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Background: Haiti introduced a monovalent human group A rotavirus (RVA) vaccine (Rotarix) into its routine 

infant immunization program in April 2014. The goal of the surveillance program was to characterize RVA strains 

circulating in Haiti before and after RVA vaccine introduction. 

Methods: Stool samples were collected from children < 5 years old presenting with acute gastroenteritis at 16 

hospitals in Haiti. RVA antigen enzyme immunoassay (EIA) testing was performed, and G and P genotypes were 

determined for positive specimens. In this study, genotype data for samples collected from May 2012 through 

April 2014 (the pre-vaccine introduction era) and May 2014 through July 2019 (post-vaccine introduction era) 

were analyzed. 

Results: A total of 809 specimens were tested by the Centers for Disease Control and Prevention. During the pre- 

vaccine introduction era (May 2012 through April 2014), G12P[8] was the predominant genotype, detected in 

88–94% of specimens. There was a high prevalence of the equine-like G3P[8] genotype among Haitian children 

with RVA after vaccine introduction. 

Conclusions: The predominance of equine-like G3P[8] in three of five RVA seasons post-vaccine introduction 

suggests possible vaccine-specific selection pressure in Haiti. These temporal variations in RVA genotype pre- 

dominance will require continued monitoring in Haiti as the vaccination program continues. 
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. Introduction 

Group A rotaviruses (RVA) are a major cause of diarrhea and death

mong children under five globally ( Aliabadi et al., 2019 ). In 2016,

here were an estimated 128 500 deaths by RVA worldwide, of which

ost occurred in developing countries ( Troeger et al., 2018 ). In addi-

ion, nearly 40% of hospitalizations for severe diarrhea are due to RVA

 MMWR, n.d. ). 

RVA belong to the Reoviridae family. They possess a triple-layered

cosahedral capsid enclosing a genome of 11 segments of double-

tranded RNA encoding six structural and five or six non-structural
✩ Disclaimer: The findings and conclusions in this report are those of the author(s) 

ontrol and Prevention. Names of specific vendors, manufacturers, or products are in
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roteins ( Esona and Gautam, 2015 ; Estes and Greenberg, 2013 ). The

uter capsid proteins VP7 and VP4 define the G and P genotypes, re-

pectively ( Crawford et al., 2017 ). Currently, RVA are classified into 36

 and 51 P genotypes (Rotavirus Classification Working Group (RCWG),

ttps://rega.kuleuven.be/cev/viralmetagenomics/virus-classification ), 

nd although a large number of G/P genotype combinations have

een reported, the RVA genotypes G1P[8], G2P[4], G3P[8], G4P[8],

9P[8], and G12P[8] together are responsible for an estimated 90–

5% of all RVA infections worldwide ( Bányai et al., 2012 ; Esona and

autam, 2015 ). 
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Table 1 

Distribution of specimens collected by site during the pre-vaccination period 

(May 2012 to April 2014). 

Site name Frequency Percentage 

Hôpital Foyer Saint Camille (HFSC) 601 37.45 

Hôpital de la Paix in Port-au-Prince (HUP) 376 23.43 

Hôpital Saint Michel in Jacmel (SMJ) 210 13.08 

Hôpital Saint Nicolas in St Marc (HSN) 418 26.04 

Total 1605 100 
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Table 2 

Distribution of specimens collected by site during the post-vaccination period 

(May 2014 to July 2019). 

