or three asterisks (p-value < 0.001).

F p value

Calcification Temperature 8.58 0.019 *
pCO2 1.89 0.206
Temperature:pCO2 0.44 0.524

Respiration Temperature 1.04 0.337
pCO2 0.29 0.602
Temperature:pCO2 12.44 0.008 **

Ammonium excretion Temperature 1.01 0.344
pCO2 0.06 0.811
Temperature:pCO2 2.07 0.188

O:N Temperature 0.69 0.431
pCO2 0.48 0.509
Temperature:pCO2 7.94 0.023 *

with the R-language function wilcoxon.test. Differences among the four experimental
conditions in calcification, respiration, ammonium excretion, and O:N ratio were tested
by two-way ANOVA with temperature (12 ◦C–15 ◦C) and pCO2 (390 ppm–750 ppm) as
factors, performed with the R-language function aov.

RESULTS
TA changes in incubation chambers (2.8–12.8 µEq L−1 h−1) were consistently higher
(Wilcoxon–Mann–Whitney test, U = 48, p = 0.004) than changes measured in the
control chambers (<0.5 µEq L−1 h−1). Regardless of pCO2 level, calcification rates
assessed with the TA anomaly technique (Fig. 2A) were significantly lower in corals
maintained at 15 ◦C compared to those maintained at 12 ◦C (ANOVA, F = 8.57, p=
0.019, Table 1). For each temperature treatment assessed individually, calcification did
not significantly differ at either pCO2 level.

Oxygen depletion from coral respiration in incubation chambers (5.3–54.7 µmol L−1

h−1) was significantly higher (Wilcoxon–Mann–Whitney test, U = 47, p= 0.002) than
oxygen depletion in the control chambers frommicrobial respiration (<4.2 µmol L−1 h−1).
Respiration rates (Fig. 2B) of corals kept under increased temperature and pCO2 were
significantly lower compared to other treatments (ANOVA, F = 12.44, p= 0.007, Table 1).

Changes in ammonium concentration from coral excretion in incubation chambers
(0.39–1.78 µmol L−1 h−1) were significantly higher (Wilcoxon–Mann–Whitney
test, U = 48, p= 0.001) than changes in control chambers from microbial activity
(<0.04 µmol L−1 h−1). Coral excretion rates (Fig. 2C) were not significantly different
among treatments (Table 1).

The ratio of respired oxygen to excreted nitrogen (O:N) (Fig. 3) in corals kept under
increased temperature and pCO2 was significantly lower than in the other treatments
(ANOVA, F = 7.94, p= 0.023, Table 1).
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Figure 2 Main physiological processes inDesmophyllum dianthus under the two experimental tem-
peratures (12 and 15 ◦C) and the two pCO2 (390 and 750 ppm). (A) Calcification rate, (B) respiration
rate, and (C) ammonium excretion rate as the result of coral nubbins incubation in individual beakers for
6 h. Values are presented as means± s.e. normalised to coral skeletal surface area.

DISCUSSION
Overall, the results of this study show that the CWCD. dianthus is more sensitive to changes
in temperature than to ocean acidification stress. This CWCmaintains itsmetabolismunder
elevated pCO2, whereas calcification is significantly reduced under elevated temperatures.
Furthermore, there is a clear synergistic impact when elevated temperature and pCO2 are
combined, resulting in a severe reduction of coral metabolism.

D. dianthus has the ability to withstand elevated pCO2 (750 ppm) under ambient
temperature (12 ◦C) over ∼8 months, with no change in calcification, respiration and
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Figure 3 Ratio of respired oxygen to excreted nitrogen (O:N) ofDesmophyllum dianthus under the
two experimental temperatures (12 and 15 ◦C) and the two pCO2 levels (390 and 750 ppm). Values are
presented as means± s.e. normalized to coral skeletal surface area.

ammonium excretion rates (Fig. 2 and Table 1). This agrees with previous studies on
the same species (Movilla et al., 2014b; Carreiro-Silva et al., 2014; Rodolfo-Metalpa et al.,
2015), and with the general consensus that CWC can physiologically cope with elevated
pCO2 in the mid-term (3–12 months, Form & Riebesell, 2012; Maier et al., 2013a; Maier
et al., 2013b; Movilla et al., 2014a; Hennige et al., 2015). This may be due to their ability to
buffer external changes in seawater pH by up-regulating their pH at the site of calcification
(McCulloch et al., 2012; Anagnostou et al., 2012), therefore allowing calcification even
in aragonite-undersaturated seawater (Venn et al., 2013). Increased expression of genes
involved in cellular calcification and energy metabolism may indicate the mechanisms
by which D. dianthus continues to calcify under elevated pCO2 at rates similar to those
recorded at ambient pCO2 (Carreiro-Silva et al., 2014). Whereas microdensity and porosity
of D. dianthus skeleton have been shown to be unaffected by increased pCO2 (Movilla et
al., 2014b), the effects of elevated pCO2 conditions on hidden skeleton microstructure
and aragonitic crystals organisation cannot be discounted (e.g., molecular bond lengths
and orientation, see Hennige et al., 2015). Such effects would take a long time to become
evident as reduced skeletal microdensity and porosity, due to the very slow growth rates
of D. dianthus (Orejas et al., 2011; Naumann et al., 2011). The experimentally observed
physiological ability of D. dianthus to cope with elevated pCO2 is also supported by the
recent observation of this CWC in aragonite-undersaturated waters (Thresher et al., 2011;
McCulloch et al., 2012; Jantzen et al., 2013a; Fillinger & Richter, 2013). However, there is
the possibility that high food availability in these areas may allow corals to sustain the cost
of calcification under low pH (Jantzen et al., 2013a; Fillinger & Richter, 2013).

