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Abstract: Retinoic acids are vitamin A metabolites that have numerous essential functions in humans,
and are also used as drugs to treat acne and acute promyelocytic leukemia. All-trans retinoic
acid (atRA) is the major occurring metabolite of retinoic acid in humans. This study provides
a sensitive and specific liquid chromatography–tandem mass spectrometry approach in order to
quantify atRA in human plasma samples. The isolation of atRA by hyperacidified liquid–liquid
extraction using hexane and ethyl acetate resulted in a recovery of 89.7 ± 9.2%. The lower limit
of detection was 20 pg·mL−1, and 7 point calibration displayed good linearity (R2 = 0.994) in the
range of 50–3200 pg mL−1. Selectivity was guaranteed by the use of two individual mass transitions
(qualifier and quantifier), and precision and accuracy were determined intraday and interday with a
coefficient variation of 9.3% (intraday) and 14.0% (interday). Moreover, the method could be used to
isolate atRA from hyperlipidemic samples. Applying this method to plasma samples from patients
with poorly controlled Type 2 diabetes significantly decreased atRA plasma levels as compared to
those of the healthy controls. In addition, atRA concentrations were highly associated with increased
low-density lipoprotein (LDL) and decreased high-density lipoprotein (HDL) cholesterol levels.

Keywords: retinoic acid; liquid chromatography–tandem mass spectrometry; hyperlipidemia; liquid–
liquid extraction

1. Introduction

Vitamin A is absorbed in the small intestine as retinol, and its metabolites have
various physiological functions during development and for the maintenance of cellular
homeostasis. Retinol can be oxidized to retinaldehyde, which is essential for vision, and
further to retinoic acids, which play key roles in the regulation of the immune system, cell
growth, and cell differentiation. Although several different retinoic acids are synthesized
in cells, all-trans retinoic acid (atRA) is the major active metabolite of retinol, which
mediates the majority of physiological functions [1]. AtRA is a lipophilic substance that
acts through binding to DNA-bound nuclear receptors. This allows for the regulation of
over 500 genes depending on cell type [2]. Physiological atRA levels are maintained by
regulated synthesis through aldehyde dehydrogenases and degradation by enzymes of the
cytochrome P450 family [3].
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In clinical practice, atRA is used for the treatment of acne (topical application) and
acute promyelocytic leukemia (systemically). In blood, atRA undergoes a rapid turnover,
and only degradation products, such as 4-oxo-atRA, can be detected in urine [4,5]. It
is likely that the metabolism of retinoids is affected or may display a causal role in the
etiology of various diseases [1,3]. For example, the production rate of atRA is regulated
by food intake and insulin [6], while atRA inhibits progression of diabetic nephropathy in
a diabetes mouse model by preventing nuclear translocation of NF-κB in glomeruli and
proximal tubules [7]. This indicates the potential role of atRA in the pathogenesis of diabetes
mellitus and diabetic complications, which warrants further mechanistic investigations
and association studies to determine whether the circulatory levels of atRA levels would
be useful as biomarkers predicting diabetic complications.

Several studies over the last 30 years addressed atRA plasma levels in humans using
different technical approaches [8–12]. However, such approaches were used for therapeutic
drug monitoring in acute promyelocytic leukemia or for determining atRA plasma con-
centrations in healthy volunteers with less specific and sensitive techniques than what is
currently possible [8,10,13–16].

This study aimed at establishing a highly sensitive state-of-the art method in order
to quantify plasma concentrations of atRA and to apply it to the analysis of patients with
Type 2 diabetes. Here, we report a robust and simple extraction assay for atRA that can be
applied to hyperlipidemic plasma samples, a common preanalytical challenge in laboratory
medicine, particularly with respect to obese or diabetic patients [17,18]. The presented
method allows for sufficient recovery, and sensitive and specific quantification. In addition,
given atRA instability, this study aimed to assess the conditions under which atRA levels
remain constant either in the blood or after extraction.

