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ABSTRACT
Background. Invasive ductal carcinoma (IDC) is a common pathological type of breast
cancer that is characterized by high malignancy and rapid progression. Upregulation of
glycolysis is a hallmark of tumor growth, and correlates with the progression of breast
cancer. We aimed to establish a model to predict the prognosis of patients with breast
IDC based on differentially expressed glycolysis-related genes (DEGRGs).
Methods. Transcriptome data and clinical data of patients with breast IDC were from
The Cancer Genome Atlas (TCGA). Glycolysis-related gene sets and pathways were
from the Molecular Signatures Database (MSigDB). DEGRGs were identified by com-
parison of tumor tissues and adjacent normal tissues. Univariate Cox regression and
least absolute shrinkage and selection operator (LASSO) regression were used to screen
for DEGRGs with prognostic value. A risk-scoring model based on DEGRGs related
to prognosis was constructed. Receiver operating characteristic (ROC) analysis and
calculation of the area under the curve (AUC) were used to evaluate the performance
of the model. The model was verified in different clinical subgroups using an external
dataset (GSE131769). A nomogram that included clinical indicators and risk scores was
established. Gene function enrichment analysis was performed, and a protein-protein
interaction network was developed.
Results. We analyzed data from 772 tumors and 88 adjacent normal tissues from the
TCGA database and identified 286 glycolysis-related genes from the MSigDB. There
were 185 DEGRGs. Univariate Cox regression and LASSO regression indicated that
13 of these genes were related to prognosis. A risk-scoring model based on these
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13 DEGRGs allowed classification of patients as high-risk or low-risk according to
median score. The duration of overall survival (OS) was longer in the low-risk group
(P < 0.001), and the AUC was 0.755 for 3-year OS and 0.726 for 5-year OS. The results
were similar when using the GEO data set for external validation (AUC for 3-year OS:
0.731, AUC for 5-year OS: 0.728). Subgroup analysis showed there were significant
differences in OS among high-risk and low-risk patients in different subgroups (T1-2,
T3-4, N0, N1-3, M0, TNBC, non-TNBC; all P < 0.01). The C-index was 0.824, and the
AUC was 0.842 for 3-year OS and 0.808 for 5-year OS from the nomogram. Functional
enrichment analysis demonstrated the DEGRGs were mainly involved in regulating
biological functions.
Conclusions. Our prognostic model, based on 13 DEGRGs, had excellent performance
in predicting the survival of patients with IDC of the breast. These DEGRGs appear to
have important biological functions in the progression of this cancer.

Subjects Bioinformatics, Oncology, Women’s Health, Medical Genetics, Computational Science
Keywords Breast invasive ductal carcinoma, Glycolysis, Nomogram, Function enrichment
analysis

INTRODUCTION
Breast invasive ductal carcinoma (IDC) is the most common malignant tumor in females
worldwide (Harbeck et al., 2019; Hanker, Sudhan & Arteaga, 2020). In 2018, there were
more than 266,000 cases of breast IDC among females in the United States, and this cancer
accounted for 30% of malignant tumors in females, far more than lung cancer (13%)
(Bray et al., 2018; Ahmad, 2019). The prognosis of women with breast IDC is related to
the activation or silencing of various biological functions in tumor tissues and signaling
pathways. There are prognostic models based on tumor immunity and autophagy, but
no models have exclusively focused on IDC (Li et al., 2020a; Li et al., 2020b; Zhang,
Zhang & Yu, 2019; Hu et al., 2020) and few models examined genes that function in basic
metabolism.

Glycolysis is a series of reactions that catabolize most carbohydrates. ‘‘Metabolic
reprogramming’’ is the hallmark of tumors, and glycolysis is the main source of energy
for tumor cells, even when there is insufficient oxygen (Wu et al., 2020). Moreover,
activation of glycolysis-related genes occurs in almost all tumor cells. For example, Dai et
al. (2020) found that glycolysis promoted the progression of pancreatic cancer and induced
gemcitabine chemotherapy resistance. Long noncoding RNAs (lncRNAs) that interact
with Long Intergenic Noncoding RNA for IGF2BP2 Stability (LINRIS) activate aerobic
glycolysis in tumor cells, and can affect the development and prognosis of rectal cancer
(Wang et al., 2019a;Wang et al., 2019b).

