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Conformational changes are an essential feature of most

molecular processes in biology. Optical tweezers have

emerged as a powerful tool for probing conformational

dynamics at the single-molecule level because of their high

resolution and sensitivity, opening new windows on

phenomena ranging from folding and ligand binding to enzyme

function, molecular machines, and protein aggregation. By

measuring conformational changes induced in a molecule by

forces applied by optical tweezers, new insight has been

gained into the relationship between dynamics and function.

We discuss recent advances from studies of how structure

forms in proteins and RNA, including non-native structures,

fluctuations in disordered proteins, and interactions with

chaperones assisting native folding. We also review the

development of assays probing the dynamics of complex

protein–nucleic acid and protein–protein assemblies that reveal

the dynamic interactions between biomolecular machines and

their substrates.
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Introduction
The structural dynamics of macromolecules like protein

and RNA are critically tied to their biological function.

Numerous processes, from folding to ligand binding and

enzymatic catalysis, depend on conformational changes,

whether they involve large-scale rearrangements or subtle

fluctuations. Studies aimed at elucidating the details of

protein and RNA conformational dynamics are thus es-

sential for a full understanding of biological mechanisms.

Single-molecule force spectroscopy (SMFS), whereby
www.sciencedirect.com 
mechanical forces are applied to individual molecules

by a force probe and the length of the molecule is

measured to capture the resulting conformational changes

[1,2], is a powerful tool for studying the relationship

between conformational dynamics and function, owing

to the very high resolution it can achieve and its high

sensitivity to rare and transient events [2,3,4�]. Here we

discuss recent advances made using optical tweezers to

study topics such as intra-molecular and inter-molecular

interactions in the folding and misfolding of proteins and

RNAs and the dynamics underlying the function of mo-

lecular motors and complex macromolecular assemblies.

The principles and construction of optical tweezers are

reviewed in detail elsewhere; with sufficient care, atomic-

scale resolution can be achieved, allowing the discrimi-

nation of subtle conformational changes [3,5,6]. In a

typical apparatus (Figure 1a inset), the molecule of inter-

est is attached (often via DNA handles) to polystyrene

beads, which are in turn trapped by laser beams that apply

tension to the molecule [7]. Two main measurement

modalities are used [8]: first, non-equilibrium measure-

ments, such as force-ramps, where the traps are moved

continuously to ramp up/down the force on the molecule

(Figure 1a), or force-jumps, where the force is changed

discontinuously, and second, equilibrium measurements,

where the molecule is held under constant force and/or

the traps are kept at a constant position and the extension

is measured as the structure fluctuates at equilibrium

(Figure 1b).

Conformational changes generate characteristic features in

these measurements owing to the sudden change in mo-

lecular extension during cooperative transitions: sawtooth-

shaped ‘rips’ in force-extension curves (FECs) (Figure 1a),

and steps in equilibrium trajectories (Figure 1b). These

measurements yield information such as the molecule’s

contour length change (yielding the number of amino acids

or nucleotides involved in structural transitions), the pres-

ence and number of intermediates on a given pathway, the

existence of alternative pathways, and how each state is

connected [9]. Furthermore, kinetic and thermodynamic

information can be obtained including the force-depen-

dent microscopic rates for transitions [10–12,13�], the free

energy of each state [14–16], the position and height of

energy barriers between states [12,17–19], the full profile of

the energy landscape governing the conformational dy-

namics [8,18,20–24], and the diffusion coefficient setting

the timescale for microscopic dynamics [8,25,26,27��].
Equilibrium and non-equilibrium measurements yield
Current Opinion in Structural Biology 2015, 34:43–51
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Figure 1
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Optical tweezers measurements of protein folding/unfolding. (a) DNA handles attached to each end of a protein molecule are bound to beads held

under tension in optical traps (inset). Ramping up the force by moving the traps apart, the handles stretch until the protein unfolds abruptly,

generating a sawtooth-like rip in the force-extension curve (FEC). Representative FECs (black) for unfolding the protein PrP are fit to wormlike

chain (WLC) models for the folded (cyan) and unfolded (red) states. (b) Constant–force trajectories of PrP folding measured at three different

forces show abrupt jumps as PrP unfolds/refolds in a two-state process. (c) FECs of a-synuclein monomers usually display no rips (cyan) and

behave as if unfolded (red: WLC for unfolded state). Some reveal discrete transitions (black, orange, blue), with different contour lengths (gray:

