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Genetic primary immunodeficiency diseases are increasingly recognized, with pathogenic

mutations changing the composition of circulating leukocyte subsets measured by flow

cytometry (FCM). Discerning changes in multiple subpopulations is challenging, and

subtle trends might be missed if traditional reference ranges derived from a control

population are applied. We developed an algorithm where centiles were allocated

using non-parametric comparison to controls, generating multiparameter heat maps to

simultaneously represent all leukocyte subpopulations for inspection of trends within

a cohort or segregation with a putative genetic mutation. To illustrate this method,

we analyzed patients with Primary Antibody Deficiency (PAD) and kindreds harboring

mutations in TNFRSF13B (encoding TACI), CTLA4, and CARD11. In PAD, loss of

switched memory B cells (B-SM) was readily demonstrated, but as a continuous, not

dichotomous, variable. Expansion of CXCR5+/CD45RA- CD4+ T cells (X5-Th cells) was

a prominent feature in PAD, particularly in TACI mutants, and patients with expansion in

CD21-lo B cells or transitional B cells were readily apparent. We observed differences

between unaffected and affected TACI mutants (increased B cells and CD8+ T-effector

memory cells, loss of B-SM cells and non-classical monocytes), cellular signatures

that distinguished CTLA4 haploinsufficiency itself (expansion of plasmablasts, activated

CD4+ T cells, regulatory T cells, and X5-Th cells) from its clinical expression (B-cell

depletion), and those that were associated with CARD11 gain-of-function mutation

(decreased CD8+ T effector memory cells, B cells, CD21-lo B cells, B-SM cells,

and NK cells). Co-efficients of variation exceeded 30% for 36/54 FCM parameters,

but by comparing inter-assay variation with disease-related variation, we ranked each

parameter in terms of laboratory precision vs. disease variability, identifying X5-Th cells

(and derivatives), naïve, activated, and central memory CD8+ T cells, transitional B cells,

memory and SM-B cells, plasmablasts, activated CD4 cells, and total T cells as the 10

most useful cellular parameters. Applying these to cluster analysis of our PAD cohort,
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we could detect subgroups with the potential to reflect underlying genotypes. Heat

mapping of normalized FCM data reveals cellular trends missed by standard reference

ranges, identifies changes associating with a phenotype or genotype, and could inform

hypotheses regarding pathogenesis of genetic immunodeficiency.

Keywords: flow cytometry, immunodeficiency, common variable immunodeficiency, TACI, CTLA4, TNFSF13B,

CARD11

INTRODUCTION

Widespread availability of DNA sequencing has uncovered
an expanding array of genetic explanations for primary
immunodeficiency disorders (PIDs) (1). Causative mutations can
change cellular function and affect the balance between protective
immunity and immune tolerance, resulting in clinical phenotypes
of recurrent infection with or without autoimmunity. Changes
in cellular physiology frequently result in quantitative differences
in the composition of circulating leukocyte populations, which
can be determined using multiparameter flow cytometry (FCM);
indeed the power of this technique tomeasure an increasing array
of specific subpopulations has challenged the ability to depict
and analyse potentially important and pathogenically relevant
cellular changes that might accompany or even identify a disease
phenotype or genotype.

Traditionally, quantitative variations in cell subpopulations
have been deemed to be abnormal if they vary significantly from a
background control population, with the target range calculated
based on two standard deviations either side of the mean, or by
using 95% confidence intervals if non-parametric in distribution.
Whilst stringent, this approach has the potential to miss less
extreme but physiologically relevant cellular changes when found
consistently in a cohort of patients, defined either by clinical
phenotype or genotype; such subtle cellular changes could be
more readily identified if all relevant parameters could be visually
presented simultaneously, allowing identification of trends that
might be considered for subsequent statistical analysis, and
analysis in larger cohorts.

We conceived an analysis technique in which FCM data
from 51 cellular parameters in an individual patient were
compared non-parametrically to corresponding data from
controls, generating centiles which could be depicted in heat
maps. Heat maps could then be aligned within a kindred or
clinical phenotype, allowing identification of consistent cellular
trends. Here we demonstrate this technique by analyzing a
cohort of patients with PID, including kindreds with known PID-
associated mutations. The same technique should be applicable
to guiding the search for new potentially pathogenic mutations
uncovered in WGS screens.