2. Results
2.1. Fragmentation and Mass Transitions

The acquisition of atRA was achieved in the positive ionization mode of mass spectrom-
etry. In the negative ionization mode of mass spectrometry, the abundance of precursor and
product ion was ~10-fold lower than that of positive ionization (Supplementary Figure S1).
The precursor and product ion scan for atRA revealed fragments of 283.1 m/z (qualifier)
due to water loss, and 122.9 m/z (quantifier) caused by the loss of the complete side chain
of the carbonyl groups (Figure 1A). This was confirmed by the fragmentation patterns
of atRA-d5. However, the smaller fragment of 126.8 m/z (quantifier) displayed a loss in
deuterated hydrogen (Figure 1B).

Metabolites 2021, 11, 60 2 of 11 
 

 

enzymes of the cytochrome P450 family [3]. 
In clinical practice, atRA is used for the treatment of acne (topical application) and 

acute promyelocytic leukemia (systemically). In blood, atRA undergoes a rapid turnover, 
and only degradation products, such as 4-oxo-atRA, can be detected in urine [4,5]. It is 
likely that the metabolism of retinoids is affected or may display a causal role in the eti-
ology of various diseases [1,3]. For example, the production rate of atRA is regulated by 
food intake and insulin [6], while atRA inhibits progression of diabetic nephropathy in a 
diabetes mouse model by preventing nuclear translocation of NF-κB in glomeruli and 
proximal tubules [7]. This indicates the potential role of atRA in the pathogenesis of di-
abetes mellitus and diabetic complications, which warrants further mechanistic investi-
gations and association studies to determine whether the circulatory levels of atRA levels 
would be useful as biomarkers predicting diabetic complications. 

Several studies over the last 30 years addressed atRA plasma levels in humans using 
different technical approaches [8–12]. However, such approaches were used for thera-
peutic drug monitoring in acute promyelocytic leukemia or for determining atRA plasma 
concentrations in healthy volunteers with less specific and sensitive techniques than 
what is currently possible [8,10,13–16]. 

This study aimed at establishing a highly sensitive state-of-the art method in order 
to quantify plasma concentrations of atRA and to apply it to the analysis of patients with 
Type 2 diabetes. Here, we report a robust and simple extraction assay for atRA that can 
be applied to hyperlipidemic plasma samples, a common preanalytical challenge in la-
boratory medicine, particularly with respect to obese or diabetic patients [17,18]. The 
presented method allows for sufficient recovery, and sensitive and specific quantifica-
tion. In addition, given atRA instability, this study aimed to assess the conditions under 
which atRA levels remain constant either in the blood or after extraction. 

2. Results 
2.1. Fragmentation and Mass Transitions 

The acquisition of atRA was achieved in the positive ionization mode of mass spec-
trometry. In the negative ionization mode of mass spectrometry, the abundance of pre-
cursor and product ion was ~10-fold lower than that of positive ionization (Supplemen-
tary Figure S1). The precursor and product ion scan for atRA revealed fragments of 283.1 
m/z (qualifier) due to water loss, and 122.9 m/z (quantifier) caused by the loss of the 
complete side chain of the carbonyl groups (Figure 1A). This was confirmed by the 
fragmentation patterns of atRA-d5. However, the smaller fragment of 126.8 m/z (quanti-
fier) displayed a loss in deuterated hydrogen (Figure 1B). 

 
Figure 1. Parameters of linearity and limitations. (A) Calibration range (50-3200 pg·mL−1); lower 
limit of quantification (LLOQ) (signal-to-noise ratio, 6.4/1); lower limit of detection (LLOD; sig-

Figure 1. Parameters of linearity and limitations. (A) Calibration range (50–3200 pg·mL−1); lower limit of quantification
(LLOQ) (signal-to-noise ratio, 6.4/1); lower limit of detection (LLOD; signal-to-noise ratio, 3.2/1) and coefficient of
determination (R2). (B) Total ion chromatogram of all-trans retinoic acid (atRA) for LLOQ (top) and LLOD (bottom).
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2.2. Chromatography

The efficient separation of atRA was achieved using a reverse-phase C18 column.
The positive ionization of the precursor ions was enhanced by the addition of formic
acid. The use of a simple biphasic gradient composed of water and methanol resulted
in a chromatogram with a stable peak shape and reproducibility, and a low noise signal
(Figure 2C,D). However, to avoid nonspecific peaks (Figure 2C; RT, ~9 min) due to a mild
carry-over effect, five consecutive blanks composed of water and methanol (1:1) were run
every 50 samples.
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Figure 2. Multiple reaction monitoring (MRM) chromatograms and total ion chromatograms of atRA/atRA-d5. (A)
Extracted MRM spectrum (quantifier/qualifier) of atRA. (B) Extracted MRM spectrum (quantifier/qualifier) of atRA-d5. (C)
Total ion chromatogram of atRA in a control subject (1.02 ng·mL−1). (D) Total ion chromatogram of atRA-d5 in the same
control subject as in (C).