WLC fits). (d,e) FECs of a-synuclein tetramers connected in tandem by peptide linkers. (d) Some FECs show discrete transitions revealing many

different structures with different sizes and unfolding forces (dashed lines: WLC fits; gray: folded states, red: unfolded state). (e) FECs without

discrete rips were averaged (cyan) and compared to polymer models. Data did not fit a non-interacting WLC model (red; residuals in inset), but

did fit a model incorporating rapid structural fluctuations (yellow; residuals in inset).

Adapted from Ref. [26] ((a) and (b), copyright (2012) National Academy of Sciences, USA) and Refs. [40,42�] ((c)–(e)).
similar information but from different approaches, which

can be exploited for specific purposes (e.g. to select kineti-

cally for a specific pathway [26]) or to enhance analysis

reliability via independent measures of the desired infor-

mation.

Probing folding/unfolding transitions and
conformational dynamics in ordered and
disordered proteins
Optical tweezers are providing significant insight into the

structure formation process in proteins. Stigler

et al. deciphered the complex network of states involved

in the folding of calmodulin [10] and Yu et al. did the same

for the prion protein [26,28], in each case characterizing

the thermodynamic and kinetic properties of native and
Current Opinion in Structural Biology 2015, 34:43–51 
non-native intermediates in detail. Neupane et al. showed

how the statistics of the transition paths can prove that the

reaction coordinate used in SMFS is good and that 1D

diffusive models of the folding are justified [29�]. Mar-

qusee and colleagues probed the properties of different

stages of folding, showing that molten globules can be

distinguished from fully native states through their in-

creased compliance [30] and extending classic phi analy-

sis of transition states into the single-molecule regime

[31]. Measurements of the unfolding and refolding of

monomeric HIV-1-protease validated simulations sug-

gesting the existence of multiple pathways [32], revealing

not only two-state unfolding but also unfolding through

an intermediate and an ensemble of partially folded states

en route to the native state, which themselves unfolded
www.sciencedirect.com
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via multiple pathways [33]. Studies of SNARE complex

assembly, which involves a stable four-helix bundle,

helped clarify how it drives membrane fusion to allow

transport of molecules between different membranes

[34,35] and identified rare misfolded states of coiled-coils

[36] that may be involved in diseases related to SNARE

misfolding [37].

A notable recent advance has been the extension of

optical tweezers SMFS to study intrinsically disordered

proteins (IDPs), which play many important roles [38,39]

but present a special challenge for conformational analy-

sis because of their lack of stable structure. Optical

tweezers are well-suited, because of their high force

stability and low stiffness [3], to probing the low-energy

fluctuations and marginally stable structures expected in

IDPs. Studying a-synuclein, an IDP whose aggregation is

associated with Parkinson’s disease, Neupane et al. [40]

captured infrequent fluctuations into a diverse set of

transient metastable structures (Figure 1c). Linking cop-

ies of a-synuclein to create tandem oligomers, the com-

plexity and diversity of the metastable structures

increased with the oligomer size (Figure 1d). Not surpris-

ingly for an IDP, however, most FECs displayed no

discrete rips; nevertheless, these curves still contained

significant information about the conformational dynam-

ics. Indeed, FECs without rips deviated from the pure

wormlike chain behavior expected for a non-interacting

polymer [41], exhibiting a shoulder-like feature at low

force (Figure 1e). This feature suggests rapid quasi-equi-

librium fluctuations into structures that are only margin-

ally stable [42�], consistent with the picture of a collapsed,

molten-globule-like state for a-synuclein held together

by long-range contacts that emerged from structural and

computational work [43,44]. Similar shoulder-like fea-

tures were seen previously in FECs of the protein villin,

owing to its ultrafast dynamics which prevented resolu-

tion of discrete transitions [4�]. Through analysis of the

fast kinetics of a-synuclein, the energy landscape was

reconstructed and found to be flat with low barriers, but

featuring slow diffusion owing to landscape roughness.

