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Purpose: To develop and evaluate a new automatic classification algorithm to identify voxels con-
taining skin, vasculature, adipose, and fibroglandular tissue in dedicated breast CT images.
Methods: The proposed algorithm combines intensity- and region-based segmentation methods with
energy minimizing splines and unsupervised data mining approaches for classifying and segmenting
the different tissue types. Breast skin segmentation is achieved by a region-growing method which
uses constraints from the previously extracted skin centerline to add robustness to the model and to
reduce the false positive rate. An energy minimizing active contour model is then used to classify adi-
pose tissue voxels by including gradient flow and region-based features. Finally, blood vessels are
separated from fibroglandular tissue by a k-means clustering algorithm based on automatically
extracted shape-based features. To evaluate the accuracy of the algorithm, two sets of 15 different
patient breast CT scans, each acquired with different breast CT systems and acquisition settings were
obtained. Three slices from each scan were manually segmented under the supervision of an experi-
enced breast radiologist and considered the gold standard. Comparisons with manual segmentation
were quantified using five similarity metrics: Dice similarity coefficient (DSC), sensitivity, confor-
mity coefficient, and two Hausdorff distance measures. To evaluate the robustness to image noise,
the segmentation was repeated after separately adding Gaussian noise with increasing standard devia-
tion (in four steps, from 0.01 to 0.04) to an additional 15 slices from the first dataset. In addition, to
evaluate vasculature classification, three different pre- and postcontrast injection patient breast CT
images were classified and compared. Finally, DSC was also used for quantitative comparisons with
previously proposed approaches for breast CT tissue classification using 10 images from the first
dataset.
Results: The algorithm showed a high accuracy in classifying the different tissue types for both
breast CT systems, with an average DSC of 95% and 90% for the first and second image dataset,
respectively. Furthermore, it demonstrated to be robust to image noise with a robustness to image
noise of 85%, 83%, 79%, and 71% for the images corrupted with the four increasing noise levels.
Previous methods for breast tissues classification resulted, for the tested dataset, in an average global
DSC of 87%, while our approach resulted in a global average DSC of 94.5%.
Conclusions: The proposed algorithm resulted in accurate and robust breast tissue classification,
with no prior training or threshold setting. Potential applications include breast density quantification
and tissue pattern characterization (both biomarkers of cancer development), simulation-based radia-
tion dose analysis, and patient data-based phantom design, which could be used for further breast
imaging research. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on
behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.12920]
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1. INTRODUCTION

Dedicated breast computed tomography (breast CT) is a
recent imaging modality that can provide real three-
dimensional (3D) images of the breast with high spatial and
contrast resolution. Although conventional computed tomog-
raphy has been extensively utilized in clinical studies, it is
not optimized for breast imaging, and is hardly ever used for
this purpose.1 Dedicated breast CT, optimized for the special
contrast, spatial resolution and tissue coverage requirements
of breast imaging, might bring the advantages from CT as
seen in body imaging to breast imaging.2 Compared to mam-
mography and digital breast tomosynthesis, breast CT, beside
completely avoiding tissue superimposition, has the addi-
tional advantage of imaging the breast without the need for
compression, increasing patient comfort.

Given the full 3D nature of dedicated breast CT and there-
fore the possibility to isotropically image the entire organ,
complete breast tissue characterization can be achieved and
several biomarkers for cancer development may be evalu-
ated.3 For instance, breast density is a relevant breast cancer
risk factor.4 In addition, staging of known breast cancer may
be improved by automatically assessing changes in the nor-
mal structures. For example, breast lymphoma and inflamma-
tory breast cancer (as well as certain types of metastases)
may show skin thickening.5 Finally, literature reports a rela-
tionship between vascular maturation and breast cancer. In
neoplastic breasts, a remodeling of blood vessels may occur,
due to the proliferation of endothelial cells which is strictly
related to angiogenesis.6

Classification of breast tissue can therefore provide quanti-
tative assessments of breast tissue composition, density, and
distribution that can be used to evaluate the risk of breast can-
cer and guide therapy.7

Pike et al.8 proposed a minimum spanning forest-based
method for breast tissue classification, while the approach
followed by Nelson et al.9 for segmentation of breast CT
images is based on the image histogram. Yang et al.10 devel-
oped a classification algorithm for high-resolution breast CT
based on bilateral filtering able to segment skin, adipose, and
glandular tissue within the breast. Density-based breast clas-
sification has also been explored in mammography in an
effort to create a rating for breast tissue composition.11

Finally, in the work of Huang et al.,12 a radial-geometry edge
detection scheme to measure the breast skin thickness on
coronal reconstructed breast CT images was proposed.

In this study, for a complete breast characterization, we
focus on the classification of all major tissue types within the
breast, which include skin, fibroglandular tissue, adipose tis-
sue, and vasculature. The proposed fully automatic algorithm
combines intensity- and region-based segmentation methods
with energy minimizing splines and unsupervised data min-
ing approaches to classify the breast tissues with no prior
training or threshold setting.

In some previous approaches, region-based segmentation
(which we used to classify the voxels belonging to the skin)
was obtained via region-growing based on an intensity

threshold, with manually selected seeds.13 Others, to reduce
the number of mis-segmented voxels due to threshold setting,
propose growth-limiting criteria14 or, alternatively, dual
object and background competitive region-growing meth-
ods.15 These previous approaches assume voxels with similar
intensity levels belonging to the same region (a criterion that
could match well the initial conditions of their segmenta-
tions), while our segmentation scheme is aimed at avoiding
the inclusion of tissue structures adjacent to the inner skin
boundary that have similar HU values (e.g., blood vessels).
Therefore, for our application, a different approach was
needed to include distance-based constraints which can
reduce the number of false positives.

Regarding the energy minimization problem (used to
separate the adipose from fibroglandular tissue and vascula-
ture), many implementations of energy minimizing active
contours have been proposed in literature. Broadly, they can
be divided into two main classes: edge-based techniques
and region-based approaches. Among the edge-based tech-
niques, which mostly rely on the intensity of image edges
to guide the evolution of the contour,16 two well-known
models are geo-cuts and geodesic active contours. The for-
mer are usually able to provide a globally optimal solution
in low-order polynomial time, but the accuracy of the seg-
mentation is often strongly dependent on constraints and
markers which have to be defined in advance.17 The latter,
based on the search of the minimal image geodesic energy,
do not require any markers, but are very sensitive to image
local minima, i.e., they could converge even if the global
optimal solution is not reached.18 So as to overcome this
problem, the evolution equation can be modified in order
to jump over shallow local minima (e.g., by adding balloon
forces), but this often results in additional user-selectable
parameters.19 Region-based active contours can be broadly
divided into two main groups: active contours without
edges (mostly based on Chan-Vese model) and localizing
region-based active contours. The former use an evolving
curve to separate the image domain in two regions with
smooth boundaries and minimal intraclass variance.20 In
their original form, in each region, a constant gray-value is
supposed to approximate the image, and they usually
include weights to overcome large differences in intensity
within the same region.20 To improve these models (which
depend on a few assumptions), localizing region-based
active contours have been developed. The idea is to restrict
the region energy computation to a small neighborhood of
contour points using a characteristic function.21 This allows
for a better evaluation of the image in different spatial posi-
tions, although localization often leads to higher sensitivity
to initialization.21 In this work, we implemented a different
energy minimizing contour model matching both edges and
region-based image features.