Site name Frequency Percentage 

Centre a Lit de Béthel (CAL) 30 0.54 

Centre Médico-Social de Ouanaminthe (CMSO) 5 0.09 

Hôpital Communautaire de Référence Trou du Nord 3 0.05 

Hôpital Foyer Saint Camille 895 16.07 

Haitian Health Foundation in Jeremie (HHF) 7 0.13 

Hôpital Universitaire de la Paix in Port-au-Prince (HUP) 745 13.38 

Hôpital de l’Université d’Etat d’Haiti 445 7.99 

Hôpital Immaculée Conception de Port de Paix (HICP) 36 0.65 

Hôpital Immaculée Conception des Cayes (HICC) 55 0.99 

Hôpital la Providence des Gonaives (HPG) 109 1.96 

Hôpital Saint Antoine de Jeremie (HSA) 46 0.83 

Hôpital Saint Damien (HSD) 1508 27.08 

Hôpital Saint Michel de Jacmel (SMJ) 589 10.58 

Hôpital Saint Nicolas de St Marc (HSN) 896 16.09 

Hôpital Sainte Thérèse de Hinche 19 0.34 

Hôpital Universitaire de Mirebalais (HUM) 57 1.02 

Hôpital Universitaire Justinien (HUJ) 123 2.21 

Total 5568 100.00 
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Monovalent Rotarix (GlaxoSmithKline, Rixensart, Belgium) and Ro-

aTeq (Merck & Co., West Point, PA, USA) RVA vaccines have been

pproved and licensed in many countries. More recently, two addi-

ional vaccines, Rotavac (Bharat Biotech, Hyderabad, India) and Ro-

asil (Serum Institute of India, Pune, India) have been prequalified by

he World Health Organization (WHO) for global use ( Kirkwood and

teele, 2018 ). The introduction of RVA vaccines has been accompanied

lobally by a 59% reduction in hospitalization and emergency room

isits for confirmed RVA cases and a 36% reduction in mortality due to

astroenteritis in children under 5 years of age ( Burnett et al., 2020 ). 

In Haiti, data from the 2010–2012 RVA seasons showed that acute

iarrhea accounted for 26% of hospitalizations in children under 5 years

nd 13% of hospital deaths ( Vinekar et al., 2015 ). Prior to vaccine in-

roduction, G1P[8] was the predominant genotype circulating in Haiti,

ollowed by G9P[8] ( Esona et al., 2015 ). In April 2014, the Ministry of

ealth introduced the monovalent vaccine, Rotarix, which is an attenu-

ted human G1P[8] RVA strain ( Esona et al., 2015 ; Ward et al., 2008 ).

nusual RVA strains, such as the equine-like G3P[8], have been re-

orted from the neighboring Dominican Republic, and these strains have

een found to undergo genetic reassortment with locally circulating

VA strains of other genotypes ( Katz et al., 2019 ). Studies have shown

hat RVA genotypes may change following the introduction of vaccines

 Matthijnssens et al., 2009 ). It is known that as RVA are segmented

iruses, they frequently undergo genetic changes through reassortment,

ut so far there is uncertainty about the link between genotype changes

nd vaccination, since RVA, by their nature as RNA viruses, have high

utagenic potential. ( Desselberger, 2014 ). The consequences of these

utations on vaccine effectiveness are not yet established ( Cates et al.,

021a ). The objective of this study was to assess the impact of RVA

accine introduction on the genotype distribution in Haiti, perform ad-

itional characterization of RVA strains detected, and look for vaccine

trains in surveillance samples. 

. Materials and methods 

.1. Study design, specimen handling and transport 

The enhanced laboratory-based surveillance system – PRESEpi – has

een described previously ( Lucien et al., 2015 ; Juin et al., 2017 ). In

rief, it is an ongoing active surveillance system in which children < 5

ears old with acute gastroenteritis (AGE) are recruited from sentinel

ospitals in Haiti. PRESEpi started with four hospitals, but had increased

o 17 hospitals by the end of the study period in 2019 ( Figure 1 ). This

nalysis includes data collected from May 2012 through April 2014 (pre-

accination period, Table 1 ) and May 2014 through July 2019 (post-

accination period, Table 2 ). 

After obtaining informed consent from the parent(s) or adult

uardian, a single diarrheal stool sample was collected from each en-

olled child. The specimens were stored at the sites at 4°C until they

ere transported on ice packs to the National Public Health laboratory

n Port-au-Prince, Haiti. All diarrheal stool specimens were screened for

VA antigen using the Rotaclone enzyme immunoassay (EIA) kit (Pre-

ier Rotaclone; Meridian Diagnostics, Cincinnati, OH, USA), according

o the manufacturer’s instructions. This testing was done at the National

aboratory of Public Health in Haiti. RVA-positive stool specimens were
147 
hipped on dry ice to the US Centers for Disease Control and Prevention

CDC), Atlanta, GA, USA for genotyping and sequencing analysis. 