METHODS

Patient and Control Subjects
The cohort consisted of 77 control subjects and 199 patients
with various immunological diagnoses, including autoimmunity
(112), primary immunodeficiency conditions (57), oncology (21),
neurological disease (5), sarcoidosis (3), and autoinflammatory

conditions (1). Control subjects were aged between 20 and
72 years (median 40.5, mean ± SD: 40.8 ± 12.9) and
were 64% female. We studied a subset of 22 patients
from the primary immunodeficiency group who had primary
antibody deficiency (PAD), 19 of whom met IUIS criteria
for Common Variable Immunodeficiency (CVID) (2); the
remaining 3 had specific antibody deficiency, 1 of whom was
on infliximab (Supplementary Table 1). All PAD patients were
on immunoglobulin replacement therapy and no other members
of the PAD cohort were on immunosuppressives. PAD patients
were aged between 10 and 72 years (median 36, mean ± SD:
38.3 ± 16.8) and were 55% female. See Supplementary Table 1

for details of patients reported in Figures 3–6.
Written informed consent was obtained as part of the

Australian Point Mutation in Systemic Lupus Erythematosus
study (APOSLE), the Centre for Personalized Immunology
(CPI) program, the Healthy Blood Donors register and the
Hematology Research Tissue Bank (The Canberra Hospital,
Canberra, Australia). This study was carried out in accordance
with the recommendations of the National Statement on Ethical
Conduct in Human Research (2007), National Health and
Medical Research Council with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Sydney Local Health District HREC at Concord
Repatriation General Hospital, ACT Health HREC, ACT
Hematology Research Tissue Bank Committee and Australian
National University HREC.

Cell Surface Staining Approach and Gating
We processed cells collected from the 276 subjects detailed
above, many of whom had already undergone Whole Exome or
Whole Genome sequencing under HREC-approved protocols,
for flow cytometry. Blood was collected into ACD 9ml collection
tubes and processed within 24 h of collection. Peripheral blood
mononuclear cells (PBMCs) were purified by layering blood over
Ficoll-Paque, resuspended in RPMI, 10% DMSO and FCS, then
stored in liquid nitrogen prior to analysis.

Immunophenotyping of PBMCs was performed using 1
× 106 cells for each staining panel. Cells were thawed
at 37◦C and washed with FACS buffer (PBS/2% bovine
serum/0.05% sodium azide). Fc receptors were blocked using
Human TruStain FcX (Cat #422302; Biolegend) and dead cells
discrimination performed with LD Fixable Dead Cell stain
(Cat #L34962; Invitrogen) according to the manufacturer’s
instructions. PBMCs were stained with four antibody cocktails
(Supplementary Table 2) enabling identification of 54 cell
parameters (Figure 1). Samples were fixed with eBioscience
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FIGURE 1 | Cellular subpopulations as measured by FCM. Schematic shows the 54 separate cell populations determined using the four antibody panels (see section

Methods). Lines show the relationship to parent populations.

FoxP3 Fixation/Permeabilization reagent (Cat #00-5523-00;
Invitrogen) according to the manufacturer’s protocol. Flow
cytometric acquisition was performed using a BD Fortessa FACS
analyser at the Microscopy and Cytometry Resource Facility,
John Curtin School of Medical Research and data analysis
performed in Flowjo (v10; TreeStar). Repeated analysis of stored
PBMCs from a single control was included with every FCM
run, which allowed experimental variation in each parameter to
be measured.

Cell Populations and Methodological
Aspects of FCM Analysis
The FCM analysis is shown in Supplementary Figure 1;
initial gating was on viable singlet cells. Lymphocytes were
gated by scatter; for non-lymphocyte populations, a broad
leukocyte light scatter gate was used after excluding CD3,
CD19, and CD56 expressing cells. Subpopulations were
quantitated as a proportion of various parent populations,
to generate up to 54 separate parameters per subject. Given
varying approaches to defining transitional B cells, four
commonly used gating strategies were initially applied:
CD38+/CD10+, CD38+/CD24+, CD38+/IgM-hi, and
CD38+/CD21-lo (Figure 1 and Supplementary Figure 1),
although the latter strategy was abandoned because of its
inclusion of circulating plasmablasts. Since the three remaining
subsets were highly correlated (Supplementary Figure 2),

we chose to use the CD38+/CD24+ proportion of B cells to
represent the transitional cell population, leaving 51 total FCM
parameters. NK cells, defined as CD3–/CD19– lymphocytes
that expressed either CD16 or CD56, could be divided into
three subpopulations (CD16–/CD56-hi, CD16+/CD56-dim, and
CD16+/CD56–), and these were arbitrarily designated NK-1,
-2, and -3, respectively (Figure 1 and Supplementary Figure 1).
In the process of analysis, we found inconsistencies in CD4
T-helper (Th) chemokine receptor staining, such that values
were censored when they were unable to clearly delineate four Th
cell populations. We also observed that low density neutrophils
appeared to accumulate with increasing time between collection
and cryopreservation (data not shown).

In attempting to analyse memory T cell populations, we noted
that some subjects over-expressed CD45RA, making precise
gating impossible; these samples were censored for memory T
cell parameters. This notable phenomenon reflects the action of
a synonymous C > G variant at nucleotide position 77 in exon
4 (rs17612648) of the Protein tyrosine phosphatase receptor type
C gene (PTPRC) that encodes the CD45 pan leukocyte receptor,
that has previously been shown to interfere with CD45 splicing
in T cells (3, 4). The variant allele, occurring in approximately

8% of individuals, acts in a dominant manner to maintain

CD45RA expression on T cells following in vitro cell activation

(5, 6). Although memory cell formation and function is not

affected (5), T cells of individuals carrying this allele do not
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downregulate CD45RA. Since many subjects in our cohort had
had genetic sequencing, we were able to identify seven individuals
carrying the PTPRCC77G allele who had also undergone
immunophenotyping. Consistent with previous reports, we
observed that all CD4+ and CD8+ T cells in these individuals
expressed high levels of CD45RA (Supplementary Figure 3).
The effect was more pronounced on CD8+ cells than CD4+
T cells, however a true CD45RA– population was not evident
in either subset of T cell. Interestingly, we did not identify any
CD45RA over-expressors in our healthy controls.