The effectiveness of the whole algorithm we propose
comes from its ability to effectively incorporate different
image analysis techniques, each suitable for classification of
a different tissue type. Furthermore, the incorporation of
breast blood vessels segmentation, which has not been
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previously proposed in literature, adds accuracy to the algo-
rithm. The robustness and performance of the proposed algo-
rithm were demonstrated with real patient data.

The possibility to image the entire organ in three dimen-
sions with high resolution using dedicated breast CT could
provide further insight regarding organ composition in terms
of tissue types. Moreover, the possibility to automatically
segment these tissues may allow researchers to fulfill several
goals which would not be achievable without the full third
dimension and without tissue classification. As stated above,
correlation between certain tissue patterns and cancer devel-
opment could be searched so as to provide more accurate
results compared to the studies already published in literature
(which, to our knowledge, have been mainly conducted on
mammography4,5). Furthermore, tissue classification could
be very important to accurately assess radiation dose guideli-
nes, since patterns and quantification of fibroglandular tissue
from real patient data could be evaluated through radiation-
based simulation software tools.

2. MATERIALS AND METHODS

2.A. Equipment and image acquisition

Patient images were acquired with two different breast CT
systems. The first patient dataset was acquired with a breast
CT system22–24 (Koning Corp., West Henrietta, NY, USA)
installed at Radboud University Medical Center. The x-ray
tube with a tungsten target and aluminum filter was set to a
voltage of 49 kV, resulting in an x-ray spectrum with a first
half value layer of 1.39 mm Al with a 0.3 mm nominal focal
spot. The detector was 397 mm 9 298 mm (4030CB, Var-
ian Medical Systems, Palo Alto, CA, USA), resulting in a
reconstructed voxel size of 273 lm (the reconstruction
algorithm used was Filtered Back Projection). The source-to-
imager distance of the breast CT system was 92.3 cm, while
the source-to-isocenter distance was 65 cm.

Images were acquired with the x-ray tube operating in
pulsed mode, with a constant 8 ms pulse, and the tube cur-
rent for each patient breast automatically set by prior acquisi-
tion of two scout images normal to each other (16 mA, 2
pulses of 8 ms each per projection). According to the signal
level inside the two breast scouts, a tube current between 12
and 100 mA was selected for acquisition of the breast CT
scan. A complete breast CT scan involved the acquisition of
300 projections over a full 360° revolution of the x-ray tube
and detector in 10 s. The dose varied for each patient breast,
with the average value for a breast of mean size and composi-
tion being 17 mGy.24

The second system used for patient image acquisition is a
third-generation dedicated breast CT prototype25 installed at
University of California, Davis (USA). The gantry design
includes a pulsed x-ray tube (M-1500, Varian Medical Sys-
tems, Salt Lake City, UT, USA) set to a voltage of 60 kV
(nominal focal spot size of 0.3 mm) with an added 0.2 mm
Cu filter, resulting in a first half value layer of 1.5 mm Al.
The system uses a flat-panel detector which features a

0.45 mm thick thallium-activated structured cesium iodide
(CsI:Tl) scintillator coupled to complementary metal oxide
semiconductor (CMOS) active detector elements sensors
(DEXELA 2923MAM, Perkin Elmer, Santa Clara, CA,
USA). The detector provides an active field of view of
290 mm 9 230 mm. The voxel size is not fixed and can vary
from (0.194–0.407)2 9 0.210 mm while the reconstruction
algorithms consist of a variation in the Feldkamp algorithm.26

Images from this system are acquired with a tube current of
240 mA and a constant 10.8 ms pulse is used. A complete
breast CT scan was composed of 285 projections, and the
average dose was approximately 5 mGy.

All images were acquired by trained radiographers, as part
of other ethics board-approved patient trials on dedicated
breast CT, and all subjects provided written informed con-
sent.

2.B. Classification algorithm

The algorithm is composed of the following steps: an
intensity and distance-based segmentation method for breast
skin detection; energy minimizing splines for adipose tissue
segmentation; an unsupervised pattern recognition approach
to classify the remaining tissue types into fibroglandular tis-
sue and vasculature. The entire pipeline of the algorithm in
shown in Fig. 1. The algorithm works in a slice-by-slice man-
ner, subsequently considering one tissue type at a time. After
evaluating all slices, a continuity criterion to refine blood ves-
sel classification is applied as a postprocessing step. The
images were processed using a 2.4 GHz CPU, 12 GB RAM
workstation.

2.B.1. Breast skin segmentation

The first step of the algorithm is to automatically detect
and classify the skin of the breast. For this, first the outer
edge of the skin is identified using a Sobel gradient. Second,
the centerline of the skin is detected. Several methods for cen-
terline extraction have been previously proposed.27–29 The
algorithm developed in this work is partly based on the inten-
sity of Height Ridge Transversal and multiscale extraction.30

The centerline algorithm starts with the search of candi-
date points, named seeds, belonging to the external edge of
the skin. The eight-connected neighborhood of each seed
point is taken into account and the search of the ridge is per-
formed along the line that joins the seed point and the maxi-
mum intensity voxel in the neighborhood. If the intensity
difference between the maximum intensity voxel of the
neighborhood and the seed point is higher than 0, the direc-
tion is saved for the following iteration, otherwise the seed
point is defined as a one-dimensional (1D) maximum candi-
date and the search ends. This operation allows to get closer
to the ridge (i.e., the central part of the skin, where the HU
values are usually higher). Moreover, performing this search
along a line (i.e., in one dimension) reduces the computa-
tional time considerably. All the 1D maximum voxels are
required to meet two criteria in order to be considered ridge
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points, i.e., part of the centerline. Since the algorithm is
specifically designed to search maximum convexity height
ridges, the basis directions normal to a ridge are defined
using eigenvalues and eigenvectors of the Hessian matrix of
the image. Hessian eigenvalues (k1, k2) and associated
eigenvectors (v~1, v~2) are sorted so that:

k1ði;jÞ

��� ���O k2 i;jð Þ

��� ��� (1)

where (i, j) are the coordinates of a given voxel (row and
column) on the considered reconstructed slice.

