
sensors

Article

Registration of Aerial Optical Images with LiDAR
Data Using the Closest Point Principle and
Collinearity Equations

Rongyong Huang 1,2,3,* ID , Shunyi Zheng 4,5 and Kun Hu 6,7,8 ID

1 Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University,
Nanning 530004, China

2 School of Marine Sciences, Guangxi University, Nanning 530004, China
3 Coral Reef Research Centre of China, Guangxi University, Nanning 530004, China
4 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;

syzheng@whu.edu.cn
5 Collaborative Innovation Center for Geospatial Technology, Wuhan University, Wuhan 430079, China
6 Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; hu.1775@osu.edu
7 Key Laboratory of Technology in Geo-Spatial Information Processing and Application System,

Chinese Academy of Sciences, Beijing 100190, China
8 Department of Civil, Environmental and Geodetic Engineering, Ohio State University,

Columbus, OH 43210, USA
* Correspondence: rongyonghuang@gxu.edu.cn; Tel.: +86-152-7710-3086

Received: 4 May 2018; Accepted: 29 May 2018; Published: 1 June 2018
����������
�������

Abstract: Registration of large-scale optical images with airborne LiDAR data is the basis of the
integration of photogrammetry and LiDAR. However, geometric misalignments still exist between
some aerial optical images and airborne LiDAR point clouds. To eliminate such misalignments,
we extended a method for registering close-range optical images with terrestrial LiDAR data to
a variety of large-scale aerial optical images and airborne LiDAR data. The fundamental principle is
to minimize the distances from the photogrammetric matching points to the terrestrial LiDAR data
surface. Except for the satisfactory efficiency of about 79 s per 6732 × 8984 image, the experimental
results also show that the unit weighted root mean square (RMS) of the image points is able to reach
a sub-pixel level (0.45 to 0.62 pixel), and the actual horizontal and vertical accuracy can be greatly
improved to a high level of 1/4–1/2 (0.17–0.27 m) and 1/8–1/4 (0.10–0.15 m) of the average LiDAR
point distance respectively. Finally, the method is proved to be more accurate, feasible, efficient,
and practical in variety of large-scale aerial optical image and LiDAR data.

Keywords: registration; aerial Image; LiDAR; point cloud; collinearity equation

1. Introduction

Light detection and ranging (LiDAR) has been an indispensable technology in the field
of surveying and mapping, and many researchers agree that photogrammetry and LiDAR are
fairly complementary for more accurate and complete products and a higher automation level of
processes [1–5]. As a result, photogrammetry and LiDAR were integrated for plenty of applications,
e.g., tree detection [6,7], building detection [8], change detection [9], true orthophoto generation [10],
3D city model creation [11–15], and landscape roughness estimation [16], etc.

As is known, integration of photogrammetry and LiDAR can only be implemented after the
geometric registration, making the photogrammetric model and the LiDAR data relative to a common
reference frame [17–19]. Currently, direct georeferencing (DG) of airborne sensors with GPS/INS
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is a widely accepted approach in the airborne mapping industry [20–22]. Hence, the geometric
registration of aerial images with LiDAR data may be achieved by integrating the aerial camera and
the laser scanner device with GPS/INS directly.

However, until now, the geometric misalignments between the optical images and the LiDAR data
are still difficult to avoid by using DG in actual projects [3,20,21]. Possible reasons are as follows: (1) the
position and orientation records of some early images were lost due to human factors; (2) as collected
by different platforms or in different periods, some optical images and LiDAR data may be referenced
to different national coordinate frames without known coordinate transformation parameters; (3) there
are some system errors in actual integrated sensor orientation (ISO) system, such as lever-arms,
boresights, synchronizations, and interior orientation parameters, etc. Therefore, it is still necessary to
research on the geometric registration of aerial optical images with LiDAR data, and this is what we
focus on in this paper.