.2. Stool processing and nucleic acid extraction 

A 10% stool suspension was prepared for each sample using

hosphate-buffered saline, and RNA was extracted from the suspension

sing the MagNA Pure Compact RNA extraction kit on the MagNA Pure

ompact instrument (Roche Applied Science, Indianapolis, IN, USA) fol-

owing the manufacturer’s instructions. Prior to each of the above ex-

raction procedures, 2 μl of 10 9 U/μl of MS2 bacteriophage RNA (Zep-

oMetrix, Buffalo, NY, USA) were spiked into a 98 μl volume of 10%

tool suspension to serve as an internal process control. 

.3. Real-time reverse transcription PCR detection of wild-type RVA 

NSP3), equine-like G3 (VP7), and RVA vaccine strains (RV5 and RV1) 

Viral RNA extract from each sample was tested by NSP3 ( Mijatovic-

ustempasic et al., 2013 ) and VP7 equine-like G3 ( Katz et al., 2021 )

uantitative reverse transcription PCR (qRT-PCR) assays. RV5 and RV1

RT-PCR assays ( Gautam et al., 2016 ) were used to screen for RVA vac-

ine strains. 

.4. VP7 and VP4 genotyping and sequencing 

Genotyping was performed using reverse transcription PCR (RT-

CR) to determine the G and P genotypes. VP7 and VP4 genotyping

T-PCR was performed using a conventional multiplexed one-step am-

lification process with slight modifications ( Esona et al., 2015 ). In brief,

he genotype G2 (G2-R4), G4 (G4-R2), and G9 (G9-R2) specific primers

ere replaced with updated versions: G2-R1 (TAT GTA GTC CAT YGT

TT AGT), G4-R1 (GAG CAT TCG MTA ATA MTG ATA ATA C), and

9-R3 (CAG AGT ATY YTT CCA TTC HGT ATC TCC) ( Esona et al.,

021 ). The VP7 and VP4 conventional multiplexed one-step RT-PCR

enotyping product was electrophoresis on 3% agarose gel containing

elRed (Biotium, Heyward, CA, USA) for 2–3 h at 100 V, and the prod-

cts were detected under UV transillumination or were analyzed on the

abChip GX instrument (Caliper Life Sciences, Hopkinton, MA, USA) us-

ng the HT DNA 5K reagent kit (Dual Protocol DNA Analysis and Quan-

itation) with the HT Extended Range LabChip (Caliper Life Sciences),

s described previously ( Esona et al., 2015 ). 

For VP7 and VP4 genotype confirmation, nucleotide sequencing of

ll samples that were assigned a G and P genotype was performed using

reviously published consensus primer pair 9Con1-L/VP7R or VP7Rdeg

or VP7 ( Esona et al., 2009 ; Das et al., 1994 ; Hull et al., 2011 ) and
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Figure 1. Distribution of sites involved in the surveillance project in Haiti in 2019. 
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on3/con2 for VP4 ( Gentsch et al., 1992 ). Analysis of RT-PCR reactions

y gel electrophoresis, amplicon purification, and DNA sequencing was

onducted as described previously ( Hull et al., 2011 ; Esona et al., 2009 ).

orward and reverse sequences were assembled using Sequencer soft-

are version 4.8 (Gene Codes Corporation, Inc., Ann Arbor, MI, USA).

he consensus sequences obtained were compared with existing RVA

equences in the GenBank database using the BLASTN program at the

ational Center for Biotechnology Information website (available at:

ttp://www.ncbi.nlm.gov/BLAST/ ). 