2.3. Analytical Specificity

The purity verification of atRA and atRA-d5 was provided by the supplier company.
The two product ions with the highest intensity were selected as quantifier and qualifier
(Table 1). Using artificial human plasma (Biseko®, Dreieich, Germany) without endoge-
nously produced atRA, no coeluting compounds were found, which interfered with the
detection of either quantifier or qualifier. However, the possibility that any medications
could interfere with our assay could not be excluded. Following the optimization of mul-
tiple reaction monitoring (MRM), several injections of spiked artificial plasma showed
that the fragmentation patterns for qualifier and quantifier of atRA and atRA-d5 were
reproducible and stable over a long period of time with acceptable accuracy and precision
(n ≥ 100 injections, Table 2).



Metabolites 2021, 11, 60 4 of 10

Table 1. Retention time (Rt), mass transition (MRM), cone voltage (COV), and collision energy (CE)
for atRA and atRA-d5.

Analytes Rt (min) MRM
Quantifier (m/z)

MRM
Qualifier (m/z) COV (V) CE (V)

atRA 5.90 301.3 > 122.9 301.1 > 283.1 23 16
atRA-d5 5.89 306.3 > 126.8 306.3 > 288.1 26 16

Table 2. Parameters of variability and extraction recovery for atRA. Intra- and interday accuracy/precision and extraction
efficiency based on recovery of atRA-d5. Accuracy is the mean of quantified concentration given as percentage of three
spiked concentrations (nominal) in human artificial plasma samples. Precision is the coefficient of variation (CV) of mean
concentration determined for three different concentration levels (intra/interday, n = 4). The precision of retention time
is described as the CV of the mean retention time of 120 injections (21 calibrators, 99 samples) over a period of 65 days.
Long-term accuracy and precision were determined over a period of 30 days with 105 injections of varying concentration
within the calibration range.

Parameter
Nominal

Concentration
(pg mL−1)

Recovery
(%)

Measured
Concentration

(pg mL−1)

Accuracy
(%)

Precision
(% CV)

Precision of
Retention Time

(% CV)

Intraday
50

600
2500

87.4 ± 8.2
90.0 ± 6.4
91.7 ± 12.9

46.8 ± 4.6
618.6 ± 41.7

2320.4 ± 263.2

93.6
103.1
92.8

9.8
6.7

11.3
5.5

Interday
50

600
2500

57.9 ± 8.3
519.4 ± 81.2

2549.6 ± 307.3

115.8
86.6

102.0

14.3
15.6
12.1

Long-term Various 94.0 ± 14.2 17.8

2.4. Linearity and Determination Limits

For the 7 point calibration, the ratio between atRA and atRA-d5 was used for quantifi-
cation. The obtained calibration coefficients (R2) for 7 point calibration (50–3200 pg·mL−1)
were > 0.99 (Figure 1A). The achieved lower limits of detection and quantification were 20
and 50 pg·mL−1, respectively (Figure 1A,B).

2.5. Recovery, Precision, and Accuracy

The extraction recovery of atRA-d5 in plasma was 89.7 ± 9.2% (Table 2). Methanol
precipitation and acidification with hydrochloric acid resulted in the best recovery as com-
pared to other precipitation or acidification reagents such as trichloroacetic acid, ethanol,
acetonitrile, or formic acid (data not shown). The precision of the replicate analyses was
evaluated for 50, 600, and 2500 pg·mL−1. The coefficient of variation (CV) was intraday
at 9.3% and interday at 14.0% (Table 2). Accuracy achieved a mean value of 96.5% on
intraday basis and a mean of 101.2% on interday basis (Table 2). The long-term accuracy
and precision of artificial plasma (n ≥ 100 samples spiked with varying atRA concentration)
were 94.0 ± 14.2% and 17.8% CV, respectively (Table 2).