Geometric registration of aerial images with LiDAR data can be considered to orient 2D images to
3D point clouds, so the registration can be achieved by using photogrammetric orientation procedures.
In such procedures, the control points are collected from the LiDAR point clouds. One common way
to collect control points for the registration is to select conjugating pairs interactively. Wu et al. [23]
presented a two-step displacement correction algorithm for registration of aerial images and LiDAR
data with interactive point pairs selecting. Kurz et al. [24] registered spectral panoramic imagery and
LiDAR data with control point measurement and block adjustment. Some others [25–27] registered
the aerial images with LiDAR data relying on manual vanishing point detection. The problem is
that it is hard to pick out enough evenly distributed conjugate pairs even with significant manual
efforts, and errors from the selected pairs will be propagated and enlarged by the transformation
models [28,29].

Another way to collect control points is to automatically extract and match salient feature
points between the optical images and the LiDAR intensity images. For example, Toth and Ju [30]
matched the features of the optical satellite images to LiDAR intensity images for their georeferencing;
Wang et al. [27] presented a study on a multisource image automatic registration system (MIARS)
based on the scale-invariant feature transform (SIFT).

Since the LiDAR intensity images would provide better similarity to the optical images than
the elevation values within a digital surface model (DSM), incorporating LiDAR intensity images
into the registration of 2D image with 3D LiDAR data should have great potential to enhance the
registration accuracy [2]. Nevertheless, matching between image pixels and LiDAR intensities are not
always available because of the irregular and discrete distribution of the LiDAR data, the low density
of the point clouds, and the nonlinear relationship between LiDAR intensity and the aerial optical
images, etc.

Some other artificial point features, such as roof centroids [31,32] and building corners [33,34] are
also used as the control points to register airborne LiDAR data with aerial optical images. They are
feasible in urban areas, but will become difficult in rural areas. The reason is that there are few artificial
feature point in rural areas.

Point cloud-based registration is also applied to the registration of aerial optical images with
LiDAR data. In such approaches, the optical images are transformed into 3D point clouds by using
photogrammetric image matching or structure from motion (SFM), and the registration is then
implemented by 3D motion analysis methods. Habib et al. [35] generated the 3D straight-line pairs
from the optical images and the LiDAR data respectively. Accordingly, the transformation between
the photogrammetric coordinate system and the LiDAR reference frame is then established by using
those 3D straight-line pairs. Kim et al. [36] presented a registration method based on plane-feature
correspondence between the LiDAR depth map and the photogrammetric depth map generated from
the optical images. Zhao et al. [37] used stereo vision techniques to infer 3D structure from video
sequences followed by the 3D to 3D registration with an iterative closest-point (ICP) algorithm [38].
Pothou et al. [39] proposed an algorithm for the registration of the optical images and the LiDAR data,
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based on the minimization of the distances between the points of one surface-to-surface patch of the
other surface. Teo and Huang [40] also developed similar methods to align 2D images and 3D LiDAR
data to a common reference frame using improved ICP algorithm. Point cloud-based methods are very
simple and convenient, but require much more accurate 3D multi-view reconstruction. In other words,
to eliminate the deformation of the point clouds generated from the optical images, camera calibration
must be done before collecting the optical images, or plenty of ground control points must be set up
for a self-calibration bundle adjustment. Otherwise, 3D to 3D point cloud-based registration can only
apply to registration on small blocks.

Linear and planar feature-based registration is another important registration approach.
Such an approach refers to orienting the optical images to the LiDAR data via matching linear
or planar features. Schenk and Csathó [4] proposed the sensor-invariant feature concept, such as
linear features and planar features, for the registration of the aerial optical images and the LiDAR
data in 2002. Habib et al. [19,41] incorporated the straight-line features derived from the LiDAR data
and the optical images to a photogrammetric triangulation based on a modified coplanar constraint.
Shorter and Kasparis [42] developed a registration method based on building roofs resent in both the
optical images and the LiDAR data. In the method, binary masks of the buildings extracted from the
LiDAR data and the aerial optical images were used to register the two data sets. Deng et al. [43]
presented a registration algorithm by matching the straight-line pairs detected from the LiDAR data
and the optical images by using generalized point photogrammetry. Ding et al. [44] made use of
the vanishing points to extract some features named 2DOCs (2D orthogonal corners) for refining the
camera parameters refer to the point clouds. Wang and Neumann [45] further proposed a novel feature
called 3CS (3 connected segments) to develop a robust automatic registration approach, which are
claimed more distinctive than 2DOCs. Choi et al. [46] also proposed a method to simultaneously
register optical images with LiDAR data, using some area and linear primitives as the ground control
features. Yang and Chen [47] proposed a novel automatic registration method for mini-UAV sequent
images and LiDAR data: coarse registration are generated by extracting some building outlines and
corners and making use of SFM and multi-view stereo (MVS) algorithms, then an ICP algorithm is
further employed to refine the registration. Safdarinezhad et al. [48] utilized shadow contours to
align QuickBird sub-images with aerial LiDAR data, and obtained the RMSEs of 0.85–1.30 pixels.
Javanmardi et al. [49] presented a road feature-based framework for automatic georeferencing of
mobile mapping system point cloud with the aerial images for urban areas. As the accuracy appears to
be much lower while using natural features than artificial features [3], linear and planar feature-based
registration is mainly suitable for areas that are rich in artificial linear and planar features, such as
buildings, roads, and urban areas, etc.