Description of Normalization
Algorithm/Software
Spreadsheet data for all FCM cellular populations from the study
population were compared with the comparable data generated
from controls. Bespoke software was written to analyse each
subject parameter and to generate centiles by comparison with
controls. To do this, the software sorted control values in
ascending order and each one was allocated a centile value. The
lowest value was allocated a centile of 1/(n+1), and the highest
was 1–[1/(n+1)], where n is the number of values in the control
cohort; this approach allowed extreme ‘unprecedented’ values,
namely those which were never found in the control population,
to be emphasized (Figure 2). The test parameter value was
then compared with the sorted control values and attributed
the corresponding centile (0–1), with further adjustment based
on interpolation between the two neighboring control values.
Centiles from each subject were then color coded in two ways: (i)
continuously, where color intensity varied with deviation from
the median (0.5 = black), values above the median depicted in
intensity of red, and values below the median, in intensity of
green; and (ii) discontinuously, where color strata represented
variation from normal, differentiating the extreme 5, 10, or

25% in each direction; the central 50% of control values were
represented as green (Figure 2).

Statistics
All comparisons were performed in GraphPad Prism 8.0 for
Mac, usingMann-Whitney non-parameteric comparison of non-
paired values; p-values below 0.05 were considered significant.

Cluster Analysis
To look for clusters of cellular changes within CVID patients,
centile data from selected cellular parameters were generated.
These data were loaded onto Morpheus (https://software.
broadinstitute.org/morpheus/) and hierarchical clustering
applied using 1-Pearson correlation.

RESULTS

Non-parametric Heatmapping to Depict
Cellular Changes in Patients With Primary
Antibody Deficiency
Flow cytometry has an important role in understanding
cellular changes in primary antibody deficiency disorders,
particularly Common Variable Immunodeficiency (CVID).
Sub-classifications have been based on differences in B-cell
maturation patterns, the critical parameters including the
proportions of total B cells, switched memory B cells (B-
SM), CD21-lo B cells (sometimes referred to as “anergic”
B cells) and transitional B cells (7, 8). We applied our
analysis technique to our cohort of 22 patients with Primary
Antibody Deficiency (PAD), 19 of whom met criteria for CVID
(Supplementary Table 1), using heat mapping with continuous
color shading (Figure 2A) to visually represent variations in
the measured 51 cellular parameters, sorting patients on the

FIGURE 2 | Heat mapping strategy for continuous green-black-red shading (A), or discontinuous shading (B). For continuous shading, colors vary continuously in

shades of green (below control median), or red (above control median) with an intensity proportional to the difference from the median (0.5 centile). For discontinuous

shading, colors vary stepwise as shown, based on the difference from the median, with the middle 50% of the control population in pale green, then progressively

from light to dark blue (below control median), or yellow/orange/red/brown (above control median). Centiles for the control population are defined to vary from 1/(n+1)

to 1–[1/(n+1)], depicted as “100%” in (B), where n is the size of the control population; such an approach allows identification of “extreme” or unprecedented values,

namely those lying outside the bounds of the control population. Other percentages represent the proportion of the control population included in each indicated

color stratum.
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basis of an ascending value for B-SM cells. This technique
readily identified the known reduction in B-SM cells in CVID
(Figure 3), but also demonstrated that this parameter was a
continuous (rather than dichotomous) variable amongst PAD
patients. Thus, whilst 16/22 (74%) subjects fulfilled objective
criteria for “deficiency” of B-SM cells—values less or equal to
the published cut-off of 0.4% of lymphocytes, also referred to as
Freiberg I (9, 10)—the trend to SM-B cell reduction was evident
in all but two patients (Figure 3, subjects “u” and “v”).

The reported expansion in CD21-lo cells could also readily
be discerned from the PAD heat-map (Figure 3), particularly
prominent in three patients (boxed, Figure 3), but was found
in patients with “normal” as well as statistically deficient B-
SM cells. Although our cohort was too small to make firm
conclusions about clinical associations, we noted that 2 of the
3 patients with CD21-lo B cell expansions also had clinical
lymphoproliferation and autoimmunity (Figure 3, subjects “e”
and “t,” Supplementary Table 1), both reported associations (7,
11–13). A subset of patients with expansion of transitional B cells
could also readily be appreciated (Figure 3) (8).