In particular, a point is labeled as a 1D ridge of a
two-dimensional (2D) surface if:

1. N-1 of the eigenvectors of the Hessian matrix of the
image have negative eigenvalues. This condition is
tested by ordering the eigenvalues and verifying that

k1ði;jÞ\0 (2)

2. The point belongs to an (N-1)-dimensional extreme,
i.e., the projection of the image gradient ∇I at the con-
sidered point onto the N-1 directions normal to the
ridge is equal to zero:

v~1 � rI ¼ 0 (3)

In practice, this condition is met if the previous equation is
lower than a given threshold (tolerance-to-zero threshold),
which we set to 10�6.

After all the ridge points are detected, an intensity-based
search of the centerline is performed. Starting from the first

ridge point, the maximum intensity voxel in its eight-con-
nected neighborhood is labeled as the first voxel of the cen-
terline and defines the forward path of search. From this new
voxel, another maximum intensity voxel is identified in its
neighborhood and the process is iteratively repeated along
the forward path. In each step of this search, some positions
of the eight-connected neighborhood are forbidden according
to the previous iteration (see Fig. 2 for details). This process
is needed so as not to allow the centerline to deviate from its
central path in case of high discontinuities in voxel HU. The
search of the forward path ends when all starting ridge points
are evaluated. When the forward path of search ends, the
search is repeated, starting from the first voxel opposite of
the first point found near to the considered ridge point. The
search continues in the opposite direction, along the back-
ward path of search, following the same criteria of the for-
ward path of search and ending when all ridge points are
linked together (Fig. 3).

After the complete centerline is extracted, a region-
growing algorithm based on double thresholding is used to
segment the skin. Here, the two thresholds are given by the
average values of the voxels of the external edge (the lowest
threshold) and of the computed centerline (the highest thresh-
old), which also defines the set of seeds for the region grow-
ing. Moreover, the highest distance (d) between the external
edge and the centerline is calculated. Starting to grow the
region from the seeds, a voxel P is classified as breast skin if
its gray level lays between the two thresholds and if the clos-
est Euclidean distance between P and the centerline is shorter
than (or equal to) d. This latter criterion is very useful to
avoid the segmentation of other structures (such as fibroglan-
dular tissue or blood vessels) whose intensities are similar to
the skin and which can be adjacent to it. The region growing
stops when no further voxels fulfill the previously stated
criteria.

2.B.2. Adipose tissue segmentation

After the skin is segmented, an energy minimizing active
contour model is used to automatically identify blood vessels
and fibroglandular tissue (which will be temporarily included

FIG. 1. Schematic representation of the processing steps of the algorithm.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. 2D eight-connected kernels of the forbidden direction of search (in
gray) for the centerline algorithm. The vector of (x, y) positions indicates the
direction of search of the previous iteration.
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within the same class). Adipose tissue voxel classification is
then obtained by subtracting the result of the active contour
segmentation from the skin-free breast CT slice.

The contour is automatically initialized with a voxel
within the fibroglandular tissue. Although the contour does
not strictly depend on initialization (i.e., it could be initialized
either on fibroglandular tissue or on vasculature), automatic
initialization within fibroglandular tissue is easier to perform
due to its large size compared to blood vessels. In most cases,
the voxel with the maximum intensity in the image corre-
sponds to fibroglandular tissue. However, in some cases, cal-
cifications, metal clips, implants, or some artifact could have
higher HU voxel values. Thus, an approach based on the
image histogram was developed to initialize the active con-
tour. The image histogram is computed once the previously
segmented skin has been removed. Since the HU values for
fibroglandular tissue voxels differ considerably from those of
adipose tissue, the histogram shows a bimodal distribution. A
threshold is chosen by taking the minimum histogram value
from the valley that separates the two distributions to create a
binary mask. The choice of this threshold is as follows. After
excluding the background voxels, the image histogram is
smoothed using a moving average filter with a window size
of 9 (i.e., the number of points used to average the input his-
togram), and the two highest maxima (i.e., the ones of the
two distributions) are identified using morphological recon-
struction. After finding the maxima, the minimum is found
by taking the lowest value between these two maxima. The
binary mask obtained from this process is a very rough initial
partition of the image in two classes: one for the adipose

tissue (and a very few low-intensity blood vessels) and the
other which includes the fibroglandular tissue and the major-
ity of blood vessels. This partition cannot be considered accu-
rate (especially due to the HU variations of each tissue type);
therefore, it is only used to correctly initialize the active con-
tour, and not as a reliable tissue classification. Connected
components within the slice from the latter class are identi-
fied and their areas are calculated. Since blood vessels pre-
sent smaller areas on the binary mask compared to that of the
fibroglandular tissue, a voxel within the largest object is
selected and the active contour is initialized around that
voxel.

In this work, we propose a new energy minimizing active
contour model to segment the breast fibroglandular tissue
and blood vessels by including both region- and edge-based
information. The model for the segmentation framework
comes from Bayesian inference,31 that is, searching for the
contour shape that maximizes the posterior probability by
minimizing an energy function. The image energy of the pro-
posed model is derived from the image gradient feature,
which gives the active contour a global representation of the
geometric configuration (internal force), and it is driven by
the local variation in image intensity features (external force).

The energy function that has to be minimized is described
as follows:

E tð Þ ¼
Z
Xext

r sð Þ � kð Þ2dsþ @rint
@t

þ @�Iint
@t

� � Z
Xint

IðsÞ2ds

þ @�Iext
@t

� � Z
Xext

IðsÞ2dsþ
Z 1

0
rIðC sð ÞÞj j�1ds

(4)

At each iteration (t), several image parameters inside
(XintÞ, outside (XextÞ, and along the active contour (C) are
calculated as shown in Eq. (4). Each term is supposed to be
null (or at least reach its minimum value) when convergence
is reached. The combination of these terms is designed to be
robust to image noise and to easily avoid image local minima,
with no need to set any user-selectable parameters.

In detail, the variance inside the active contour (rint) tends
to stabilize after a sufficiently large number of iterations due
to the increase of the amount of pixels inside the contour.
Therefore, its first derivative tends to become null. The same
is true for both the mean intensity value inside (Iint) and
outside (Iext) the contour.

Using the first derivative instead of the primitive values
(mean and standard deviation) makes these contributions
parameter-free, since no weights are needed so as to take into
account intensity variations within the same region.