. Results 

A total of 1605 stool specimens were collected during the pre-

accination period ( Table 1 ), while 5568 stool specimens were collected

uring the post-vaccination period ( Table 2 ). Of the 7173 stool speci-

ens collected, 6257 (87.2%) were screened for RVA antigen, of which

80 (15.7%) tested positive for RVA antigen. Of these 980 RVA antigen-

ositive specimens, 809 (82.6%) were shipped and tested at CDC; 171

pecimens had insufficient volume and were not shipped. 

.1. qRT-PCR and RT-PCR data 

All 809 RVA antigen-positive samples tested at the CDC contained

mplifiable RVA RNA by NSP3 qRT-PCR, and the VP7 equine-like G3

RT-PCR assay was able to detect equine-like G3 in 387 (48%) sam-

les that were confirmed by Sanger sequencing. Thus, VP7 (G) and

P4 (P) genotypes were assigned to all 809 RVA-positive samples.

quine-like G3P[8] represented the predominant genotype (48%) cir-

ulating in Haiti during the study period, followed by G12P[8] (21%),

1P[8] (13.4%), G3P[6] (8.2%), and G12P[6] (4.3%). Other uncommon

enotypes such as G4P[6], G3P[8] (non-equine-like G3P[8]), G9P[8],

2P[4], and mixed (G9G4P[8], G3G12P[6]P[8], G3G2P[8]/P[4]) were

ound circulating at low levels ( ≤ 1%). Twenty-two samples (3%) could
148 
ot be assigned both G and P type (non-typeable samples) ( Table 3 ,

igure 2 ). The genotype distribution differed according to the vaccina-

ion period. 

.2. Genotype distribution during the pre-vaccination period (May 2012 to 

pril 2014) 

From May 2012 to April 2014, 147 specimens were genotyped and

onfirmed by Sanger sequencing. The most frequent G genotypes were

s follows (in order of frequency): G12 ( n = 135, 91.8%) specimens, G1

 n = 4, 2.0%), and non-equine-like G3 ( n = 5, 3.5%). The most com-

on P genotypes were P[8] ( n = 140, 95.2%) and P[6] ( n = 5, 3.4%).

he predominant G and P combination was G12P[8] ( n = 135, 91.4%),

ollowed by G1P[8] ( n = 3, 2.0%) and G3P[6] ( n = 3, 2.0%); G12P[6]

nd non-equine-like G3P[8] had two specimens each (1.4%). In the two

re-vaccine years analyzed, there was an overwhelming predominance

f the same genotype, G12P[8], at 88.3% in 2012–2013 and 94.3% in

013–2014 ( Table 3 , Figure 2 ). 

.3. Genotype distribution during the post-vaccination period (May 2014 

o July 2019) 

From May 2014 to July 2019, 662 RVA-positive specimens were

enotyped and confirmed by Sanger sequencing. The most frequent G

enotypes were as follows: G3 ( n = 454, 68.6%), G1 ( n = 105, 15.9%),

nd G12 ( n = 68, 10.3%). The most prevalent P genotypes were P[8]

 n = 531, 80.2%) and P[6] ( n = 104, 15.7%). The most frequent G

nd P combinations were equine-like G3P[8] ( n = 387, 58.5%), G1P[8]

 n = 105, 15.9%), and G12P[8] ( n = 35, 5.3%). During the 2014–

015 vaccination period there was a predominance of G3P[6] ( n = 58,

6.9%) and a decline in G12P[8] ( n = 30, 29.4%) by comparison with

he pre-vaccine period. The equine-like G3P[8] genotype dramatically

merged in 2015–2016 ( n = 227, 94.6%) and dominated in both the

http://www.ncbi.nlm.gov/BLAST/
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Table 3 

Overall distribution of rotavirus G and P types detected in Haitian children between 2012 and 2019. RVA seasons 2012–2013 and 2013–2014 are 

the pre-vaccination periods; seasons 2014–2015 through 2018–2019 are the post-vaccination periods. 