Research on the function of glycolysis-related genes in breast tumors showed that
hexokinase (HK2) had high expression in breast IDC cells, and that HK2 silencing inhibited
IDC (Patra et al., 2013; Cao et al., 2020). Other research showed that overexpression
of 6-Phosphofructo 2-kinase/fructose 2, 6-bisphosphatase 3 (PFKFB3) promoted the
progression of breast IDC, and had negative associations with progression-free survival
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(PFS), distant metastasis-free survival (DMFS), and overall survival (OS) in patients with
breast IDC (O’Neal et al., 2016; Peng et al., 2018a; Peng et al., 2018b). Thus, glycolysis-
related genes have a potentially significant impact on the progression of breast tumors and
on the survival and prognosis of patients with breast tumors.

Our aim was to develop a prognostic model of breast IDC based on glycolysis-related
genes and determine the potential functions of glycolysis-related genes in the progression
of breast IDC.

MATERIALS AND METHODS
Data resources and preprocessing
The transcriptome data and corresponding clinical data of breast invasive ductal carcinoma
were downloaded from the TCGA database (https://www.cancer.gov/) (Tomczak,
Czerwinska & Wiznerowicz, 2015). The data set of glycolysis-related genes was obtained
from the MSigDB database (http://www.hmdb.ca). Using | log2FC | > 0.5 and false
discovery rate (FDR) <0.05 as the cut-off value, the data was normalized with the ‘‘edgeR’’
package from R, and then the differential analysis was performed to obtain the differential
expression of glycolysis-related genes (DEGRGs) between the tumor tissue and normal
tissue.

Construction of risk-scoring model
Based on the above DEGRGs, univariate Cox regression and LASSO regression were
used to screen out prognostic-related glycolysis genes. The risk score was evaluated by
the coefficient of each prognostic-related glycolysis gene. The risk scoring formula was
constructed as Risk scores=

∑i
1(coefi*expri), where i is the number of genes used to build

the model, coefi is the coefficients of the genes in the model, and expri the expression
of genes in the model. Taking the median risk score as the cut-off point, patients were
divided into high-risk and low-risk groups. The survival outcome of the two groups was
observed by Kaplan–Meier survival analysis. Receiver operating characteristic (ROC) curve
was applied to calculate the area under the curve (AUC) to evaluate the predictive ability
of the risk-scoring model. Independent GEO (https://www.ncbi.nlm.nih.gov/geo/) data
sets are used to verify the above results (Barrett et al., 2013). Univariate Cox regression and
multivariate Cox regression were used to identified the independent prognostic factors
among risk scores, age, tumor TNM stage, and whether triple negative breast cancer
(TNBC) or not. Through clinical survival analysis, the predictive ability of the risk-scoring
model in different clinical subgroups was clarified.

External validation of the risk scoring model
The TCGA results were validated using the GEO (https://www.ncbi.nlm.nih.gov/geo/)
dataset (GSE131769). For this validation, the outcomes of the two groups were compared
using Kaplan–Meier survival analysis. ROC curves were used to calculate AUCs and
evaluate the predictive performance of the risk-scoring model.
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Construction of the nomogram
A nomogram was constructed based on the results of the multivariate Cox regression, with
clinical information such as age, TMN stage, TNBC status, and DEGRG risk scores, to
predict 3-year and 5-year OS. The predictive ability of the nomogram was evaluated by
calculating the C-index and the calibration chart, clinical decision curve analysis, and an
ROC curve.

Function enrichment analysis
Weanalyzed the genes that were differentially expressed in the high-risk and low-risk groups
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO)
to identify pathway enrichment (Kanehisa et al., 2019). This analysis allowed identification
of the functions of the differentially expressed genes. We then examined whether the
differentially expressed genes were involved in the development of breast cancer.

Construction of interactive network diagram
To determine the relationship of the DEGRGs model with prognosis, a network between
genes was developed. The prognosis-related genes were imported into Search Tool for the
Retrieval of Interacting Genes Proteins (STRING) to construct an interaction network
(Szklarczyk et al., 2019).

RESULTS
DEGRGs in breast IDC
We obtained gene expression data and clinical data of females with IDC of the breast (772
tumor tissues, 88 adjacent normal tissues) from the TCGA database and the glycolysis gene
set (286 genes) from the GSEA website. Based on standard cut-off values for fold-change
in gene expression (|log2(FC) |> 0.5) and false discovery rate (FDR < 0.05), the IDC tissues
had 185 DEGRGs, with 67 down-regulated genes and 118 up-regulated genes (Figs. 1A,
1B, Table S1).

Relationship of DEGRGs with prognosis and risk-scoring model
We then identified patients with follow-up times greater than 30 days, and performed
univariate Cox regression and LASSO regression to screen for DEGRGs that were related to
prognosis (Figs. 2A, 2B, 2C). This analysis indicated that 13 DEGRGs were closely related
to prognosis.