We could also demonstrate expansion of circulating
CXCR5+/CD45RA− CD4+ T helper cells (here termed X5-Th)
as a feature of PAD (Figure 3) (14, 15). Both the X5-Th cells and
as well as the PD-1+/CD45RA-/CCR7-lo subpopulation (here
termed Tfh-effector cells), a population that has been shown to
correlate more closely with germinal center activity (16, 17), were

significantly increased (p= 0.0021 and p= 0.0016, respectively).
In contrast to previous reports (15), we found no correlation
between the degree of SM-B cell depletion and the proportion of
X5-Th cells (data not shown).

Thus, simultaneous representation of FCM parameters in a
heat map, statistically normalized to a control population, can
readily identify the known cellular patterns and trends in PAD
patients, but also has the potential to facilitate discovery of new
cellular changes not previously identified.

Normalized Heat Mapping in Genetic
Immunodeficiencies
Cellular changes might be noted in a proportion of patients
with PAD, as demonstrated above, but no single change is
characteristic. This is likely due to the fact that multiple
gene mutations can result in the heterogeneous PAD clinical
phenotype, with recent reports suggesting that up 30–40% of
patients may have a monogenic disorder (18–21). Stratifying
PIDs based on genetic mutation should result in more uniform
cellular findings and reduce heterogeneity. Furthermore, since
many of the identified causes are autosomal dominant with
incomplete penetrance, cellular phenotyping might have the
potential to distinguish the clinical phenotype of the mutation
from healthy relatives with the same mutation. On the other
hand, such changes might be missed if abnormalities are defined

FIGURE 3 | Heat mapping with continuous color shading (as depicted in Figure 2A) in PAD patients. Heat maps from individual patients (labeled a to v) are ordered

from left to right based on increasing proportions of switched memory B cells (B-SM), with the cut-off of 0.4% of total lymphocytes shown. The expansion of CD21-lo

B cells can be readily appreciated (labeled), as can the expansion in CXCR5+/CD45RA–CD4T cells (X5-Th), and Tfh-effector cells and (as a percentage of CD4T

cells). Inset shows the comparisons between control values (n = 77) and PAD patients for X5-Th and Tfh-effector cells. Details of PAD patients presented in

Supplementary Table 2.
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FIGURE 4 | Analysis of cellular parameters in CVID patients carrying TACI variants in comparison to TACI mutant control subjects without CVID. (A) Heat mapping

with discontinuous shading for four unrelated CVID patients carrying the TACI A181E allele, one homozygous, along with two healthy individuals with A181E, or

C104R alleles. Boxes highlight parameters for which cellular changes differ in those with CVID compared with TACI controls. (B) Scatter plots showing raw values for

populations identified in (A), along with representative FCM contour plots of these critical parameters (C). Raw and centile data is presented in

Supplementary Table 3.

by and restricted to 95% confidence interval cut-offs. Using
heat maps to depict variations from normal in patients with
known mutations in TNFRSF13B, CTLA4, and CARD11, we
asked whether we could identify trends within defined cellular
populations that might be relevant to the genetic pathogenesis of
their immunodeficiency.

TACI

Heterozygous and homozygous mutations in TNFRSF13B
encoding the lymphocyte receptor TACI (transmembrane
activator and calcium-modulating cyclophilin ligand interactor)
are associated with CVID (22–24). Mutations affecting
TNFRSF13B are found in 8% of CVID patients, however
they are also found in 2% of the normal population (24),
indicating that TNFRSF13B is a genetic risk factor for CVID,
with disease expression presumably dependent on genetic
modifiers or environmental triggers. Although TNFRSF13B is
a highly polymorphic gene, two damaging variants resulting in
protein mutations C104R and A181E (25) are most strongly
associated with antibody failure (24, 26). We identified four
patients with the A181E mutation in our CVID cohort, three
heterozygous and one homozygous; we compared the cellular
profiles of these four patients with two unaffected members
of our cohort who had TACI mutations (one C104R, one
A181E) but without antibody deficiency. Depicting the cellular
changes as heatmaps, we looked for variations common to TACI
mutants that were not present in unaffected individuals, and
then statistically analyzed relevant parameters.

TACI mutant patients in our cohort showed consistently
higher proportions of X5-Th cells, particularly their Th1
counterparts (X5-Th1), and Tfh-effector cells (Figure 4 and
Supplementary Table 3), with the X5-Th cell expansion
appearing even more prominently in TACI mutants than in
the PAD cohort overall (Figure 3); we noted however that
the difference found in the PAD cohort remained statistically
significant after removal of the TACI mutants (data not shown).
TACI mutants also showed expansion of CD8+ effector memory
T cells, and total B cells, with reductions in B-SM cells and
non-classical monocytes (Figure 4). Even though most of
these changes did not lie outside the 95% confidence intervals
(Supplementary Table 3), when analyzed as a group, the
differences were significant (Figure 4B). Interestingly, we saw a
similar increase in X5-Th cell cells in the patient homozygous
for TACI mutation as in the heterozygotes, whereas it has
been previously reported that only heterozygous TACI patients
showed this expansion (27).