2.6. Stability

Following storage in darkness under various conditions, samples were quantified and
compared to the quantification directly after extraction. The storage of plasma for 1 week
at 4 ◦C was associated with a significant reduction in atRA (~51%; Table 3). Postprocessing
stability in an assay buffer revealed that atRA was degraded when stored for 1 week at
4 ◦C. Several freeze–thaw cycles were not associated with a significant reduction in atRA
(~14% reduction; Table 3). Furthermore, exposure to 254 nm UV light for 3 h was associated
with ~40% reduction in atRA (Supplementary Table S1).
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Table 3. Pre- and postprocessed sample stability of atRA under varying conditions. Stability is a
change in percentage calculated by measured concentrations divided by nominal concentrations
(samples were spiked with 1000 pg·mL−1 of atRA; n = 4 for each test).

Conditions
Recovery

Preprocessed Postprocessed

1 h at 20 ◦C 93 ± 12%
6 h at 20 ◦C 84 ± 19%
1 h at 4 ◦C 89 ± 17%
6 h at 4 ◦C 81 ± 21% 77 ± 18%

1 week at 4 ◦C 51 ± 31% 44 ± 14%
1 week at −20 ◦C 91 ± 9%

1 month at −20 ◦C 101 ± 15% 93 ± 16%
F/T stability (6 cycles) 82 ± 22%

2.7. Clinical Application

This method was developed to quantify atRA in human plasma samples. A total
of 14 plasma samples had triglyceride levels above 300 mg·dL−1. The best recovery in
those samples was achieved following strong acidification with HCl (10 M), liquid–liquid
extraction with a combination of ethyl acetate/hexane (1:1), and the incubation of the
sample at 4 ◦C for 20 min. No acidification and the usage of different extraction solvents
were associated with poor recovery in those hyperlipidemic samples (data not shown). For
a constant extraction procedure, this method was applied to all plasma samples.

Using the developed LC–MS/MS method, plasma levels of atRA were found to be in
the range of 0.57 to 2.76 ng·mL−1 in all patients. A cohort of patients with poorly controlled
Type 2 diabetes displayed hyperlipidemia, increased C-reactive protein, and blood glucose
concentration, as well as excessively increased HbA1c (Table 4). In patients with poorly
controlled Type 2 diabetes, atRA levels were significantly lower, with 1.38 ± 0.42 ng·mL−1,
as compared to healthy individuals with 1.77 ± 0.45 ng·mL−1 (p < 0.01; Figure 3A). In
addition, plasma atRA levels were strongly associated with the lipid profiles of the whole
cohort (n = 44), especially for high-density lipoprotein (HDL; r = 0.598; p < 0.001) and
low-density lipoprotein (LDL) cholesterol (r = −0.469; p < 0.01), and also for body-mass
index (BMI) and triglyceride concentration (Figure 3B–F). In a cohort of patients with
well-adjusted Type 2 diabetes, atRA levels decreased (1.47 ± 0.37 ng·mL−1), but this was
statistically not significant (p = 0.053 vs. controls; Supplementary Table S2).

Table 4. Mean baseline characteristics of control and diabetic patient cohorts. All parameters were
determined prior to collection. Data are mean ± SD; *** p < 0.001, vs. controls. All other characteristics
were not significant (p > 0.05).

Parameter- Controls (n = 20) Type 2 Diabetes (n = 24)

Sex (% male) 63.8 65.3
Age (years) 42.1 ± 12.3 49.6 ± 15.5

Body-mass index (BMI; kg·m−2) 24 ± 2.5 31.3 ± 6.1 ***
Blood glucose (mg·dL−1) 97.1 ± 12.3 186.3 ± 84.3 ***

HbA1c (%) 5.7 ± 0.8 11.2 ± 1.6 ***
C-reactive protein

(CRP; mg·L−1) 1.2 ± 1.1 12.9 ± 8.6 ***

Total cholesterol (mg dL−1) 168.4 ± 19.9 256.1 ± 74.5 ***
Triglycerides (mg dL−1) 137.7 ± 24.2 285.3 ± 86.4 ***