Such a flat but rough landscape was expected to be a

hallmark of IDPs, but had not been quantified experi-

mentally.

Probing interactions that influence protein
misfolding and aggregation
Another area of particular interest is protein misfolding

and its relation to disease [45], which is well-suited for

study by single-molecule methods because of their ability

to distinguish and characterize even transient compo-

nents of heterogeneous mixtures [46], as shown by recent

work with optical tweezers. For example, dimeric prion

protein was found to misfold into a stable aggregated state

via multiple intermediates, with much slower diffusion

than for native folding indicating a rougher energy land-

scape for misfolding [27��]. The slow refolding of the
www.sciencedirect.com 
enzyme luciferase and its propensity to aggregate were

linked to the formation of a misfolded state [47]. The

effects of calcium concentration on misfolding of a calci-

um sensor, neuronal calcium sensor-1 (NCS-1) [48�]
suggested the missing link between Ca2+ dysregulation,

misfolding, and a NCS protein involved in neurodegen-

erative disorders [49,50].

Of course optical tweezers’ utility extends beyond study-

ing proteins in isolation to probing the relationship be-

tween dynamics and function under conditions that more

closely recapitulate key aspects of the cellular environ-

ment. Kim et al. studied how the binding of von Will-

ebrand factor (VWF) to platelets is regulated by

hydrodynamic forces in the vasculature, revealing that

force activates platelet binding and increases the effects

of disease-related mutations [51]. Especially fascinating is

recent work probing the activity of molecular chaperones,

which are required for the folding of many proteins but

whose mechanisms remain poorly understood at the

molecular level [52]. Full understanding of chaperone

activity must also be tied to insights into protein mis-

folding in the absence of chaperones. Tans and colleagues

[53��] investigated how the general bacterial chaperone

trigger factor (TF) influences the folding of maltose-

binding protein (MBP), which folds efficiently in isola-

tion, and a MBP tandem-repeat oligomer (MBP4), which

has a high tendency to misfold and aggregate. Unfolding

curves of MBP typically showed a single intermediate

state without TF present, whereas they contained addi-

tional intermediate states with TF present (Figure 2a).

The MBP4 oligomer tended to form a stable aggregate

that could not be unfolded in the absence of TF, but

adding TF dramatically changed the picture: although

misfolding interactions generating non-native structures

were still common, they were typically much weaker, and

most of the protein chain was now natively folded

(Figure 2b). Taken together, these results suggest that

TF promotes native folding by protecting partially folded

states from long-range interactions driving stable mis-

folded states [53��].

Conformational dynamics in RNA
SMFS studies of RNA have helped to connect dynamics

in complex folding pathways — manifested for example

by the tendency of some RNAs to form alternative

structures — to function. Measurements of the E. coli
rpsO gene operator transcript, which folds into either a

pseudoknot or double-hairpin conformation but binds the

gene product only in the pseudoknot conformation,

showed that the two transcript structures can interchange

spontaneously [54], which is unusual because conforma-

tional switching in RNA typically requires regulatory

factors such as metabolites, non-coding RNAs, or proteins

[55,56]. Studies of RNA kissing-loops have led to better

understanding of the structural determinants of these

complexes, including roles for flanking nucleotides
Current Opinion in Structural Biology 2015, 34:43–51
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Figure 2
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Effects of chaperones and small-molecule ligands on protein and RNA folding. (a) In the absence of TF, MBP monomers (black) unfold via an

intermediate state (I0) between the native (N) and unfolded (U) states. In the presence of 1 mM TF (blue), MBP frequently occupies a variety of

intermediate states. (b) FECs of a tandem MBP tetramer show more complex behavior. Initial unfolding (black) shows features corresponding to

four natively folded MBP monomers. When refolded without TF (blue), subsequent pulling (red) reveals no unfolding, indicating the tetramer

misfolded with tight inter-domain interactions. When refolded with 1 mM TF (green), subsequent pulling (orange) showed extension changes

characteristic of native interactions (e.g. at �1230 nm) and weak non-native interactions (at �1100 nm), but no tight ones. Inset: sequence of