The image variance outside the contour, r(s), tends to
decrease at each iteration, but it does not always stabilize
(mostly due to image noise). Therefore, a constant value (k)
is subtracted from its contribution (given by its integral in the
outer domain). The parameter k is automatically computed
for each slice, and it gives an a priori estimation of the vari-
ance of the adipose tissue. To automatically calculate the
parameter k, the lowest intensity pixel interior to the skin

FIG. 3. Main steps of the centerline algorithm. (a) representation of initial
seed points; (b) identification of the 1D maximum candidates; (c) selection
of the ridge points; and (d) forward and backward path of search. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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(which has been already classified) is identified, and a 30-
iteration intensity-based region growing is performed starting
from that pixel. The membership criterion to the region is
based on two thresholds, both calculated from the image his-
togram previously computed during the active contour initial-
ization. Respectively, they are given by the 90% and 10% of
the minimum of the valley that separates the two histogram
distributions. Once the active contour discriminates the adi-
pose tissue from the other tissue types well, the difference
between r(s) and k tends to zero.

Finally, the inverse of the image gradient ( rIðC sð ÞÞj j�1),
calculated at each iteration along the active contour C and
which decreases as the contour gets closer to image edges,
drives the curve toward the object boundaries.

At each iteration, the contour model, whose path is
defined as a curve C sð Þ ¼ x sð Þ; y sð Þð Þ of the image domain,
is updated through the following equation:

Cðt þ 1Þ ¼ CðtÞ þ EðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dCðtÞ
dx

� �2

þ dCðtÞ
dy

� �2
s

(5)

and spatially expanded through the convolution with a eight-
connected Gaussian kernel with standard deviation equal to
0.5.

If, at a given iteration, the contour does not expand
anymore but the global energy is not yet null (this could
happen due to edge forces), it gets dilated and propa-
gated to close structures whose intensity is included in
the range [�Iint � rint]. This is useful to overcome local
minima convergence while still keeping edge information,
especially in the case of sparse fibroglandular tissue
where structures may not be always fully connected
within the same slice. This propagation is performed
repeatedly until the global energy becomes null (due to
discretization and image noise, we consider the energy to

be null if it becomes lower than 10�3). An example of
the active contour and its energy contributions are shown
in Figs. 4 and 5, respectively. When the contour reaches
the optimal solution, the resulting segmentation is sub-
tracted from the slice, resulting in only adipose tissue
remaining.

2.B.3. Vasculature and fibroglandular tissue
classification

At this point of the algorithm, two tissue types are yet
to be distinguished from each other and classified: blood
vessels and fibroglandular tissue. We applied a k-means
clustering algorithm32,33 for the classification of these
remaining tissues, after removing the already segmented
voxels.

The clustering algorithm proposed in this work is based
on intensity and geometrical features of each connected com-
ponent identified within a slice. To avoid misclassification
(due to the incorrect choice of the number of clusters) in
those slices where only one tissue type is present, the feature
extraction process and the subsequent cluster partition are
applied (in a slice-by-slice manner) to the entire 3D breast
CT image once the skin and the adipose tissue have been
excluded from each slice. In other words, classification (as
well as the feature extraction) is always performed slice-by-
slice, but the feature space is derived from all the slices of the
breast CT image.

Slice-by-slice, each remaining structure is labeled and four
features (from each connected component) are extracted:

• HU variance
• Circularity

C ¼ 4p � Area
Perimeterð Þ2 (6)

• Aspect Ratio:

AR ¼ minðdÞ
maxðdÞ
����

���� (7)

where d is the set of all possible distances between the center
of mass of the structure and its boundary.

• Number of boundary inflection points. A point along
the boundary of the structure is considered an inflection
point if:

DN
�! � DN�![ 1 (8)

where (see Fig. 6 for details):

DN
�! ¼ N~kþ1 � N~kþ1 (9)

N~k ¼ V~ � ðT~2 � T~1Þ � V~

k V~ � ðT~2 � T~1Þ � V~ k (10)FIG. 4. Active contour: (a) initialization; (b) after 70 iterations; (c) after 140
iterations; and (d) convergence. [Color figure can be viewed at wileyonlineli-
brary.com]
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From mathematics, in every inflection point, the second
derivative of a curve (in our case, the object boundary) is
equal to zero. Since, in image processing applications, an
approach based on the computation of second derivative of
an edge often leads to inaccuracy due to the fact that pixels
are not dimension-free,34 we adopted a more robust method
which computes the normal vectors in each point of the
edge.35 Across an ideal inflection point, the normal unit vec-
tor changes its direction by 180°. Therefore, the quantity DN

�!
becomes equal to 2, and the scalar product DN

�! � DN�! gives 4.
This could be false for edges of a real image, in which each
point is a pixel with finite dimensions. Therefore, in an
attempt to not miss any point in which the edge changes con-
cavity, we consider a boundary pixel an inflection point if the
dot product is greater than 1.

After extracting the features, the clustering algorithm is
applied and the dataset is divided into three classes: two for
recognizing blood vessels and one for recognizing the fibrog-
landular tissue.

The need for two classes for the vasculature is based on
the fact that blood vessels may appear, within one slice,
approximately either circular or tubular, while fibroglandu-
lar tissue tends to show a much more irregular profile. In
Table I typical qualitative values for these features are
shown.

Once the clusters are defined and the features from each
connected component of each slice are extracted, the k-means
is applied until convergence is reached, resulting in the classi-
fication of fibroglandular tissue and blood vessels. To avoid
the convergence in a local optimum, the process is repeated

20 times, each time with a different random initialization, and
the chosen final classification is the one that gives the lowest
value of the k-means cost function.

This method is applied slice-by-slice rather than fully in
three dimensions due to some blood vessels actually joining
the fibroglandular tissue at a certain moment. If classification
were done in three dimensions, these vessels would not be

FIG. 5. Example of the primitive values of energy contributions and global energy for the active contour model over the number of iterations: (a) the variance
inside and outside the contour and the automatic estimation of the adipose variance; (b) the image mean values inside and outside the contour; (c) the inverse of
the image gradient; and (d) the global energy. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Schematic representation of inflection points computation. [Color
figure can be viewed at wileyonlinelibrary.com]
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considered as separated components, and misclassification
may occur.

An example of the result of the cluster analysis for two
slices is shown in Fig. 7.

After the k-means classification of the last breast CT
slice is finished, a continuity criterion for blood vessels
is applied in the third dimension. This is the only step
of the algorithm that works in full 3D dimensions. A 26-
connected 3D kernel is generated around each voxel clas-
sified as vasculature. The considered voxel is segmented
as vasculature if at least three of the first nine positions
or at least three of the last positions of the kernel are
occupied by other voxels that were previously classified
as vessels by the k-means. Otherwise, that voxel is not
classified as vasculature, but it is instead included in the
fibroglandular segmentation. This simple criterion is
aimed at segmenting as blood vessels only the connected
components that actually have a continuity in the third
dimension, therefore correcting small errors in fibroglan-
dular classification by detecting small components of
fibroglandular tissue that were previously misclassified by
the clustering algorithm.

As a result, every voxel in the image has been classified as
skin, fibroglandular, or adipose tissue, or vasculature.