We constructed a risk-scoring model based on multivariate Cox regression and divided
patients into high-risk and low-risk groups based on median risk score. Kaplan–Meier
survival analysis showed that patients with high-risk had significantly reduced duration
of OS (P = 9.795 ×10−8, Fig. 3A). ROC analysis indicated the AUC was 0.755 for 3-year
OS and 0.726 for 5-year OS (Fig. 3B). The risk curve and scatterplot (Figs. 3C, 3D) show
the risk scores and survival status of all patients, and indicate that the risk coefficient and
mortality rate were greater in the high-risk group. We plotted a ‘‘heat map’’ to visualize
the expression of the 13 DEGRGs in the high-risk and low-risk groups (Fig. 3E). Taken
together, these results confirm that 13 DEGRGs were significant prognostic indicators for
patients with IDC of the breast.
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Figure 1 Differentially expressed glycolysis-related genes between breast invasive ductal carcinoma
and normal tissues. (A) The volcano gram showed that compared with normal tissues, 67 DEGRGs were
down-regulated and 118 DEGRGs were up-regulated in breast invasive ductal carcinoma. (P < 0.05) (B)
The heat map showed the expression of 185 DEGRGs in both tumor tissues and normal tissues.

Full-size DOI: 10.7717/peerj.10249/fig-1

Figure 2 Screening DEGRGs with prognostic value. (A) Based on univariate Cox regression, the forest
map showed that there were 14 DEGRGs with prognostic significance (P < 0.05). (B, C) LASSO regression
further screened out 13 DEGRGs that were closely related to the prognosis.

Full-size DOI: 10.7717/peerj.10249/fig-2

We performed univariate and multivariate Cox regression to evaluate the effect of risk
score, age, triple-negative breast cancer (TNBC), and TNM stage on patient prognosis
(Figs. 4A, 4B). The results confirmed that the risk score was an independent prognostic
factor for patients with IDC of the breast (adjusted hazard ratio: 2.71, 95% CI [1.87–3.94]).

We also performed survival analysis of different subgroups based on TNM status (Fig. 5).
This analysis indicated that the risk-scoring model had good predictive value in the T1-2
subgroup, T3-4 subgroup, N0 subgroup, N1-3 subgroup, M0 subgroup, TNBC subgroup,
and non-TNBC subgroup (all P < 0.001), but not in the M1 subgroup (P = 0.857).

External validation of the risk scoring model
We verified the model using the GEO dataset (GSE131769). Kaplan–Meier survival curves
showed that patients with high-risk had a significantly shorter duration of OS (P = 3.245
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Figure 3 Construction of the risk-scoring model for patients with breast invasive ductal carcinoma
based on DGRG. (A) Kaplan–Meier survival analysis showed that patients in the high-risk group had a
shorter OS than that of the low-risk group (P = P = 9.795× 10−8). (B) The ROC curve showed that the
AUC of the 3-year OS and 5-year OS were 0.755 and 0.726, respectively. (C–E) The overview of survival
time for each patient, the distributions of risk scores for each patient and heatmaps of expression profiles
for 13-DEGRGs between the low-risk group and the high-risk group.

Full-size DOI: 10.7717/peerj.10249/fig-3

Figure 4 Assessment of risk scores and prognostic value of clinical data. (A) Univariate Cox analysis
showed that risk scores and clinical variables including age, TMN stage, and whether it was TNBC or not
were significantly related to OS. (B) Multivariate Cox analysis manifested that the 13-DEGRGs signature
was an independent prognostic indicator for patients with breast invasive ductal carcinoma.

Full-size DOI: 10.7717/peerj.10249/fig-4
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Figure 5 Clinical survival analysis of subgroups’ DGRG risk scores for breast invasive ductal car-
cinoma. (A) In the T1–T2 subgroup, the OS of the high-risk group was lower than that of the low-risk
group (P < 0.001). (B) In the T3–T4 subgroup, the OS of the high-risk group was lower than that of the
low-risk group (P = 0.006). (C) In the N0 subgroup, the OS of the high-risk group was lower than that of
the low-risk group (P < 0.001). (D) In the N0–N3 subgroup, the OS of the high-risk group was lower than
that of the low-risk group (P = 0.006). (E) In the M0 subgroup, the OS of the high-risk group was lower
than that of the low-risk group (P < 0.001). (F) In the M1 subgroup, there was no significant difference
in OS between patients in the high-risk group and the low-risk group, because the number of cases in the
M1 subgroup is relatively small (P = 0.857). (G) In the TNBC subgroup, the OS of the high-risk group
was lower than that of the low-risk group (P < 0.001). (H) In the NTNBC subgroup, the OS of the high-
risk group was lower than that of the low-risk group (P = 0.007). The above results suggested that the DE-
GRGs risk-scoring model had a good predictive ability.