pulling curves and states observed. (c) Most FECs for the SARS frameshifting stimulatory pseudoknot showed a length change, found from WLC

fits (dashed lines), consistent with the native structure (black), but some revealed a smaller, alternative structure (blue). Inset: the extent of

alternative structure formation decreased linearly with the fraction of ligand-bound pseudoknots and extrapolated to zero at 96 � 8% binding,

indicating that ligand binding effectively eliminates the formation of alternative structures, mirroring the suppression of �1 PRF to near-background

levels caused by the ligand [67]. (d) The average unfolding force of pseudoknots is uncorrelated with efficiency of �1 PRF stimulation (upper

panel), indicating that mechanical stability is not a primary determinant of �1 PRF efficiency. Higher frameshifting efficiency is instead correlated

with increased tendency to form alternate structures (lower panel).

Adapted from Ref. [53��] ((a) and (b), by permission from Macmillan publishers Ltd: Nature, copyright (2013)), Ref. [68] ((c), copyright (2014)

American Chemical Society) and Ref. [65�] ((d), copyright (2012) National Academy of Sciences, USA).
[57]. Riboswitches are an especially interesting class of

RNAs that undergo large-scale, functional conformational

changes upon ligand binding [58]. Anthony et al. deci-

phered the ligand-dependent and ligand-independent

steps for the metabolite-sensing domain of the TPP ribos-

witch [59], and Neupane et al. showed how structural

changes in the metabolite-sensing domain of the add
riboswitch are communicated to alter the structure of the

neighboring domain controlling gene expression [60]. By
Current Opinion in Structural Biology 2015, 34:43–51 
studying pbuE riboswitch dynamics while the RNA was

being transcribed, Frieda et al. were able to demonstrate

kinetically controlled folding directly and predict the

regulatory outcome — transcription termination or run-

through — from the initial RNA dynamics [61�].

Recent work with optical tweezers also highlighted the

unexpected importance of conformational dynamics

for the function of RNA pseudoknots stimulating �1
www.sciencedirect.com
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programmed ribosomal frameshifting (�1 PRF) [62].

Early work identifying a correlation between the pseu-

doknot unfolding force and �1 PRF stimulation efficien-

cy [63,64] was shown not to extend to a larger panel of

viral pseudoknots; instead, �1 PRF efficiency was corre-

lated with pseudoknot conformational plasticity [65�],
reflected in the tendency of the RNA to refold into

alternative structures (Figure 2c,d). The importance of

pseudoknot dynamics in stimulating frameshifting was

corroborated by studies of the frameshift signal from

human CCR5 mRNA, showing that it manifests several

distinct unfolding pathways when mechanically desta-

bilized [66], and by measurements  of the effect of a

ligand that abolishes �1 PRF upon binding specifically

to the pseudoknot from the SARS coronavirus [67],

showing that the ligand reduced the conformational

plasticity of the pseudoknot proportional to the amount
Figure 3
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of ligand bound (Figure 2c inset) [68]. While such studies

provide important insights, they investigate only one part

of the �1 PRF mechanism, which involves interactions

between many different elements. A more complete

picture emerges from experiments probing the full trans-

lation complex, like those described below.

Complex assemblies in motion: dynamics tied
to function
In recent years, optical tweezers have increasingly been

applied to reveal the functional dynamics of complex

macromolecular assemblies, especially those of protein–
nucleic acid complexes. Recent work on nucleosomes,

the basic unit of DNA compaction consisting of DNA

wrapped around a histone core, elegantly showed how

local conformational transitions in single nucleosomes

govern DNA unwrapping [69��], demonstrated alternate
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with permission from Elsevier.

Current Opinion in Structural Biology 2015, 34:43–51



48 Biophysical and molecular biological methods
pathways for nucleosome unwinding [70], and showed

through the use of torque-wrench tweezers [71] that

torque can modulate nucleosome stability in a way that

may regulate histone exchange during transcription and

replication [72]. These studies have important implica-

tions for how DNA accessibility to enzymes might be

regulated at the level of DNA sequence and modifica-

tions. In a similar vein, Ma et al. investigated the effects of

torsion from DNA supercoiling on transcription by RNA

polymerase, finding that torsion modulates the transcrip-

tion rate but RNA polymerase can generate sufficient

torque to melt DNA of arbitrary sequence [73]. Turning

to translation, the mechanics of translation were studied

by Bustamante, Tinoco, and colleagues: after demonstrat-

ing that individual codon steps could be discerned and

showing that ribosomes apply force actively to unfold

structures in the mRNA during translation [74,75], they

investigated how the ribosome affects nascent polypep-

tide folding [76] and showed that nascent chain folding

near the surface of the exit tunnel exerts a force that can

rescue sequence-induced ribosome stalling [77�].

