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ARTICLE INFO ABSTRACT

Article history: This data article contains the results of molecular dynamics (MD)
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quantitative comparison of the stability for the two complexes.
With regard the standard MD runs, the data article graphically
reports the r.m.s.d. profile of the ligand's atoms as well as the
dynamic behavior of key contacts involving the catalytic Ser221
residue. The SMD simulations provide a comparison of the pull
forces required to undock the two ligands and reveal that Van der
Waals and hydrophobic interactions play a key role in complex
stabilization.
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Specifications Table

Subject area Biology

More specific subject area Molecular modeling studies of protein-ligand complexes

Type of data Data extracted from MD trajectories and represented by plots within the text
How data was acquired  Molecular Dynamics (MD) and Steered MD (SMD) simulations using NAMD
Data format Binding features and structural parameters graphically analyzed
Experimental factors Starting complexes computed by docking simulations

Experimental features 5 ns standard all-atoms MD runs plus 1 ns Steered MD simulations

Data source location Milan, Italy

Data accessibility Data are within this article

Value of data

® The MD runs provided here confirmed the stability of the computed CES1-AR complex.

e The SMD runs evidenced notable differences between the undocking processes of the substrate and
product.

® The SMD runs emphasized the key role played by Van der Waals and hydrophobic interactions
during the undocking pathways.

® Presented data confirmed that suitably targeted MD simulations can be useful to predict the
dynamic behavior of enzyme-substrate complexes.

® The combination of MD and SMD runs allow the complex stability to be assessed also investigating
the specific role of each interaction type.

1. Data

The data were generated by two sets of all-atoms MD simulations involving the hCES1 structure in
complex with both Amplex Red (AR) and the corresponding enzymatic product deacetylAR. The first
set involved standard 5 ns MD runs with a view (a) to assess the stability of the hCES1-AR complex
and (b) to reveal the egress process for the enzymatic product (at least in its initial phase). The second
set involved steered MD runs (SMD) in order to offer a quantitative comparison of the stability of the
two simulated complexes and to reveal the energy factors governing the undocking processes.

Figs. 1 and 2 compares the different dynamic of substrate and product as revealed by their distance
profiles with the catalytic Ser221 (see Fig. 1) and the r.m.s.d. values as computed considering the
ligand atoms only. Fig. 3 compares the pull force profiles along the x axis of the undocking processes
for the two simulated complexes as derived by SMD simulations. The analysis of the interaction scores
as computed during the SMD runs reveals that the undocking processes are mainly governed by Van
der Waals and hydrophobic interactions as parameterized by CHARMM Lennard Jones (L-]) energies
(see Fig. 4, [2]) and by MLP Interaction scores (MLPj,s see Fig. 5, [3]), while ionic interactions were
found to be negligible and roughly constant during the SMD runs (data not shown).

2. Experimental design, materials and methods
2.1. Complex preparation
The optimized hCES1-AR complex was computed by docking simulations using PLANTS as

described in the reference paper [1]. The hCES1-deacetylAR complex was prepared by manually
transforming the hCES1-AR complex and was minimized by keeping fixed all atoms outside a 10 A
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Fig. 1. Dynamic profiles of the distances between the catalytic Ser221 residue and the labile amide function for the hCES1-AR
complex (gray line) and between Ser221 and the remaining amine function for the hCES1-deacetylAR complex (dashed
black line).
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Fig. 2. Dynamic profiles of the r.m.s.d. values as computed for the ligand atoms only (hCES1-AR complex=gray line and hCES1-
deacetylAR complex=dashed black line).

radius sphere around the bound ligand. Due to their net positive charge equal to +5, the two opti-
mized complexes were neutralized by adding 5 chlorine ions using the SODIUM tool [4] as imple-
mented in the VEGA suite of programs [5]. The neutralized complexes were then inserted into a 80 A
side cubic box of water molecules so as to generate hydrated complexes containing about 13,500
solvent molecules. The so obtained systems were finally minimized to optimize the position of sol-
vents and ions and underwent the following MD and SMD simulations.
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Fig. 3. Pull force profiles along the x axis for the ligand undocking (hCES1-AR complex=gray line and hCES1-deacetylAR
complex=dashed black line).
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Fig. 4. Energy profile for the Van der Waals interactions as computed by SMD runs using the CHARMM L-] term (hCES1-AR
complex=gray line and hCES1-deacetylAR complex=dashed black line).

2.2. MD simulations

The two prepared complexes underwent 5 ns canonical all-atoms MD simulations with the fol-
lowing key features: (a) the simulation space was stabilized by applying periodic boundary conditions
(90 A x 90 A x 90 A); (b) the integration of Newton's equation was performed by using r-RESPA
method (every 4 fs for long-range electrostatic forces, 2 fs for short-range nonbonded forces, and 1 fs
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Fig. 5. Energy profile for the hydrophobic interactions as computed by SMD runs using the MLPy,s interaction score (hCES1-AR
complex=gray line and hCES1-deacetylAR complex=dashed black line, MLPj,s is dimensionless).

for bonded forces); (c) the Particle Mesh Ewald (PME) summation method (80 x 80 x 80 grid points)
was utilized to calculate the long-range electrostatic potential; (d) the temperature was maintained at
300 + 10 K by applying the Langevin's algorithm; (e) Lennard-Jones (L-]) interactions were calculated
with a cut-off of 10 A and the pair list was updated every 20 iterations; (e) a frame was memorized
every 10 ps, thus producing 500 frames; and (f) no constraints were imposed to the systems. The
simulations were carried out in two phases: an initial period of heating from 0K to 300 K over
300,000 iterations (300 ps, i.e. 1 K/ps) and the production phase of 5 ns.

2.3. SMD simulations

The same optimized complexes underwent 1 ns steered MD simulations during which the bound
ligands were pulled in the x axis along with the egress direction of the catalytic pocket as already
determined by previous MD studies. The SMD runs had the same general characteristics already
described for the canonical MD simulations, while the spring constant was equal to 5 kcal/mol/A?
with a pulling velocity of 0.003 nm/ps. The mentioned minimizations were performed using the
conjugate gradient algorithm until the r.m.s. gradient was smaller than 0.01 kcal mol=' A~ All
calculations were carried out by using Namd2.10 [6] with the force-field CHARMm v22 [4,2] and the
Gasteiger's atomic charges.

Appendix A. Supplementary material
Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2016.01.031.
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