2.C. Classification evaluation

To evaluate the results of the automatic segmentation,
manual segmentation performed by an experienced breast
radiologist was used as the gold standard. Three coronal
slices (one near the nipple, one in the center of the breast and
one near the chest) from 15 breast CT patient scans from each
of the two breast CT systems were manually segmented,
resulting in a total of 90 slices.

The performance of the algorithm was determined in
terms of five similarity metrics.

(i)The Dice similarity coefficient (DSC), given by the follow-
ing formula:

DSC ¼ 2 � A\Bj j
Aj j þ Bj j (11)

where A and B are the two samples (i.e., manually and auto-
matically segmented images). The DSC ranges between 0
(the two samples are completely uncorrelated) and 1 (com-
plete overlap of the two samples).

(ii)The sensitivity, according to the following equation:

Sensitivity ¼ TP
TPþ FN

(12)

where TP is the number of true positives and FN the number
of false negatives. Specificity was not used, since it is not an
appropriate error metric for evaluating a segmentation result,
due to its high sensitivity to the size of the evaluated object.

(iii)The conformity coefficient,36 defined as:

Kc ¼ 1� FPþ FN
TP

(13)

which can vary within a much wider range (�∞,1], provid-
ing a stricter evaluation of all our comparisons. A zero score
is obtained when the number of correctly segmented voxels
equals the number of mis-segmented voxels, while it
becomes �∞ in case the two segmented images (ground
truth and processed) have no overlap. A score equal to 1 indi-
cates a perfect overlap between the two segmented images.

(iv)The traditional Hausdorff distance (basically the longest
of the shortest distances between the two samples), defined
as follows:

HD ¼ max
supa2Ainfb2B d a; bð Þ½ �;
supb2Binfa2A dða; bÞ½ �

	 

(14)

where sup and inf refer to the supremum and infimum (which
in a discrete case are equal to maximum and minimum) of
the two compared datasets.

(v)Since the Hausdorff distance is very sensitive to outliers,37

an average distance (AVD) is also used, in which both
suprema/maxima are replaced with the average operator.

TABLE I. Typical values for the four features used in fibroglandular tissue —
blood vessels classification.

Circular structure
Tubular
structure

Irregular
structure

Circularity HIGH LOW NORMAL

Aspect ratio HIGH LOW NORMAL

Inflection points LOW NORMAL HIGH

Intensity variance LOW LOW HIGH

FIG. 7. Example of the result of the cluster analysis (fibroglandular tissue,
vasculature): (a, c) before and (b, d) after classification. [Color figure can be
viewed at wileyonlinelibrary.com]
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The robustness of the algorithm to image noise was also
evaluated by determining the impact on the five performance
metrics listed above when re-classifying the images after cor-
rupting them with additional noise. For this, four levels of
Gaussian noise (with zero mean and standard deviation vary-
ing from 0.01 to 0.04) were added to 15 slices, one from each
patient image taken from the first dataset. The original slices
are here considered the gold standard.

Finally, for further evaluation of the blood vessels classifi-
cation, three different complete pre- and postcontrast injec-
tion patient breast CT images (acquired with the Koning
breast CT system) were classified and compared. For this
comparison, DSC and sensitivity were calculated in three
dimensions between each pre- and postcontrast injection 3D
breast CT image.

Beside these evaluations on the global performance of
the algorithm, we also individually evaluated the methods
in comparison to previously proposed works. We calcu-
lated the DSC (between manual and automatic segmenta-
tion) for the previously proposed methods and for our
approach for ten breast CT slices. For skin classification,
our algorithm was compared to the previously proposed
morphological,8,10 derivative7 and histogram-based region-
growing9 methods. For fibroglandular tissue–adipose dis-
crimination, our methods were compared to the previous

histogram-based region-growing,9 Gaussian kernel-based
fuzzy C-means,7,10 and pixelwise support vector machine
(SVM)8 approaches.

3. RESULTS

Figures 8 and 9 show some examples of the automatic
segmentation.

Figure 10 shows the average values with the standard error
(given by the standard deviation divided by the square root of
the sample size) of all similarity metrics for the 15 subjects
(three slices each) between the manual and automatic seg-
mentation for each of the two patient datasets, respectively.
The results of the evaluation of the robustness to image noise
(15 slices taken from the first dataset) are shown in Fig. 11,
with the vertical axis being the ratio of the metric at the noise
level and the metric at original (noise-free) level, in percent-
age. The results of the comparison between pre- and postcon-
trast injection are displayed in Fig. 12 (postcontrast images
are here considered the gold standard). These results are also
presented in a tabular form in Table II (Appendix).

The algorithm proved to be robust to image noise and also
reasonably accurate in blood vessels detection, even in unen-
hanced images. For all three patient images acquired pre- and
postcontrast injection, the sensitivity presents a minimum

FIG. 8. Three examples of (a, b, and c) original (coronal) slices from different breast CT patient images, and (d, e, and f) respective results of the automatic tissue
classification, showing the skin, the fibroglandular tissue, the vasculature, and the adipose tissue. [Color figure can be viewed at wileyonlinelibrary.com]
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value of 0.73. The false negative rate of 0.27 is due to the fact
that a few major blood vessels (i.e., the ones detectable given
the spatial resolution of the device) can be detected only with
contrast enhanced imaging. In fact, if the manual segmentation
of postcontrast injection images is considered the ground truth,
the comparison between manual and automatic segmentation
of the same precontrast injection images resulted in an average
vasculature DSC of 0.780 � 0.079 (manual segmentation,

postcontrast vs manual segmentation, and precontrast) and
0.772 � 0.081 (manual segmentation, postcontrast vs auto-
matic segmentation, and precontrast), respectively. Finally, the
average vasculature DSC between manual and automatic
segmentation was 0.914 � 0.027 for precontrast and
0.909 � 0.018 for postcontrast injection images.

Finally, results of the evaluation of previously proposed
methods for breast CT tissue classification are reported in

FIG. 9. Two examples (a) and (b) of segmented breast CT slices in sagittal view, and two examples (c) and (d) of 3D renderings of an entire BCT image: (c) coro-
nal view with the skin removed for an improved visualization and (d) sagittal view. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 10. Results of the evaluations of the accuracy of algorithm. (a) Dice similarity coefficients, (b) sensitivity, (c) conformity coefficient, (d) Hausdorff Distance,
and (e) average Hausdorff distance for the adipose, fibroglandular, skin, and vasculature between the results of the algorithm and manual segmentation. [Color
figure can be viewed at wileyonlinelibrary.com]
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Table III, with some example images shown in Fig. 13
(Appendix).

Classification time was approximately 50 s per slice,
although the computation time depends on the number of
breast voxels per slice to be processed (fewer near the nipple,
more near the chest), taking approximately 3–5 h for a com-
plete volume.