CTLA4 Patients

Heterozygosity for loss-of-function mutations in CTLA4 gives
rise to an autosomal dominant autoimmune lymphoproliferative
syndrome (Type V MIM# 616100) with incomplete penetrance
(28, 29). Clinical features are similar to CVID with an added
propensity to autoimmunity. Reported cellular abnormalities
have included expansion of CD21-lo B cells, reduction in naive
T cells, over-expression of PD-1 by T-cells, and sometimes
expansion of regulatory T (Treg) cells (28, 29). We studied
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FIGURE 5 | Analysis of cellular parameters in a CTLA4 haploinsufficient kindred. (A) Heat mapping with discontinuous shading showing changes in cell populations

for the CTLA4 haploinsufficient proband with CVID, in comparison with the clinically normal brother with the CTLA4 mutation, the unaffected proband’s adult daughter

without CTLA4 mutation and the internal control. Boxes highlight parameters for which cellular changes differ between the two CTLA4 mutants, the unaffected

subjects, and between the CTLA4 mutants with or without clinical expression. (B) Scatter plots showing raw values for populations identified in (A), along with

representative FCM contour plots of these critical parameters (C). Raw and centile data is presented in Supplementary Table 3.

a kindred with CTLA4 haploinsufficiency (heterozygous
c.152_ins+GA), and generated normalized heat-maps of the
heterozygous proband (profound hypogammaglobulinaemia,
enteropathy and interstitial lung disease), the heterozygous
brother (minimal clinical manifestations), and the unaffected
adult daughter who did not carry the variant CTLA4 allele
(Figure 5). From the resulting heatmap we observed that CTLA4
haploinsufficiency itself resulted in expansion of Treg cells,
activated CD4+ cells, Tfh-effector cells (CCR7-lo/PD-1-hi, as
a percentage of either CD4+ T cells, or CXCR5+ CD4+ T
cells), and circulating plasmablasts, irrespective of the clinical
phenotype (Figure 5 and Supplementary Table 3). In contrast,
only the hypogammaglobulinaemic proband showed reduction
of B cells (<1%).

CARD11

CARD11 is a scaffold protein distal to antigen-receptor
engagement in lymphocytes; dominant negative mutations give
rise to a diverse clinical phenotype which includes atopic disease,
autoimmunity and a combined immunodeficiency involving
both B and T cell immunodeficiency (30). Mutations result in
defects of T cell activation, NFκB activation and production of
cytokines, such as IFN-γ, and IL-2 (20, 31), however changes in
cellular phenotype are less established. In a recent multicenter
study, we and others reported B-cell defects, including low

total and memory B-cells, along with increased naïve and
decreased memory T cells, however changes in peripheral
lymphocytes differed considerably depending on the specific
CARD11 mutation (30). Using the same technique described
above, we studied two unrelated kindreds with two different
dominant negative CARD11 mutations (R47H (c.140G>A),
and R974C (c.2920C>T), previously reported (30). In the two
affected patients, there was reduction in CD8+ effector memory
T cells, total NK cells and B cells (the latter two parameters giving
rise to a relative increase in total T cell proportion), along with
a reduction in the CD21-lo proportion of B cells (Figure 6 and
Supplementary Table 3).

Critical Cell Population Changes
Determined by Ranking FCM Parameters
by Laboratory and Disease Variation
We have demonstrated that cellular trends within a clinical
phenotype or genotype can be readily depicted using our
approach, but the inherent variability of FCM could challenge
the reliability of the technique for general application. Such
variability might relate to interlaboratory differences in
monoclonal antibodies, their conjugate, the flow cytometer and
its set-up, fluorescence compensation settings, and variations
in subjective gating strategies between operators, but also to
stochastic factors within the laboratory and inherent to the
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FIGURE 6 | Analysis of cellular parameters in a CARD11 mutant kindred. (A) Heat mapping with discontinuous shading showing changes in cell populations for two

unrelated patients with dominant negative CARD11 mutations, along with their relative(s) without mutation. Boxes highlight cellular changes common to the two

CARD11 mutants, but differing from the family members. (B) Scatter plots showing raw values for populations identified in (A), along with representative FCM contour

plots of these critical parameters (C); in the B-cell contour plot, black boxes and numbers refer to total CD19+ cells, and red boxes and numbers refer to

CD19+/CD27+ memory B cells. Raw and centile data is presented in Supplementary Table 3.

methodology itself. To measure inter-assay variation in our
laboratory, we analyzed the same frozen cells from a single
subject (collected on three separate occasions) in each of 28
runs, and measured the co-efficients of variation (CV) for the 54
original analysis parameters. Despite using the same monoclonal
antibodies, conjugate, dilution, flow cytometer, operators (RT,
AL) and gating review (DF), more than half of the parameters
measured showed significant imprecision, with CV values above
30% for 36/54 parameters (Supplementary Figure 4). In the
case of CVID, such laboratory variations could have significant
implications for assessment, diagnosis and classification;
considering only those parameters used for classification of
CVID, we still found intra-laboratory CV values around 30%
(Supplementary Figure 4), meaning that individual patients
could vary in whether or not they fulfilled diagnostic criteria
for CVID, or else be classified into different sub-groups at
different timepoints, depending on random variations in the
methodology alone.