Low-density lipoprotein (LDL; mg·dL−1) 82.7 ± 25.7 167.5 ± 73.4 ***
High-density lipoprotein (HDL; mg·dL−1) 58.2 ± 15.9 31.5 ± 9.1 ***
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control patients (n = 20) and patients with Type 2 diabetes (n = 24). Correlation analysis of (B) atRA and HDL cholesterol,
(C) atRA and LDL cholesterol, (D) atRA and total cholesterol, (E) atRA and triglycerides, and (F) atRA and BMI. (B–F)
Correlation analysis was performed in the whole cohort. Level of significance and Pearson’s correlation coefficient (r) are
shown. Data are mean ± SEM. ** p < 0.01.

3. Discussion

This study offers a sensitive and specific liquid chromatography, tandem mass spec-
trometry (LC–MS/MS) approach for the quantification of atRA in hyperlipidemic human
plasma samples. Within this context, this method for the first time describes the usage of
122.9 m/z for the quantification of atRA in biological matrices, which may be a result of a
more efficient fragmentation in the collision cell as compared to that of other studies [6,8,19].
As previously described, the separation and ionization of atRA were achieved using a
reverse-phase C18 column and formic acid [8,9,14,20]. With 20 and 50 pg·mL−1 as the lower
limits of detection and quantification, this method is more sensitive than other published
methods in the field that use LC–MS and high-performance liquid chromatography (HPLC)
approaches [9–11,15,16]. Ex vivo, atRA is chemically unstable, and readily oxidized and
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isomerized when exposed to heat, light, or oxygen [15,16], which reflects the necessity
for stability analysis. Pre- and postprocessing analyses revealed that atRA had sufficient
short-term stability, but degraded when stored for 1 week at 4 ◦C, which is in line with
previous studies on atRA stability [21]. Exposure to 254 nm UV light for 3 h or longer was
associated with a significant reduction in atRA. Therefore, the usage of amber reaction
tubes and the avoidance of direct sunlight during analysis are strongly recommended.

As a lipophilic compound, atRA presents challenges during extraction, particularly in
patients with an altered lipid profile displayed by increased triglycerides, LDL, and total
cholesterol. With plasma levels of atRA between 0.57 and 2.76 ng·mL−1 in all patients, our
results were in line with those of other studies in healthy individuals, where 0.3–5 ng·mL−1

of atRA was found to be present in the plasma and serum [8–10,15,16]. In patients with
poorly controlled Type 2 diabetes, lower atRA levels than those of healthy individuals were
found. However, a cohort of patients with well-adjusted Type 2 diabetes displayed only a
minor decrease in atRA. Future studies should address whether atRA could be causally
involved in the progression of diabetes mellitus.

In all analyzed individuals, the plasma atRA levels were strongly associated with
lipid profiles and body-mass index (BMI). This confirms a recent study in which atRA
was claimed to be a predictive marker for the development of metabolic syndrome, which
is strongly associated with the development of Type 2 diabetes and cardiovascular dis-
ease [22]. Experimental diabetic model systems showed that atRA can block adipocyte
differentiation [23]. Furthermore, atRA affects insulin secretion, which is not surprising
given the ubiquitous expression of the retinoic X receptor [24]. Whether the reduction in
atRA plasma concentration in dyslipidemic patients is the cause or effect of lipid dysregu-
lation remains unclear and should be addressed in further studies.

4. Materials and Methods
4.1. Chemicals and Reagents

Acetonitrile, hexane, methanol, hydrochloric acid (37%), and water were of high
purity grade and purchased from Sigma–Aldrich (Steinheim, Germany). Formic acid
was purchased from Biosolve (Valkenswaard, Netherlands). All-trans retinoic acid (atRA)
and all-trans retinoic acid-d5 (atRA-d5) were purchased as the LC–MS standard (purity
> 98%) from Biomol (Hamburg, Germany). Amber reaction vials (1.5 mL) were purchased
from Chromsystems (Gräfelfing, Germany). Artificial plasma with a standardized protein
composition of human plasma (Biseko®, Dreieich, Germany) was purchased from Biotest
(Dreieich, Germany) and used as a matrix for method development and validation. Biseko®