4. DISCUSSION

The proposed algorithm for breast CT image classification
has been shown to result in accurate identification of the dif-
ferent tissue types, including blood vessels in unenhanced
images, and is robust to image noise.

There are already a few algorithms in literature for breast
CT image segmentation.7–10 For each algorithm, there are
two major steps: one for classifying the skin, and the other
for the two major breast tissue types (adipose and fibroglan-
dular tissue).

Some proposed methods for skin segmentation only rely
on appropriate boundary detection, which could fail when
other structures, such as blood vessels or spots of fibroglan-
dular tissue, are located close to the interior edge of the skin.
Other skin segmentation methods use a morphological opera-
tor with constant dimensions based on the average breast skin
thickness reported in literature, therefore not taking into
account interpatient variability.

Regarding the fibroglandular-adipose tissue discrimina-
tion, some algorithms require the setting of some parameter
values according to some image properties (e.g., ring arti-
facts), making the algorithms not completely automatic. In

FIG. 11. Results of the evaluations of the robustness of algorithm. (a) Dice similarity coefficients, (b) sensitivity, (c) conformity coefficient, (d) Hausdorff Dis-
tance, and (e) average Hausdorff distance for the adipose, fibroglandular, skin, and vasculature between manual segmentation and the result of the algorithm,
after adding image noise (zero mean, standard deviation equal to 0.01, 0.02, 0.03, and 0.04). All metrics are here given as the ratio of the performance for the
noisy images to that of the original images, in percentage. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 12. Dice similarity coefficients and sensitivity (calculated in three
dimensions) for the automatic vasculature segmentation between three fully
complete pre- and postcontrast injection images. The postcontrast images are
considered the gold standard. [Color figure can be viewed at wileyonlineli-
brary.com]
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other algorithms, the use of supervised methods results in a
performance that might change according to the training data-
set, especially when classifying images acquired with differ-
ent breast CT systems. Methods based on global information,
such as the image histogram, only may lead to challenges in
those slices that experience nonuniformities that affect the
histogram threshold on a global basis (e.g., due to artifacts
and noise). By evaluating these methods on our dataset we
encountered, in some cases, the limitations stated above
related to inaccuracies in the classification of the skin bound-
aries, parameter tuning, sensitivity to noise, and long pro-
cessing time. Finally, all algorithms divide the breast into
three main tissue types (skin, adipose, and fibroglandular)
without considering blood vessels separately. This means that
blood vessel voxels are considered either as adipose tissue or
as fibroglandular tissue, leading to an overestimation of one
of these tissue types. These limitations affected the perfor-
mance of the previous algorithms during our comparison
with the algorithm proposed here.

The differences in the performance of our algorithm across
the two data sets is mainly due to the lower dose (comparable
with a two-view traditional mammogram) used for the UC
Davis images (dataset 2), resulting in lower contrast resolu-
tion and increased noise. These factors especially affect the
blood vessel segmentation the most, making their detection
more challenging in noisy low-contrast images due to their
small size, low intensity, and unpredictability in localization,
which is also apparent from the analysis of the degraded
images from the first dataset. Moreover, results from pre- and
postcontrast images show that, in unenhanced images, the
algorithm fails in the detection of blood vessels that result in
very low HU voxel values (or that lay within the fibroglandu-
lar tissue, resulting in a too low contrast). Similarly, at least
for the dataset used for our validation, the high vasculature
DSCs between manual and automatic segmentation underline
the difficulty of this task, even for a radiologist.

Results from all similarity metrics evaluated in this work
were satisfying and consistent. Sensitivity resulted in similar
results to the DSC; the conformity coefficient, as expected,
resulted in slightly lower values compared to DSC, and the
two shape-based metrics (HD and AVD) showed to increase
as the noise content becomes larger. In any case, the highest
distances (in voxels) resulting from these latter two metrics
are 5.2 and 0.77, respectively, for HD and AVD. The differ-
ence in these two results is not surprising, since the HD is a
measure of the longest (out of the shortest) distance between
the two compared objects (i.e., it could reach very high val-
ues even if the two objects are, on average, well registered).
This is the reason why the AVD is also included. By averag-
ing all the possible distances between the compared objects,
a more reliable and less outlier-sensitive measure is obtained.

The high accuracy of the proposed method can be attributed
to the use of different image analysis techniques for classifying
each tissue type. Each technique proved to be particularly
suitable for a certain type of tissue. For instance, breast skin
segmentation proved to have high performance due to the com-
bination of intensity- and region-based criteria. The former are

useful to differentiate the skin from the adjacent adipose tissue,
while the latter avoid misclassification of voxels that actually
belong to blood vessels or fibroglandular tissue which are
located close to the skin. Using only intensity-based criteria
would lead to over-classification, while using only geometrical
and topological operators would not be robust enough, since
the skin may appear with different shapes and locations
depending on the distance from the nipple.

To assess the performance of the region-growing method
for skin segmentation, which strongly depends on the previ-
ous centerline extraction from the skin layer, we evaluated the
robustness of the centerline detection scheme to initialization,
noise and tolerance-to-zero condition. In previous methods,
the ridge detection step has always been critical in the extrac-
tion of a smooth and connected centerline. Regarding the ini-
tialization step, in traditional approaches, it basically depends
on the tolerance for equal-to-zero condition in the product
between the image gradient and the N-1 eigenvectors, on the
position of seed points and on the scale at which the intensity,
gradient, and Hessian of the image are calculated. For this,
we decided to keep these values constant for the whole model
(unit scale, and tolerance-to-zero equal to 10�6). This allows
to always find at least a few points of the ridge, which will be
then connected through the subsequent intensity-based search
algorithm. Regarding the seeds position (which, in our appli-
cation, is defined on the outer edge of the skin), we tested the
algorithm by randomly changing their location within the
skin layer and by decreasing their number. All experiments
led to same final centerline detected. Regarding the robust-
ness to image noise, the intensity-based search algorithm
could overcome the local discontinuities and produce a fully
connected centerline, enabling the introduction of the con-
straints needed to extract the skin layer with the subsequent
region growing. Importantly, the subsequent intensity-based
search connecting all ridge points together allows for avoiding
the need for user-selectable parameters during the centerline
extraction. Examples of the centerline resulting from varying
the tolerance-to-zero threshold, the noise content and the initial
number and location of seed points are shown in Figs. 14 and
15 of the Appendix, respectively. The accuracy of the center-
line-based region growing related to image noise is shown in
Fig. 16 (Appendix).