Despite challenges posed by intra-laboratory variability, we
asked whether parameters could be chosen that show more
acceptable laboratory variation yet vary even more widely within
patient populations. If so, realistically measurable cell parameters
could be prioritized to ‘profile’ more reliably a specific immune
disease phenotype (e.g., CVID, lupus, Sjogren’s), or to assist in the
diagnosis of immune disease, based on the hypothesis that there
exist unique combinations of cellular changes characteristic to a
disease or a disease subset.

To identify such critical cell parameters, we plotted co-
efficients of variation for the control sample (reflecting
intra-laboratory variation) against variation for each test
parameter in the entire disease cohort of 199 patients with
miscellaneous conditions, including PID, autoimmunity,
autoinflammatory disease, and cancer (see section Methods).
By calculating the quotient of disease-based variation against
inter-assay variation, we identified the top parameters that
might be most useful for this purpose (Figure 7 and inset).
Interestingly, X5-Th cells and their derivatives (Tfh-effector and
Tfh-memory cells, X5-Th1, X5-Th1/17 cells, and X5-Th17 cells,
all as %CD4T cells), emerged as reproducible cell parameters
that were at the same time most variable in disease; as these
values all varied in parallel to the parent population (X5-Th
cells), the latter parameter was deemed the most independent
for cluster analysis (see below). Other critical parameters were
naïve, activated and central memory CD8+ T cells, transitional
B cells, memory B cells, SM-B cells, plasmablasts, activated CD4
cells, and total T cells (inset, Figure 7). On the other hand, the
remaining traditional lymphocyte subsets frequently measured
in the diagnosis of immune disease, namely CD4, CD8, CD19,
and total NK cells, whilst reproducible methodologically, showed
much less variation in disease, and hence might be less useful
in practice than other cellular populations now quantifiable in
the laboratory. Finally, when we restricted analysis of parameter
variation to the PID patients alone, IgA-expressing switched
memory B cells (B-SM-IgA (%B)) emerged as an important
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FIGURE 7 | Comparison between CV percentages of 51 cellular parameters derived from the internal FCM control, and the same variation in the entire CPI cohort

with widely varying immune conditions (see section Methods). The line shows the cut-off for the top 10 parameters with the highest ratio of disease-driven variation

divided by internal variation, and these 10 parameters, and corresponding raw values appear in the table inset.

variable in this cohort, in addition to the those identified above
(data not shown).

Finally, we asked the question as to whether restricting
analysis to these critical 10 parameters might have the potential
to stratify better PAD patients, perhaps giving clues to their
genetic pathogenesis. By generating centiles for the 10 most
discriminating parameters in our PAD cohort, and submitting
them for cluster analysis, we were indeed able to identify a
number of subgroups (Figure 8). The largest subgroup (I) was
characterized by expansion of X5-Th cells with loss of B-SM cells;
this subgroup included all TACI heterozygotes. Interestingly,
the TACI homozygote clustered with the CTLA heterozygote, a
group which were characterized by the above two characteristics
along with T-cell (both CD4 and CD8) activation (Figure 8,
subgroup II). A third subgroup lacked X5-Th cell expansion,
but showed expansion of transitional B cells and naïve CD8 cells
(Figure 8, subgroup III). Finally, the two patients with NFKB2
mutation were distinct from the remaining PAD patients, lacking
X5-Th cell expansion, but with expansion of plasmablasts and
decreased transitional B cells (subgroup IV). The addition of
B-SM-IgA (%B) to the other 10 parameters did not change
these subgroups, presumably because all but two of the PAD
cohort were depleted of IgA-expressing switched memory B cells
(data not shown); nevertheless, including this parameter may be
important when analyzing PID cohorts not uniformly selected
on the basis of antibody failure.

DISCUSSION

Flow cytometry facilitates rapid quantitation of multiple
circulating white blood cell subpopulations, yet depicting
variations in these parameters in disease, and associating
such changes with corresponding genetic mutations, can
be difficult. Here we report a non-parametric method for
mapping variations in cellular subpopulations to facilitate
detection of relevant cellular trends; raw patient values were
converted into centiles based on comparison to controls,
the centiles were mapped to color changes, and then the
colors were assembled into a heat map. By aligning heat
maps within a disease cohort (PAD, Figure 3), a genetic
cohort (TACI, Figure 4) or within one or more genetic
kindreds (CTLA4, Figure 5; CARD11, Figure 6), we have
demonstrated how cellular changes can be readily identified,
and specific candidate parameters chosen for definitive statistical
analysis. For example, reported cellular changes associated
with CVID were readily appreciated (Figure 3), and cellular
fingerprints were successfully identified in the genetic cohorts or
kindreds (Figures 4–6).

Our method of non-parametric heat mapping thus has the
potential to detect more subtle, but nevertheless relevant and
consistent, cellular changes than would be detected by applying
traditional “normal ranges” based on the control mean plus or
minus two standard deviations (parametric distributions), or
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FIGURE 8 | Cluster analysis of PAD patients based on centiles of the top 10 cellular parameters determined as outlined in the legend to Figure 7 (see text). Hereditary

branches show relatedness in terms of cellular similarities, the major ones highlighted in boxes. Known genotypes are shown.