Finally, mutual information-based registration methods have been proposed in the field of medical
imaging over the past few decades [50], and its promising results have encouraged the computer vision
and remote sensing communities to exploit the approach for multi-sensor data registration [51,52].
Mastin et al. [53] exploited the statistical dependency in urban scenes of the optical appearance
with the LiDAR data, and proposed an application of mutual information (MI) registration methods.
Parmehr et al. [54–56] also researched on a combined mutual information (CMI) technique for the
registration of the optical imageries and LiDAR data several years. They have produced a similarity
measure that can exploit the inherently registered LiDAR intensity and point cloud data to improve the
robustness of the registration. Mutual information-based registration methods are usually calculated by
using derivative-free optimization (DFO) [53,54,56], such as Powell’s optimization or downhill simplex
optimization. As a result, mutual information-based methods still need much further improvements
to reduce the computational burden, or they will be difficult to apply to large-scale aerial images and
LiDAR data in practice.

On the basis of the collinearity equation model, Zheng et al. [57] have proposed a flexible and
convenient method for the registration of optical images with terrestrial LiDAR data implemented
by minimizing the distances from the photogrammetric matching points to the terrestrial LiDAR
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data surface. The method can greatly reduce the manual work and errors, and obtain a relative
high accuracy. What is more, the method has the following advantages: (1) the registration can
be implemented without linear and planar feature extraction and segmentation; (2) the non-rigid
deformation caused by lens distortion can be effectively eliminated with the introduction of lens
distortion parameters; (3) neither camera calibration nor extra control points for a self-calibration are
required. However, as the method was designed mainly for terrestrial data rather than airborne data,
the method was not further tested on aerial images and LiDAR point clouds.

In this paper, we extend the method proposed by Zheng et al. [57] from close-range images and
terrestrial point clouds to large-scale aerial optical images and airborne LiDAR data. As the calculation
can follow some derivative-based optimization methods, we do not worry about the computational
burden for the extension. On the other hand, the extension can keep all the advantages of the method
proposed by Zheng et al. [57]. In other word, in addition to the extension to large-scale airborne data,
the method can inherit the advantages as follows: (1) the method can be implemented without linear
or planar feature extraction and segmentation in the LiDAR data; (2) if necessary, the method can also
eliminate the non-rigid deformation caused by lens distortion without extra camera calibration or
a large number of ground control points, i.e., neither camera calibration nor plenty of control points
are necessary for the method. Hence, in contrast to some linear and planer feature-based methods,
the extended method is able to adapt to both urban and rural areas.

2. Materials and Methods

2.1. Materials

Four different data sets are used to test the extended method on the registration of aerial optical
images and airborne LiDAR data. Data I and II are located in Xinjiang and Guangdong, China,
respectively. Data III and IV are both located in Guangxi, China. Both the images and the point clouds
of data I were captured in 2014, while those of data II were obtained in 2011. Data III and IV share the
same LiDAR data, which was acquired in 2010. But their optical images were captured in 2010 and
2012 respectively. The optical images of data II were captured by a Rollei Metric AIC Pro digital
camera, and the LiDAR data was acquired by a Harrier 68i laser scanning device (Trimble, Sony Weil,
CA, USA). The horizontal and vertical accuracy of the laser scanning device approximate 0.25 m and
0.15 m respectively. The camera and laser scanning device versions of other data sets are unknown.
More information on these data sets is presented in Table 1.