To better evaluate the effectiveness of the active contour
method implemented in this work, we compared our method
with some previously defined models: geodesic contours,19

contours without edges,20 and localized active contours.21

Geodesic active contours are very sensitive to image inhomo-
geneities, and depend on initialization. Given the non-negligi-
ble noise content of breast CT images, and difficulty to
automatically initialize the contour close to the boundary of
the object, we could not achieve any acceptable results by
applying these contours. Regarding the region-based active
contour without edges (Chan-Vese), the main limitation is the
setting of the weight of the smoothing term, since it has to be
adjusted each time according to the SNR of the image. Its
choice may strongly affect the segmentation result, since a
noncorrect setting of the smoothing term can lead to over-
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segmentation. Finally, in localized active contours, by restrict-
ing the region energy computation to a small neighborhood
of contour points using a characteristic function, the setting
of the smoothing weight is less critical. However, the radius
of the characteristic function used to evaluate the voxel values
inside and outside the contour still has to be set according to
the image noise and appearance. Smaller values usually
achieve a more precise object contouring, but may also lead
to under-segmentation (the opposite may happen for values
that are too large). Some example images of the different con-
tour models evaluated are shown in Fig. 17 (Appendix).

The active contour presented in this work is able to over-
come some limitations of traditional edge-based models (e.g.,
it avoids local minima), but still including edge information
which is useful to correctly identify fibroglandular tissue and
vessels boundaries. Furthermore, the other region-based con-
tributions (mean and variance) make it robust to image noise,
and the global energy does not require any user-selectable
weight. Overall, the proposed contour could well discriminate
the adipose tissue from remaining structures. However, as the
noise content increases, tissues edges become more blurred,
affecting negatively the exact matching of the contour model
and the real object boundaries.

Finally, the unsupervised clustering algorithm showed to
be robust in recognizing blood vessels well even in the case
of branches or irregularities (still quite uncommon within one
slice).

Blood vessel segmentation has been extensively studied in
literature,38 but applying one of the already implemented
methods in unenhanced breast CT images may lead to a few
limitations. First, blood vessels appear just as several spots
among many other structures (such as fibroglandular tissue),
and have a high level of spatial unpredictability. Moreover,
without using a contrast agent they have the same x-ray atten-
uation as skin and fibroglandular tissue, resulting in very sim-
ilar Hounsfield unit values. Furthermore, due to the low dose
levels used (especially for the second dataset), images are
noisy. These factors make the use of intensity-based methods
or extraction schemes difficult to apply. It would also be diffi-
cult to use centerlines and region-based methods for recog-
nizing blood vessels in breast CT images, since it would be
hard to automatically define the seed points or the region
boundaries without including other structures (such as fibrog-
landular tissue). Therefore, the method implemented here
mostly considers geometrical and shape-related features
which can represent the two tissue types (vessels and fibrog-
landular tissue) well, and overcomes the difficulties men-
tioned above. Moreover, using the whole breast CT image
allows to overcome the difficulty of defining the number of
clusters within a single slice, resulting in a correct classifica-
tion even in those slices which actually contain only one tis-
sue type (this could happen especially in slices near the
nipple, where only fibroglandular tissue might be present).

Finally, the continuity criterion adds three-dimensional
information which allows to correct small errors that may
have occurred in the first classification.

The robustness of the algorithm was tested with four dif-
ferent noise levels with increasing standard deviation. The
increase in noise resulted in corrupted images with a signal-
to-noise ratio (SNR) 5% to 30% lower than that of the images
of the UC Davis dataset. To achieve a dose estimate, we
scanned a breast CT phantom (Koning Corporation, 13 cm
diameter – 11.5 cm length, with a Br20/80 background mate-
rial equivalent to 20%/80% glandular-adipose tissue) with
different mA (constant 8 ms pulse) and measured the stan-
dard deviation in a homogeneous ROI for different mA. We
then measured the standard deviation of a ROI in few
homogenous areas of patient images (the ones corrupted with
added Gaussian noise), and determined the mA levels that
would give similar noise levels. We then calculated the dose
for each added noise level. Although approximate, this pro-
cess gave us estimations of the dose related to the noise con-
tent, which resulted approximately between 2.5 and 5 mGy.

The algorithm is also robust to image nonuniformities due
to incomplete scatter correction. Cupping artifacts due to
scatter do not affect its performance (as shown in Fig. 18 of
the Appendix), since none of the methods are simply inten-
sity-based but include different morphological, regional and
mathematical criteria. The algorithm does not take into
account the classification of the pectoralis muscle, which in
some cases can be seen in a few posterior slices near the
chest. Therefore, slices containing the pectoralis were
removed from the classification. Overall, this should not
affect the fibroglandular tissue percentage within the breast
considerably, since the amount of fibroglandular voxels in
slices containing the pectoralis is usually small.

Automatic pectoralis segmentation can be a challenging
task, since its attenuation is very similar to fibroglandular tis-
sue and since it often appears connected (along the sagittal
direction) to other tissue types (especially fibroglandular tis-
sue). A method to classify the pectoralis might be added in
future work. In this case, supervised classification methods
might be considered for an accurate detection.

In this study, we used manual segmentation as the gold
standard because we used data from patients. Although man-
ual segmentation is very time consuming, with greater num-
bers of slices manually segmented in each patient further
investigation of the algorithm could be achieved.

The algorithm (except for the continuity criterion for vas-
culature postprocessing) works in two dimensions by pro-
cessing the breast CT images in a slice-by-slice manner. It is
still to be proven whether a fully 3D algorithm could lead to
advantages in the segmentation (also because the HU values
tend to differ among the slices according to the distance from
the nipple, due to the increasing amount of breast voxels
toward the chest). The ability to fully incorporate the third
dimension might provide further information for detecting
thin low-intensity components that could otherwise be
considered noise, but it would drastically increase the com-
putational cost.

The algorithm was implemented in MATLAB (The Math-
Works, Natick, MA, USA), and therefore could be speeded up
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by using lower level languages like C++ and/or parallel pro-
cessing, especially using Graphic Processing Units (GPU).

Applications of the proposed algorithm in breast imaging
research can be divided into three main groups. First, the eval-
uation of breast density can be used for dosimetry evaluation
and simulation-based radiation dose analysis. In fact, the 3D
glandularity patterns provided by the segmentation algorithm
could be used as input in Monte Carlo simulations to obtain a
map of radiation dose throughout a real breast. This would be
useful to better define radiation dose guidelines not only for
breast CT but also for other x-ray-based breast imaging tech-
niques (e.g., mammography). Second, the algorithm could be
useful in the design of realistic patient data-based phantoms,
which could be used for optimizing the acquisition process as
well as breast CT image reconstruction and analysis methods.

Lastly, the present work can be used for tissue pattern
characterization and quantification to extract biomarkers
related to breast cancer development. Examples include
breast density quantification (i.e., quantification of breast
glandularity), automatic identification of breast skin thicken-
ing, and monitoring of blood vessels maturation and growth,
which are all factors that seem to be related to breast diseases
and cancer development.