2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 Totals 

G3P[8] ∗ 0 0 0 227 9 82 69 387 (48%) 

G12P[8] 53 82 30 4 1 0 0 170 (21%) 

G1P[8] 2 1 6 2 68 25 4 108 (13.4%) 

G3P[6] 0 3 58 4 1 0 0 66 (8.2%) 

G12P[6] 2 0 2 0 0 0 31 35 (4.3%) 

G4P[6] 0 0 2 0 0 3 3 8 (1%) 

G3P[8] 1 1 3 1 0 0 0 6 ( < 1%) 

G9P[8] 2 0 0 0 0 0 0 2 ( < 1%) 

G2P[4] 0 0 0 0 0 1 0 1 ( < 1%) 

GNTP[NT] 0 0 0 1 0 9 12 22 (3%) 

Mixed 0 0 1 1 0 1 1 4 ( < 1%) 

Total 60 (7%) 87 (10.8%) 102 (12.6%) 240 (29.7%) 79 (9.8%) 121 (15%) 120 (15%) 809 (100%) 

∗ Equine-like G3 strains. 

Figure 2. Genotype prevalence by season. Mixed genotypes included G3G2P[4]/[8], G12G3P[6]/[8], G4G9P[8], and G12P[6]/[8]. The pre- and post-vaccination 

periods are indicated above the chart. 
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017–2018 ( n = 82, 67.8%) and 2018–2019 ( n = 69, 57.5%) seasons.

enotype G1P[8] dominated in 2016–2017 ( n = 68, 86.1%) and equine-

ike G3P[8] receded to 11.4% ( n = 9) ( Table 3 , Figure 2 ). Vaccine strains

ere not detected in any specimens. 

. Discussion 

This study is novel in providing a detailed report of RVA geno-

ype data from Haiti. In this study, it was found that the most frequent

enotype in the pre-vaccine introduction period was G12P[8] and that

quine-like G3P[8] strains dominated in most of the years following

accine introduction. 

The G12 genotype remained the predominant genotype for the

 years (2012–2014) of the pre-vaccination period at a percentage of

ore than 90%, and after that it dropped drastically. In some coun-

ries, the emergence of G12 followed the introduction of RVA vac-

ine, whereas in other countries, G12 pre-existed the introduction of

VA vaccine ( Lartey et al., 2018 ; Steele et al., 2012 ). Regarding the

uropean countries, the predominant genotype in England during the

re-vaccine period (2006–2013) was G1P[8] at 55%, and after the in-

roduction of Rotarix, the predominant genotype was G2P[4] at 26%

 Hungerford et al., 2019 ). In Brazil, a study conducted during the post-

accine period shown that G3P[8] was the most prevalent genotype dur-
149 
ng the 2-year period 2018–2019, and sequencing some of the strains

roved that they were equine-like G3P[8] genotype ( Gutierrez et al.,

020 ). In the United States, there was a predominance of G1P[8] from

996 to 2005 before the vaccine introduction, but after introduction

f Rotarix and RotaTeq vaccines, G1P[8] was replaced first by G3P[8]

nd then by G12P[8] ( Esona et al., 2021 ). In Australia, during the pre-

accine period (1995–2006), the predominant genotype was G1P[8],

ut after vaccine introduction there was a replacement of the geno-

ype with G12P[8] in locations using RotaTeq, and equine-like G3P[8]

nd G2P[4] in those using Rotarix ( Roczo-Farkas et al., n.d. ). G12 is

 genotype that was discovered in 1987 in the Philippines in children

 Taniguchi et al., 1990 ), subsequently spreading across Asia and the

orld ( Rahman et al., 2007 ). Rotarix demonstrated efficacy against G12

51.5%) in a study conducted in South Africa and Malawi ( Steele et al.,

012 ); in the USA, Rotarix vaccine effectiveness against G12P[8] was

2% ( Payne et al., 2015 ). 