Full-size DOI: 10.7717/peerj.10249/fig-5

×10−3, Fig. 6A). ROC analysis indicated that the AUC was 0.731 for 3-year OS and was
0.728 for 5-year OS (Fig. 6B). These results confirm the validity of our risk scoring model.

Construction of the prediction model
Based on the results of the multivariate Cox regression, we developed a nomogram based
on age, TMN stage, risk score, and TNBC status to predict 3-year and 5-year OS (Fig. 7A).
We then used the C-index, clinical decision curve, calibration chart, and ROC curve to
evaluate the predictive performance of the nomogram (Figs. 7B–7F). The results indicated
that the prognostic model had good prediction accuracy, with a C-index of 0.824, an AUC
for 3-year OS of 0.842, and an AUC for 5-year OS of 0.808. These results verified the
predictive ability of the nomogram.

Gene function enrichment analysis
To explore the potential mechanisms of prognosis-related DEGRGs in breast invasive
ductal carcinoma, we performed KEGG enrichment analysis and GO enrichment analysis.
KEGG pathway enrichment analysis showed that the gene set was enriched in the cell
cycle, DNA replication, glycolysis and gluconeogenesis, RNA degradation, arachidonic acid
metabolism, cytokine-cytokine receptor interactions, cytosolic DNA sensing, and ribosome
function (Figs. 8A–8H). GO enrichment analysis showed that the gene set was enriched in
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Figure 6 External validation of the risk scoring model The model was verified in GEO datasets
(GSE131769). Kaplan-Meier survival curves showed that the OS of patients with high-risk was
significantly shorter than in the low-risk group (P = P = 3.245 × 10−3, Fig. 6A). The ROC curve was
drawn to calculate the AUC of the 3-year OS and 5-year OS as 0.731 and 0.728, respectively (Fig. 6B).

Full-size DOI: 10.7717/peerj.10249/fig-6

Figure 7 Establishment and evaluation of the nomogram. (A) The nomograms for predicting the pa-
tients’ OS. (B) ROC curve analysis showed that AUC of 3-year and 5-year OS were 0.842 and 0.808, re-
spectively. (C) The calibration curve for the 3-year OS of the nomogram. (D) The calibration curve for the
5-year OS of the nomogram. (E) The clinical decision curve for the 3-year OS of the nomogram. (F) The
clinical decision curve for the 5-year OS of the nomogram.

Full-size DOI: 10.7717/peerj.10249/fig-7
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Figure 8 Enrichment analysis. (A–H) KEGG pathway analysis showed that these genes were involved in
cell cycle, DNA replication, glycolysis gluconeogenesis, RNA degradation, arachidonic acid metabolism,
cytokine cytokine receptor interaction, cytosolic DNA sensing pathway and ribosome. (I–P) GO enrich-
ment analysis showed that the genes were enriched in the cell cycle G1-S phase transition, DNA geomet-
ric change, meiotic cell cycle process, regulation of cellular response to heat, cytokine mediated signaling
pathway, regulation of homotypic cell cell adhesion, regulation of production of molecular mediator of
immune response, T cell differentiation.

Full-size DOI: 10.7717/peerj.10249/fig-8
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Figure 9 Construction of a network diagram of the interaction between DEGRGs. (A) The analysis
of STRING showed that there were interactions among six genes (P4HA2, P4HA1, PGK1, G6PD, HK3,
PMM2) in DGRG.

Full-size DOI: 10.7717/peerj.10249/fig-9

the cell cycle G1-S phase transition, DNA geometric changes, the meiotic cell cycle process,
regulation of cellular response to heat, cytokine-mediated signaling pathways, regulation of
homotypic cell–cell adhesion, regulation of production of molecular mediators of immune
responses, and T cell differentiation (Figs. 8I–8P).

Construction of an interactive network diagram
We constructed a network diagram to visualize the interactions between hub genes to
better understand the potential functions of the different DEGRGs on prognosis. The
results from STRING showed there were 6 interacting hub genes: P4HA2, P4HA1, PGK1,
G6PD, HK3, and PMM2 (Fig. 9).