5. CONCLUSIONS

The proposed algorithm for breast CT image segmentation
resulted in accurate and robust classification of breast tissues

(fibroglandular and adipose tissue, skin, and vasculature)
with no prior training or threshold setting. It can be used for
3D breast density quantification and tissue pattern characteri-
zation, both biomarkers of cancer development, realistic
patient-based radiation dose analysis and development of
patient image-based phantoms which could be used for breast
imaging research.
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FIG. 13. Example images of the performance of different algorithms in (a–d) breast skin and (e–h) fibroglandular tissue classification. Skin segmentation: (a)
morphological operators-based, (b) polar transformation and first order derivative filter, (c) histogram-based region growing, and (d) our approach. Fibroglandu-
lar tissue segmentation: (e) SVM pixelwise classification, (f) histogram-based region growing, (g) Gaussian kernel-based fuzzy c-means, and (h) our approach.
[Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 14. Example of results of the centerline extraction method on a phantom image with varying conditions: tolerance-to-zero threshold equal to (a) 10�6, (b) 10�5,
and (c) 10�3; Gaussian noise with zero mean and standard deviation equal to (d) 0.02, (e) 0.04, and (f) 0.08. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 15. Example of the robustness of the centerline extraction method on a phantom image to position and number of initial seed points. Panels (a), (b), and (c) show
different seed points initializations, while panel (d) the resulting centerline, equal for the three initial settings. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 16. Robustness of the region growing for skin segmentation to image noise with different standard deviations: (a) 0.01, (b) 0.02, (c) 0.03, and (d) 0.04. The
DSCs are given as a percentage of the DSC of the noise-free image. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 17. Example of three active contour models in fibroglandular tissue segmentation. Panels (a), (b), and (c) display the traditional localized active contour for
three different radii of the characteristic function: (a) 9 voxels, (b) 15 voxels, and (c) 25 voxels. Panels (d), (e), and (f) display the traditional active contour with-
out edges for three different weights of the smoothing term: (d) 10�1, (e) 10�2, and (f) 10�3. Panel (g) shows the result of the energy minimizing framework pro-
posed in this work. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 18. Segmented breast CT slice with (top panel) and without (bottom panel) cupping artifacts due to incomplete scatter correction, resulting in a mutual DSC
of 97%. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE II. All quantitative results for the two image datasets and for the four datasets corrupted with Gaussian noise (in four steps, with increasing standard devia-
tion from 0.01 to 0.04). All results are in comparison with the same manually segmented image dataset.

Dataset Tissue type DSC Sensitivity Conformity HD AVD

Original 1 Adipose 0.96 � 0.03 0.91 � 0.05 0.86 � 0.06 4.13 � 1.99 0.61 � 0.19

Fibroglandular 0.95 � 0.02 0.92 � 0.04 0.84 � 0.04 4.12 � 0.10 0.41 � 0.20

Skin 0.95 � 0.03 0.93 � 0.03 0.88 � 0.05 3.75 � 1.21 0.56 � 0.23

Vasculature 0.93 � 0.06 0.85 � 0.08 0.87 � 0.05 1.75 � 0.72 0.33 � 0.04

Original 2 Adipose 0.92 � 0.03 0.90 � 0.05 0.81 � 0.07 5.13 � 2.74 0.77 � 0.28

Fibroglandular 0.94 � 0.02 0.91 � 0.03 0.84 � 0.04 4.82 � 1.31 0.51 � 0.27

Skin 0.95 � 0.01 0.90 � 0.06 0.85 � 0.03 4.15 � 1.23 0.62 � 0.41

Vasculature 0.80 � 0.04 0.83 � 0.10 0.75 � 0.07 3.12 � 0.85 0.42 � 0.06

Noise 1 Adipose 0.85 � 0.02 0.88 � 0.06 0.81 � 0.05 5.50 � 2.41 0.78 � 0.29

Fibroglandular 0.90 � 0.02 0.91 � 0.09 0.81 � 0.02 4.62 � 0.91 0.52 � 0.19

Skin 0.92 � 0.01 0.93 � 0.04 0.85 � 0.01 3.78 � 0.88 0.63 � 0.23

Vasculature 0.73 � 0.01 0.78 � 0.05 0.70 � 0.04 3.18 � 0.54 0.44 � 0.09

Noise 2 Adipose 0.83 � 0.02 0.85 � 0.06 0.80 � 0.11 5.53 � 2.41 0.85 � 0.30

Fibroglandular 0.89 � 0.02 0.90 � 0.09 0.79 � 0.09 4.98 � 0.91 0.54 � 0.21

Skin 0.90 � 0.01 0.92 � 0.04 0.80 � 0.08 3.95 � 0.88 0.68 � 0.29

Vasculature 0.71 � 0.01 0.71 � 0.05 0.68 � 0.07 3.37 � 0.54 0.47 � 0.10

Noise 3 Adipose 0.80 � 0.07 0.81 � 0.10 0.74 � 0.21 6.31 � 2.41 0.97 � 0.54

Fibroglandular 0.84 � 0.09 0.85 � 0.13 0.73 � 0.16 5.76 � 0.91 0.71 � 0.45

Skin 0.86 � 0.08 0.87 � 0.07 0.78 � 0.18 4.34 � 0.88 0.89 � 0.41

Vasculature 0.67 � 0.09 0.65 � 0.10 0.64 � 0.12 3.63 � 0.54 0.91 � 0.20

Noise 4 Adipose 0.72 � 0.15 0.76 � 0.12 0.68 � 0.25 6.95 � 2.78 1.32 � 0.74

Fibroglandular 0.75 � 0.15 0.78 � 0.18 0.69 � 0.19 6.84 � 1.31 1.11 � 0.56

Skin 0.79 � 0.12 0.80 � 0.14 0.71 � 0.20 5.36 � 1.45 1.49 � 0.65

Vasculature 0.61 � 0.11 0.61 � 0.13 0.56 � 0.15 3.92 � 0.87 1.12 � 0.41

TABLE III. Dice similarity coefficients of all the tested algorithms for breast
tissue classification against manual segmentation.

Tissue type Method Ref. DSC

Skin Polar transformation
and derivative filter

[7] 0.84 � 0.07

Morphological
operators-based

[8, 10] 0.89 � 0.08

Histogram-based
region growing

[9] 0.86 � 0.04

Proposed algorithm – 0.95 � 0.05

Fibroglandular—
Adipose

Histogram-based
region growing

[9] 0.84 � 0.08

Gaussian kernel-based
fuzzy C-means

[7, 10] 0.89 � 0.09

Pixelwise SVM-based
classification

[8] 0.92 � 0.05

Proposed algorithm – 0.94 � 0.03
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