Table 1. Information on the aerial optical images and airborne LiDAR data 1.

Data I II III IV

Images

Pixel Size (mm) 0.006 0.006 0.012 0.012
Frame Size (pixel) 6732 × 8984 6732 × 8984 7680 × 13,824 7680 × 13,824
Focal Length (mm) 51.0 51.0 120.0 120.0
Flying Height (m) 900 700 1800 1700

GSD (m) 0.10 0.09 0.18 0.17
Forward Overlap 80% 60% 80% 65%

Side Overlap 75% 30% 35% 20%
Image Number 1432 222 270 108
Stripe Number 26 6 8 4

LiDAR Data

Point Distance (m) 0.5 0.5 0.9
Point Density (pts/m2) 4.0 4.8 1.3

Point Number 183,062,176 251,893,187 273,780,202
Stripe Number - 6 12
File Number 424 6 12

1 (a) All the data sets mixed urban areas with rural areas, but most artificial control point-based and linear and
planar feature-based methods are only available in urban areas; (b) Data III and IV share the same point clouds;
(c) the acquire time of the optical images of data IV is different from the LiDAR data, and this was rarely considered
in common research; (d) Except for data II, all the cameras of other three data sets are uncalibrated.
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2.2. Fundamental Geometric Relationship

With the registration of aerial optical images with LiDAR data, we refer to the process of
establishing a common reference frame for the two data types. Thus, the fundamental geometric
relationship between the images and the point clouds must be clearly illustrated first. The purpose is
to find useful redundancy for the registration. The fundamental geometric relationship is shown in
Figure 1, using a typical airborne LiDAR system as an example.
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Photogrammetry is a traditional method of reconstructing surfaces, in which a 3D point or linear
feature can be reconstructed from two or more overlapping aerial images [4]. If the interior and
exterior orientation parameters of the images have been known, the 3D points can be intersected
by using conjugate rays, as shown in Figure 1. It means that the crucial step of photogrammetry is
the image matching to identify the same features from different images. Conversely, interior and
exterior orientation parameters can also be exactly refined by using plenty of conjugate image points,
e.g., bundle adjustment is such a tool to jointly refine the optimal 3D structure and the interior and
exterior orientation parameters [58].

LiDAR has been proven to be a promising system that can sample the 3D points of the reflective
surface effectively and accurately [4]. As shown in Figure 1, the laser points are computed from
the navigation data (GPS/INS) and range measurements, so there is no inherent redundancy in
the computation of a laser point. However, it is important to realize that the surfaces captured by
photogrammetry and LiDAR are actually the same, and this produces the redundancy to connect the
aerial optical images and the airborne LiDAR data, as shown in the right of Figure 1.

2.3. Parameterization of the Geometric Relationship

Based on the fundamental geometric relationship, suppose P is a 3D ground point that can be
intersected by the conjugate rays of several different optical images, as shown in Figure 1. Then the
geometry of the optical images is parameterized by collinearity equations as follows [59]: x− x0 − ∆x = − f a1(X−Xs)+b1(Y−Ys)+c1(Z−Zs)

a3(X−Xs)+b3(Y−Ys)+c3(Z−Zs)

y− y0 − ∆y = − f a2(X−Xs)+b2(Y−Ys)+c2(Z−Zs)
a3(X−Xs)+b3(Y−Ys)+c3(Z−Zs)

, (1)

where: 
∆x = (x− x0)(k1r2 + k2r4) + p1[r2 + 2(x− x0)

2] + 2p2(x− x0)(y− y0)

∆y = (y− y0)(k1r2 + k2r4) + p2[r2 + 2(y− y0)
2] + 2p1(x− x0)(y− y0)

r =
√
(x− x0)

2 + (y− y0)
2

. (2)
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In addition, x and y are the coordinates of the image point, x0 and y0 are the coordinates of the
principle point, f is the principle distance, k1, k2, p1 and p2 are the lens distortion parameters, X, Y and
Z are the object space coordinates of the ground point P, Xs, Ys and Zs are the object space coordinates
of the perspective center, and ai, bi and ci (i = 1, 2, 3) are the nine elements of the rotation matrix
formed by three rotation angles ϕ, ω and κ.