DISCUSSION
Breast IDC is the most common pathological type of breast tumor, and morbidity and
mortality from this cancer continue to increase (Harbeck et al., 2019; Badve & Gokmen-
Polar, 2019). There is evidence that changes in glycolysis-related genes have multiple effects
on the prognosis of these patients (Li et al., 2020a; Li et al., 2020b; Chen et al., 2019). In
particular, tumor cells reprogram the glycolysis pathway to accommodate the increased
energy required for malignant transformations, including invasion and metastasis (Shen et
al., 2020; Abbaszadeh, Cesmeli & Biray, 2020). Given the importance of glycolysis on tumor
prognosis, numerous research groups have developed models based on glycolysis-related
genes in their studies of different cancers (Zhang, Zhang & Yu, 2019; Wang et al., 2019a;
Wang et al., 2019b; Karasinska et al., 2020). However, no previous study developed a
prognostic model for patients with breast IDC based on glycolysis-related genes.

In this research, we identified 13 DEGRGs that were related to prognosis in patients
with breast IDC, and then established a risk-scoring model. The results showed that the
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OS of patients in the high-risk group was significantly shorter than that of patients in the
low-risk group. We also examined the impact of patient age, TMN stage, TNBC status,
and risk score to construct a nomogram that predicts the 3-year and 5-year OS of these
patients. Our application of various evaluation methods indicated that the nomogram
had good performance in the prediction of OS. Our ROC analysis showed that the AUC
was 0.842 for 3-year OS and 0.808 for 5-year OS, higher than the AUC values reported
in previous models (Lin et al., 2020; Xie et al., 2019), thus indicating that our model had
better predictive ability.

Among the 13 DEGRGs we used to construct the risk model, increased levels of
P4H2A, NUP155, ALDH3B1, SDC1, G6PD, COPB2, B3GNT3, PMM2, and PGK1 were
associated with poor prognosis and increased levels of HK3, AGRN, P4HA1, and ISG20
were associated with favorable prognosis (Table S2). Previous research reported increased
levels of P4HA2 and P4HA1 (the two isomers of collagen prolyl 4-hydroxylase) in several
types of human cancers and that both enzymes promoted glycolysis in tumor cells (Li et
al., 2019). PGK1 is the first key enzyme to produce ATP in the glycolytic pathway, PGK1 is
not only a metabolic enzyme but also a protein kinase, which mediates the tumor growth,
migration and invasion through phosphorylation some important substrates (Fu & Yu,
2020). There is also evidence that SDC1 can promote the migration of breast cancer cells
across the blood–brain barrier by regulating the expression of cytokines, thus promoting
brain metastasis (Sayyad et al., 2019). Mele et al. found that the overexpression of G6PD
can induce lapatinib resistance in breast cancer and also found a significant correlation
between high expression of G6PD and tumor recurrence (Mele et al., 2019). Sauter et
al. found that the level of HK3 in the nipple aspirate of patients with breast cancer was
significantly lower than that of healthy women, and considered an elevated HK3 level as
a possible sign of early breast cancer (Mannello & Gazzanelli, 2001). Thus, these previous
studies are consistent with our finding that glycolysis-related genes were closely related to
the occurrence and development of breast cancer and the prognosis of patients.

To further characterize the potential roles of the 13 DEGRGs in our risk model, we
performed GO and KEGG enrichment analysis. The results showed that the gene set was
enriched in cell cycle, DNA replication, glycolysis gluconeogenesis, RNA degradation,
arachidonic acid metabolism, cytokine cytokine receptor interaction, cytosolic DNA
sensing pathway and ribosome. Previous studies showed that under hypoxic conditions,
metabolic reprogramming of breast tumor stem cells helped to maintain their growth and
proliferation (Peng et al., 2018a; Peng et al., 2018b). Breast cancer occurs in patients with
impaired immune function, in which cytokines function as growth signals for tumor cells.
Many studies showed that interactions between the immune system and cancer cells, which
are mediated by cytokines and chemokines, affect the initiation and progression of breast
cancer and the response to treatment (Lim et al., 2018; King, Mir & Singh, 2017; Fabre et
al., 2018). DNA replication is a fundamental biological process, and replication disorders
can lead to genomic instability, an important feature of breast cancer. Many experimental
and clinical studies have identified disorders of DNA replication during the development
and progression of breast cancer (Kitao et al., 2018). Aerobic glycolysis pathway includes
hexokinase, phosphofructokinase (PFK), and other genes (Wu et al., 2020). These previous
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findings therefore support our conclusion that the 13 glycolysis-related genes identified
here play an important role in the progression of breast tumors.

Our study has some limitations. Firstly, the predictive model lacks information about
patient treatments, thus limiting its predictive performance. Secondly, this study was based
on bioinformatics analysis, and further studies are needed to determine the potential
functional mechanisms.

CONCLUSIONS
In conclusion, our prediction model, which is based on 13 DEGRGs and the clinical
characteristics of patients, can reliably predict the OS of patients with breast IDC. These
13 DEGRGs and several related miRNAs thus appear to play an important role in the
development and progression of breast IDC.
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