Tinoco and colleagues also applied a single-ribosome

translocation assay to probe �1 PRF stimulated by a

structured RNA hairpin from the E. coli dnaX gene
Figure 4
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[78��]. Tight regulation of �1 PRF efficiency is achieved

by three elements in the mRNA: a 7-nt slippery sequence

where �1 PRF occurs, and an internal Shine–Dalgarno

sequence and downstream hairpin flanking the slippery

sequence. Codon-by-codon translation was monitored

along a mRNA template embedding this frameshift signal

within a 92-bp hairpin held under tension by optical

tweezers (Figure 3a). Back-and-forth motions of the

ribosome around the slippery sequence (Figure 3b), pre-

viously detected by single-molecule fluorescence mea-

surements [79,80], were corroborated and shown to occur

regardless of the presence of a frameshift, suggesting that

they are a property of the mechanics of the frameshift

signal rather than a feature of �1 PRF itself. Notably, the

fluctuation timescale was similar to that for the dynamics

of the ribosome 30S body and head during regular trans-

lation [81], suggesting that these fluctuations reflect con-

formational excursions of the 30S head during multiple

forward translocation attempts [78��].

The ability of optical tweezers to track substrate move-

ment through molecular machines has been applied to

other systems, too, such as elegant work investigating how

the bacterial protease ClpXP unfolds and translocates

a wide variety of substrates [82,83��]. To probe the
omains Halo DNA

Halo

Time
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interactions between protease and substrate, Cordova

et al. [83��] engaged ClpXP with a substrate consisting

of four titin domains (Figure 4a). Measurements under

constant force displayed three signatures of ClpXP me-

chanical function: first, abrupt extension increases due to

protein unfolding; second, gradual extension decreases

due to translocation of the unfolded polypeptide; and

third, unchanged extension representing a pre-unfolding

dwell between completed translocation of an unfolded

domain and denaturation of the next native domain

(Figure 4b). As expected, titin mutants with lower stabil-

ity were less resistant to degradation. These measure-

ments led to a model of how ClpXP uses ATP to move

along its substrate: ClpXP takes steps of variable sizes (1–
4 nm), in no defined order but with steps of similar sizes

clustering together, indicating interplay between stochas-

tic and deterministic behavior of the subunits. Incorpo-

rating hydrolysis-incompetent mutant subunits into

ClpXP showed that the largest steps required no more

than two subunits. This study also illustrates nicely how a

complete mechanistic understanding of complex biologi-

cal processes requires fitting single-molecule data into a

wider framework provided by other techniques: here, the

degradation rate measured by optical tweezers was con-

sistently higher than in ensemble experiments, suggest-

ing that the rate-limiting step in solution is the threading

of the substrate into the protease, a step done before the

tweezers measurements started.

Outlook
Models describing the activity of proteins and RNAs have

not always included the role of conformational dynamics

in determining function. Optical tweezers provide a pow-

erful tool for probing the dynamics of biomolecules at the

single-molecule level, providing new information about

the relationship between dynamics and function. Study-

ing the dynamics of molecules in isolation continues to

yield valuable new insights, but it is the application of

optical tweezers to more complex systems that is particu-

larly exciting. Sensitive and high-resolution measure-

ments with optical tweezers hold promise for

elucidating the conformational dynamics underlying

the complicated mechanisms of phenomena such as ribo-

somal translocation and frameshifting, co-transcriptional

and co-translational folding, protein misfolding and chap-

erone action, and protein degradation by proteases. With

a constant flow of new information from such experiments

to complement results from other single-molecule and

ensemble techniques, it will be exciting to see how

mechanistic models evolve in the coming years.
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