In contrast to elevated pCO2, elevated temperature alone significantly reduced
calcification in D. dianthus (Fig. 2B and Table 1). Calcification shows a strong sensitivity
to temperature in this CWC species (McCulloch et al., 2012), which is able to maintain
growth under elevated seawater temperatures for a short time (3 months at 17.5 ◦C,
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Naumann, Orejas & Ferrier-Pagès, 2013), but when exposed to thermal stress for longer
periods (∼8 months at 15 ◦C, this study) calcification rates are significantly reduced.
Decreased calcification in D. dianthus under prolonged elevated temperature might be
linked to decreased activity in the enzymes involved in calcification (such as carbonic
anhydrases; Ip, Lim & Lim, 1991; Al-Horani, Al-Moghrabi & De Beer, 2003; Allemand et
al., 2004), since enzyme activity is maximal within the thermal range of the species
and decreases otherwise (Jacques, Marshall & Pilson, 1983; Marshall & Clode, 2004;
Al-Horani, 2005). Reported calcification rates by D. dianthus have varied widely between
studies. Rates measured here (1.26 ± 0.20 µmol CaCO3 cm−2 d−1) were in the same
order of magnitude as the rates reported by Naumann et al. (2011) in the Mediterranean
(∼3.84 µmol CaCO3 cm−2 d−1), and much lower than those reported by Jantzen
et al. (2013b) in Chilean fjords (18.6–54.4 µmol CaCO3 cm−2 d−1). Whilst direct
comparison with other studies is problematic due to differences in methodology (total
alkalinity vs buoyant weight) or normalization techniques, the rates measured here
are consistent with previous results from Mediterranean D. dianthus (e.g., Orejas et al.,
2011; Maier et al., 2012; Movilla et al., 2014b), and are much higher than rates measured
in D. dianthus from Azores (Carreiro-Silva et al., 2014). Differences in the quality and
quantity of food provided to corals (Mortensen, 2001; Jantzen et al., 2013b), coral size
(Carreiro-Silva et al., 2014; Movilla et al., 2014b), or intraspecific variability and local
adaptation could all contribute to observed variability between studies.

The synergistic effects of elevated temperature and pCO2 on calcification, respiration
and O:N ratio observed in this study (Fig. 2 and Table 1), show that these stressors interact
to controlD. dianthusmetabolism causing a far greater effect than increased temperature or
pCO2 in isolation (Reynaud et al., 2003). Under elevated temperature and pCO2 treatment,
respiration dropped to low values (1.2 ± 0.7 µmol C cm−2 d−1) comparable to those
reported for starved D. dianthus (∼1.5 µmol C cm−2 d−1, Naumann et al., 2011) or for
D. dianthus fed only twice a week (1.34 ± 0.31 µmol C cm−2 d−1, Gori et al., 2014b),
indicating a reduction in the coral’s metabolic activity. Reduced metabolism is reflected
in the concurrent significant reduction in calcification rates (Fig. 2A). Whilst ammonium
excretion, which results from protein and amino acid catabolism (Wright, 1995; Talbot
& Lawrence, 2002), was not significantly affected by either or both elevated temperature
and pCO2 (consistent with previous studies, Carreiro-Silva et al., 2014), the combined
effects of elevated temperature and pCO2 caused a shift in O:N from ∼30 to ∼13 (Fig. 3).
This highlights a shift from a mixed use of protein and carbohydrate or lipid, to a much
less efficient protein-dominated catabolism for energy (Pillai & Diwan, 2002) indicating
metabolic stress (Zonghe et al., 2013). Conversely, single stressors caused a slightly increase
in O:N ∼30 to ∼50. This is a consequence of increased respiration combined with steady
ammonium excretion, leading to a shift to a carbohydrate or lipid-dominated metabolism
(Sabourin & Stickle, 1981; Uliano et al., 2010; Zonghe et al., 2013). This is a possible way for
the corals to fulfill increased energy demands needed to maintain cell homeostasis under
single stressors, but this may be insufficient when subjected to multiple stressors.

Overall, this study shows that the combined effects of increased temperature and pCO2

result in a significant change in D. dianthusmetabolism. This may represent an immediate
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threat to CWC as their habitats are expected to be exposed to both high temperature events
and reduced seawater pH with increased frequency in the near future (Roberts & Cairns,
2014). Given the major role of feeding on the metabolism of CWC species (Naumann
et al., 2011), it is also extremely important to understand how coral responses to single
or multiple stressors can be affected by food availability and quality (Dodds et al., 2007;
Thomsen et al., 2013; Rodolfo-Metalpa et al., 2015). Reduced food availability will limit the
allocation of extra-energy to physiological adjustments under stress conditions, which
could further heighten the negative impacts of elevated temperature and pCO2 on coral
metabolism. Studies into the combined impact of climate change and changes in food
quantity and quality would provide a more holistic insight into the future of CWC in a
changing ocean.
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