95% confidence intervals (non-parametric distributions). Whilst
reference ranges are important for an individual patient, when
studying cohorts of patients or kindreds, variations in cellular
parameters, either increased or decreased, might show consistent,
and pathogenically relevant trends even though individual values
might lie within the target range. For example, most of the
changes we found in our genetic subgroups were statistically
significant despite individually having centiles between 0.025
and 0.975 (Supplementary Table 3), which would otherwise
represent the non-parametric normal range. Furthermore, when
searching out real alterations in cell composition that are
dependent on the possible effects of subtle gene changes, one
cannot assume that the biological effect on a given cell population
will be so extreme that they can be categorized into “expanded”
vs. “deficient,” based on a defined 95% confidence interval alone.

Defining cellular changes in immune disease could therefore
generate hypotheses regarding the pathogenesis of genetic
immunodeficiencies. We noted, for example, the expansion
of X5-Th cells in CVID patients, particularly in those with
TNFSF13B mutations. It is perhaps counter-intuitive that
patients with antibody deficiency should have increased X5-Th
cells (commonly referred to as circulating T-follicular helper
cells, cTfh), a phenotype that has been frequently associated
with autoimmunity (32). However, studies in TACI deficient
mice have shown that expansion of Tfh cells is extrinsically
regulated by increased expression of ICOSL on B cells, and
that antibody deficiency results from the important role that
TACI plays in promoting plasma cell survival (33). Also, whether
expansion of X5-Th cells reflects heightened Tfh cell activity
or numbers in secondary lymphoid tissues of CVID patients
remains unknown. Furthermore, Tfh cells are B cell dependent,
and have been shown to be deficient in patients who lack B
cells as a result of BTK deficiency (34); this phenomenon was
observed in our NFKB2 patients, who also exhibited profound

B cell deficiency (subjects “b” and “d,” Figure 3). Given the
association of cTfh cells with autoimmunity, it is tempting to
speculate that this change might also play a pathogenic role in
the increase propensity to autoimmunity in CVID patients with
TACI-deficiency (35). However, it cannot be assumed that an
increase in cTfh cell numbers would necessarily correlate with
an increase in cTfh cell function; analysis of cTfh cells from a
range of different genetic PIDs has revealed that mutations can
impact both the quality and quantity of cTfh cells (36), and thus
it is relevant to ask whether the increased frequency of cTfh
cells in TACI-mutant CVID patients also correlates with changes
in function.

We also observed increased Tfh-effector cells and plasmablasts
in CTLA4 haploinsufficient subjects (Figure 5), which has not
previously been reported. Whilst our numbers are small and
require further validation in additional kindreds, overactivity
of Tfh-effector cells would be consistent with the spontaneous
development of germinal centers in CTLA4-deficient mice (37)
and might suggest that in addition to the defect in negative
regulation due to reduced expression of CTLA4, Tfh effector
cells might drive increased germinal centre output and possibly
contribute to the increased propensity toward autoimmunity
in these patients. The similarity in cellular phenotype in
the patient and her unaffected brother does raise questions
as to the pathogenesis of the clinical expression in CTLA4
haploinsufficiency, and whether these patients are ‘primed’ for
susceptibility to environmental factors that might be responsible
for driving the antibody deficiency and, in this patient, B-
cell loss.

Non-parametric heat mapping might also facilitate the search
for genetic explanations of immune disease, based on the
assumption that a mutation or polymorphism under study
is pathogenically relevant and alters cellular subpopulations
in the blood. To do this, heat maps from members of a
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kindred can be assembled, and cell parameters that associate
with specific genetic changes identified for further analysis.
Should such cellular fingerprints prove to be characteristic of
a particular genotype, diagnosis of immunodeficiency diseases
could be facilitated by aligning the cellular heatmap of a
new patient with an immunodeficiency (or other immune)
condition with the heatmaps of other patients with established
clinical or genetic diagnoses, similarities in critical parameters
prompting a provisional diagnosis prior to confirmatory testing.
For example, in the CTLA4 kindred (Figure 5), the lack
of characteristic cellular changes in the daughter suggested
her WT genotype well-before the CTLA4 sequencing results
were known. Similarly, the clustering of the two NFKB2-
deficient patients together on the basis of 10 critical FCM
parameters (Figure 8) implies that this approach could also
be used to prompt a genetic diagnosis based on cellular
phenotype alone.