is a virus-inactivated human-plasma substitute that contains the entire spectrum of serum
proteins in a standardized active form [25]. It is prepared from plasma pools of at least 1000
individual donations. One liter of Biseko© solution contains 50 g of total protein, including
albumin (31 g), IgG (7.1 g), IgA (1.55 g), IgM (0.48 g), sodium ions (3.56 g), potassium ions
(0.16 g), calcium ions (0.08 g), magnesium ions (0.02 g), and chloride ions (3.65 g).

4.2. Preparation of Calibration Standards

Stock solutions of atRA and atRA-d5 were prepared in dimethyl sulfoxide at concen-
trations of 500 (atRA) or 100 µg·mL−1 (atRA-d5) and stored at −80 ◦C. Working solutions
of atRA were prepared in methanol in the range of 500–100 µg·mL−1 and stored at −20 ◦C.
Calibration standards of atRA were 50, 100, 200, 400, 800, 1600, and 3200 pg·mL−1 with the
addition of 500 pg·mL−1 of atRA-d5 for each calibrator. All stock and working solutions
were kept in amber reaction vials to avoid any degradation by ultraviolet light.

4.3. Sample Collection and Extraction

Ethylenediaminetetraacetic acid (EDTA) plasma samples were obtained from 20
healthy controls and 39 patients with Type 2 diabetes. All participants were in a fast-
ing state, and patients with Type 2 diabetes were enrolled if diagnosis had been established
according to the guidelines of the German Diabetes Association [26]. The study was ap-
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proved by the ethics committee of Heidelberg University Hospital (Project Identification
Code S-383/2016). All patient material and data were acquired with formal written in-
formed consent and in agreement with the guidelines of the ethics committee as previously
described [19]. The plasma supernatant was directly aliquoted following centrifugation
(5 min at 5000× g; 4 ◦C) of the whole blood and frozen at −80 ◦C. Samples were thawed
once, and liquid–liquid extraction was carried out under reduced light condition in amber
tubes. The internal standard (100 pg of atRA-d5) was added to 200 µL of plasma, which was
acidified with 5 µL of hydrochloric acid (10 M). Afterwards, 400 µL of methanol was added
for protein precipitation. After centrifugation (10 min at 10,000× g; 4 ◦C), the supernatant
was transferred into a new amber tube and 300 µL of hexane and 300 µL of ethyl acetate
was added, which was then mixed for 10 s. The mixture was left for 20 min at 4 ◦C in
darkness, and the aqueous and organic phase was separated by centrifugation (10 min at
10,000× g; 4 ◦C). The upper organic phase was evaporated using a vacuum concentrator
(Eppendorf Concentrator Plus) at room temperature. The residue was resuspended in 60 µL
of methanol/water (2:1) and transferred into an HPLC vial (Waters, Eschborn, Germany).

4.4. Chromatography

All analyses were performed on a Waters® Acquity UPLC class I system (Waters,
Eschborn, Germany) equipped with a binary solvent-delivery system with an online de-
gasser and a column manager containing a column oven connected to a UPLC autosampler.
AtRA was separated by reverse-phase LC on a Waters® Acquity BEH C18 column (1.7 µM,
2.1 × 50 mm) at a flow rate of 0.2 mL·min−1 and a column temperature of 20 ◦C. During
analyses, all samples were stored in the autosampler at a temperature of 4 ◦C, and the
injection volume for each sample varied between 10 and 30 µL. Solvent A consisted of 0.1%
formic acid in water, and Solvent B was 0.1% formic acid in methanol. For each run, gradi-
ent elution was performed. Solvent A was decreased from 80% to 0% (0–4 min), remained
isocratic at 0% (4–6 min), and increased back to 80% (6–15 min). The column eluent was
directed into the MS, and analyses were performed using MassLynx XS software.