During the post-vaccination period in the present study, there was

 shift to equine-like G3P[8] predominance, with the dramatic appear-

nce of equine-like G3P[8] in 2015–2016 accompanied by a surge in

VA activity in Haiti. Equine-like strains have been identified in many

ther countries ( Tacharoenmuang et al., 2020 ; Perkins et al., 2017 ;

tsumi et al., 2018 ; Kikuchi et al., 2018 ). Nevertheless, the importance

f equine-like G3 strains seems to vary both between countries and in-
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ide the same country. Between periods: in Australia, for example, it

epresented 37% of positive fecal samples in 2013 and 14.4% in 2014

 Cowley et al., 2016 ). In other countries, like the Dominican Republic,

he introduction of monovalent rotavirus vaccine was followed by the

mergence and predominance of equine-like strains ( Katz et al., 2019 ).

t was observed that in areas where monovalent rotavirus vaccine was

sed, there was a predominance of equine-like G3P[8] and G2P[4],

hereas in locations where RotaTeq vaccine was used, there was a pre-

ominance of G12P[8]. Hence this suggests that the type of vaccine used

an have a different impact on strain circulation ( Roczo-Farkas et al.,

.d. ). The impact of vaccination on these equine-like strains needs to

e monitored and studied ( Cates et al., 2021b ). The change in geno-

ype predominance between the pre- and post-vaccination period could

otentially be related to vaccine introduction. In Haiti, the vaccine ef-

ectiveness estimate for Rotarix against this genotype was 64% and was

omparable to the vaccine effectiveness against other genotypes in the

ountry ( Burnett et al., 2021 ). 

The P[8] genotype was the most frequent both in the pre-vaccination

nd post-vaccination periods. This ties in with its determining role in the

tiology of numerous RVA infections in several countries ( Aydin and

kta ş , 2017 ). It is also interesting to note that G1P[8] did not constitute

 major genotype in the present study and dominated only in 2016–

017. Historically, G1P[8] has been the most frequent genotype world-

ide before vaccine introduction ( Ward et al., 2008 ) and its prevalence

ypically decreases after the introduction of vaccines ( Kirkwood et al.,

011 ). In Haiti, the predominance of G1P[8] for a single season, 2016–

017, during the post-vaccination period does not follow this trend, and

ts short-term predominance during this period is difficult to explain, es-

ecially after the emergence of the equine-like G3P[8] genotype in the

receding season. 

In this study, the P[6] genotype was detected in 13.5% of the 809

VA-positive specimens. Except in Africa, where it has a higher preva-

ence, the P[6] genotype is generally absent in others areas of the world

 Todd et al., 2010 ). One explanation for this observation is that Lewis-

egative susceptibility is more common in that population and is asso-

iated with RVA P[6] susceptibility ( Sharma et al., 2020 ). In Haiti, most

f the population traces its origins to Africa, and perhaps this helps ex-

lain the high P[6] prevalence in the present study. It was also noted

hat the overall P[6] genotype prevalence during the pre-vaccination

eriod was 2%, while during the post-vaccination period it was 15%,

otentially indicating that vaccine selection pressure played a role in

his increase in P[6] genotype detection. 

The fluctuation in RVA genotypes is a known phenomenon and is

bserved sometimes in countries before and after vaccine introduction.

owever, to date, there is no clear relationship between vaccine in-

roduction and genotype fluctuation, because this type of fluctuation

as been observed during the pre-vaccine periods ( Buesa and Martínez-

osta, 2014 ). 

Despite the excellent data obtained in this study, limitations are as

ollows: (1) more sites participated and more patients were enrolled dur-

ng the post-vaccine period compared to the pre-vaccine period, which

ay have affected the interpretation of the genotype distribution; (2)

o transition window was observed between the pre-vaccine and post-

accine periods. This transition period must also be correlated with the

accination coverage, which can have an impact on the circulation of

otavirus strains. 

In conclusion, this study highlights that there was genotype fluctua-

ion between the pre-vaccine period (May 2012 to April 2014) and the

ost-vaccine period (May 2014 to July 2019) in Haiti. A high preva-

ence of the equine-like G3P[8] genotype was observed among Haitian

hildren with RVA after vaccine introduction. Further, the study re-

ealed that the strains that are circulating in Haiti are generally reported

s vaccine-sensitive. Therefore, it is important to continue to conduct

pidemiological surveillance to help identify new genotypes that could

merge and continue to monitor genetic diversity. 
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