Analysis of FCM data in this way may however be limited
by the wide inter-assay variation that seems intrinsic to FCM
as a technique; despite careful control of methodological
conditions, we noted high CV values for most cellular parameters
measured (Supplementary Figure 4). It should be evident
that such variation challenges the wide-spread application of
defined cut-offs, for example in CVID, since the same patient
may change their classification or ability to fulfill diagnostic
criteria based on random laboratory variables alone. We have
addressed this laboratory variation in two ways. Firstly, we
have depicted variation using normalized heat mapping such
that trends can be detected even if they do not lie outside
reference ranges. Using PAD as an example, we were able
to demonstrate known trends without the need to define
“normal” vs. “abnormal” (Figure 3). Secondly, we selected
critical parameters that were both reproducible in the laboratory
and also most variable in disease, based on the observation
that disease-related cellular variation always exceeded intra-
laboratory variations (Figure 7), and that cellular parameters
could be ranked in terms of their utility for such profiling.
We demonstrated this approach in PAD, where clusters of
changes could be identified based on a selection of 10 of the
most discriminating cellular parameters, and in some cases
could be characteristic of a particularly genotype (NFKB2,
Figure 8, subgroup IV). A similar approach could be used
to look for critical commonalities within a heterogeneous
immunological disease (e.g., lupus, Sjögren’s), carefully selecting
or weighting sorting parameters based on both their laboratory
reproducibility and simultaneously their greater variation in
immunological disease.

There were a few limitations to our study. Numbers
within each study population or kindred were relatively small,
and it would be important to apply our methodology to
larger genetic cohorts. We stress however that the aim of
our study was never to develop a new classification system
for CVID, nor to provide definitive data on the cellular
phenotypes of the genetic PIDs studies, as our relatively
small numbers would never have had the power to replicate
the findings of more substantial, multicenter cohorts such as
those reported in the Freiburg or Euroclass studies (8, 9),

particularly in regard to clinical correlations. Nevertheless, our
technique of normalizing patient data to control samples may
readily be applied to such larger cohorts, and that careful
selection of differentiating parameters (Figure 8) might facilitate
discovery of clustering algorithms that more closely correlate
with the expanding array of genetic changes associated with
immunologic disease.

Given the methodological variability in the FCM technique
itself, it was also difficult to exclude that variations in specific
cellular parameters in our cohorts might have arisen through
such random variation alone. Nevertheless, the statistical
comparisons we did employ were often highly significant,
with p-values < 0.01. Since many of our cellular parameters
were interdependent, adjustment for multiple comparisons
was not feasible, however the False Discovery Rate when
comparing 50 parameters would predict that <1 parameter
should have p-value ≤ 0.01 by chance alone; given the number
of cellular differences we were able to identify, often with p-
values below 0.01, we believe that the changes we noted were
not only real, but also afforded credence to the techniques
used to identify them. Our technique might be less practical
however in pediatric settings, given the need for reliable age-
dependent control reference values. Some parameters, such
as low-density neutrophils, were too methodologically variable
to be useful, and few of the myeloid markers emerged as
useful candidate parameters, perhaps expected given the focus
here on “lymphocyte-centric” immunodeficiency diseases; such
parameters might play a role in other (perhaps autoimmune)
conditions where innate mechanisms are more prominent
pathogenically. Despite these limitations, we were able to fulfill
the main aim of our study namely to demonstrate an approach
to visually depict trends within small cohorts, trends which
can then be used to generate hypotheses for confirmation in
larger groups.

Here we illustrate the use of non-parametric normalized
heat mapping of FCM parameters to represent changes
in cellular parameters in a phenotype or genotype. By
relinquishing reliance on reference intervals, this technique can
discern trends within a disease or kindred, possibly improve
diagnosis or classification, and refine understanding of the
pathogenic relevance of gene mutations in established and
emerging PID.
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Supplementary Figure 1 | Immunophenotyping gating strategies. Flow

cytometry plots showing the gating strategy employed to differentiate and quantify

each of the 54 cell parameters. Plots are pre-gated on live cells or lymphocytes

(as indicated) after removal of doublets. Four antibody FACS panels were used

covering T cells (A,B), B cells (C), and myeloid/NK cells (D). Cell populations are

named on final gate. Markers used to define each gate are indicated. Arrows

between plots indicate sub-gating.

Supplementary Figure 2 | Correlation between values derived from 3 different

transitional gating strategies (see section Methods). Scatter plots show the

correlation between the frequency of transitional B cell populations in all analyzed

patients and controls, as defined by either CD38+/CD24+ B cells (“Trans-b”) as

the independent variable, in comparison to CD38+/CD10+ B cells (“Trans-a”) or

CD38+/IgM-hi B cells (“Trans-c”).

Supplementary Figure 3 | T cell memory subpopulation gating demonstrating

CD45RA over-expression in an individual bearing the variant PTPRC G77 allele

(bottom) compared to an individual with the wild type allele (top). Gating on CD4

(left) or CD8T cells (right).

Supplementary Figure 4 | Coefficients of Variation (CV) for all 54 FCM

parameters. Values above 30% were considered to show significant imprecision

and are shaded.

Supplementary Table 1 | Details of the PID patients in the four cohorts analyzed

in the cited figures.

Supplementary Table 2 | Reagents used for staining cells for flow cytometry, for

the four separate panels.

Supplementary Table 3 | Raw percentages and derived centiles for each of the

FCM parameters from subjects whose corresponding heatmaps are presented in

Figures 4–6 (Cent. = centiles).
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