4.5. Mass Spectrometry

AtRA detection was performed on a XEVO TQ-S tandem quadrupole mass spectrome-
ter (Waters®) equipped with an electrospray ionization source (ESI) operated in positive
ion mode. Analyte detection was performed using multiple reaction monitoring (MRM).
Source parameters were set as follows: capillary voltage, 3.5 kV; desolvation tempera-
ture, 350 ◦C; desolvation gas flow, 850 L·h−1; source temperature, 200 ◦C; cone gas flow,
250 L·h−1; collision gas flow, 0.15 mL·min−1; nebulizer gas flow, 5 bar. Cone and collision
voltage were individually optimized for atRA and atRA-d5 and are summarized in Table 1.
Acquisition and quantification were completed with MassLynx 4.1 and TargetLynx 2.7.

4.6. Validation Procedure

The method was validated for selectivity, matrix effects, linearity, lower limits of
detection (LLOD) and quantification (LLOQ), recovery, stability, precision, and accuracy
(intra/interday). Seven-point calibration was performed using linear regression. For all
concentration calculations, the area ratio of atRA/atRA-d5 was plotted against nominal
calibrator concentration. Blank samples (without analytes) were measured for each calibra-
tion curve to ensure reliability. For the determination of recovery, LLOD, LLOQ, precision,
and accuracy, 200 µL of spiked artificial plasma was used. Recovery, precision, and ac-
curacy were validated in an intraday assay using three different concentrations (50, 600,
2500 pg·mL−1), which were measured in quadruplicates. For interday variability, the same
concentrations (50, 600, 2500 pg·mL−1) of spiked artificial plasma were quantified on 3
consecutive days in quadruplicates. LLOD and LLOQ were determined with a signal-
to-noise ratio of 6.4 (LLOQ) and 3.2 (LLOD). Stability was validated in human artificial
plasma (preprocessed) and in assay buffer (postprocessed) at various temperature levels
and for different durations by spiking 200 µL of plasma sample with 1000 pg of atRA.
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AtRA stability was also assessed for exposure to UV light (254 nm) using transparent tubes.
Matrix effects were defined as a suppression of or increase in signal intensity for the chosen
MRMs (matrix effects while ionization) or as an increase or decrease in recovery of atRA-d5
(matrix effect while extraction).

4.7. Clinical Chemistry

Blood was drawn under fasting conditions as described above, and samples were
immediately processed in the accredited Central Laboratory of Heidelberg University
Hospital. Plasma levels of total cholesterol, HDL cholesterol, triglycerides, blood glucose,
and C-reactive protein were analyzed with clinical chemistry automation (AdviaXPT® 2400
chemistry analyzer, Siemens Healthineers, Erlangen, Germany) according to the appropri-
ate standard operating protocol. HbA1c quantification was performed on whole-blood
EDTA samples, and analyses were executed using a VARIANT II HbA1c analyzer (BioRad,
Hercules, CA, USA) that utilizes cation-exchange high-performance liquid chromatography.
LDL cholesterol was determined using the Friedewald formula as previously described [27].

4.8. Statistical Analysis

Statistical-data analysis was performed using GraphPad Prism 7 (GraphPad Software
Inc., San Diego, CA, USA). All data are expressed as mean values ± standard error (SE),
and were analyzed for significance using an unpaired t test with Welch’s correction. Linear
regression and Pearson’s correlation coefficient were used to study the association of atRA
and BMI, total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides.

5. Conclusions

In this study, atRA was quantified in human-plasma samples using a robust and
sensitive LC–MS/MS method that achieved convincing analytical parameters of accuracy,
precision, recovery, and stability. Within this context, atRA was isolated from hyperlipi-
demic human-plasma samples, and results showed a decrease in atRA levels in poorly
controlled patients with Type 2 diabetes, and a strong correlation with LDL and HDL
cholesterol. In summary, this study adds valuable content for further analytical determina-
tions of atRA using LC–MS/MS, and indicates altered metabolism of retinoids in patients
with diabetes mellitus.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198
9/11/1/60/s1. Figure S1: Comparison of ionization mode of mass spectrometry for atRA (100 pmol
direct injection on column), Table S1: Assessment of atRA stability upon UV-exposure, Table S2:
Mean baseline characteristics and atRA levels of the control group (as shown in Table 4) and patients
with well-adjusted / poorly controlled type 2 diabetes.
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