The collinearity equations contain three categories of unknowns: exterior orientation parameters,
object point coordinates, and intrinsic parameters (the principle point coordinates, principle distance,
and lens distortion parameters). Similar to self-calibration, the corresponding error equations are
illustrated by using the first-order Taylor series expansion as follows:

Vx,y=Ax,y∆t + Bx,y∆p+Cx,y∆i−Lx,y, (3)

where Vx,y =
(

vx vy

)T
is the residual vector of image point observations

(
x y

)T
, and ∆t,

∆p, and ∆i stand for the correction terms of the exterior orientation parameters, the object point
coordinates, and the intrinsic parameters respectively. Ax,y, Bx,y and Cx,y refer to the corresponding
first-order partial derivatives of the error equations, Lx,y the constant item calculated by using the
approximate values of the unknowns.

Furthermore, since the surface generated by the images is actually the same as the one captured
by LiDAR, the closest point principle proposed by Zheng et al. [57] can also be used in this paper to
connect the aerial images and the LiDAR data. Although the coordinates of the 3D ground point P are
seen as unknowns and we cannot find the exact correspondence from the LiDAR data, P should be
located on the LiDAR data surface. In other words, whereas there are unpredictable random errors in
both the image matching and the LiDAR point clouds, P should be forced to be as close to the LiDAR
data surface as possible.

Accordingly, suppose the distance from P to the LiDAR data surface is d, and d should be
possibly and infinitely close to zero, as shown in the right of Figure 1. Suppose further that the real
surface is smooth enough to be fitted locally by the tangent plane, and the coordinates of the closest

point of P in the LiDAR data and the corresponding normal vector are P0 =
(

X0 Y0 Z0

)T
and

→
n =

(
nx ny nx

)T
, respectively, then d can be estimated by using the distance from P to the

tangent plane at P0 as follows:

d ≈ →n
T
(P–P0) ≈ 0. (4)

The error equation corresponding to equation (4) is also formed by first-order Taylor series expansion:

vp =
→
n

T
∆p–
→
n

T
(P0–P(0)), (5)

where P(0) is the initial value vector of the coordinates of P. It should be noted that the normal vector
→
n at P0 can be estimated by fitting a local plane with several approximate points around P0, so

→
n is

regarded as known.

2.4. Bundle Adjustment Model and Solution

The exterior orientation parameters, the object point coordinates, and the intrinsic parameters
should satisfy Equations (3) and (5) at the same time. Therefore, to further consider the virtual
observation equations of the intrinsic parameters, the error equations can be written as follows:

V = A∆T + B∆P + C∆I− L W
VP = N∆P − LP WP

VI = ∆I− LI WI

, (6)
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where V is the residual vector consisting of Vx,y in Equation (3), VP is the residual vector consisting
of vp in Equation (5), and VI is the error vectors of the virtual observation equations of the intrinsic
parameters; A, B, and C are the partial derivative matrixes, which consists of all Ax,y, Bx,y, and Cx,y;
∆T, ∆P, and ∆I are the corresponding correction terms, which consists of all ∆t, ∆p, and ∆i in Equation
(3); N is the coefficient matrix that consists of all the coefficients of Equation (5), L, LP, and LI are the
constant items, and W, WP, and WI are the weight matrices.

The normal equation with respect to Equation (6) has a well-defined banded and bordered
structure [58,59], which is similar to Zheng et al. [57]. Thus, similar to common bundle adjustment,
the solution can be achieved by an iterative least squares estimation process (ILSEP). ILSEP is
able to make full use of the symmetric and positive, definite and sparse properties of the normal
equations and employ the Cholesky method to reduce the computational burden for solving the normal
equations [58,59]. Once the correction terms are solved, the exterior orientation parameters, the object
point coordinates, and the intrinsic parameters are then corrected accordingly. Those corrected
parameters are seen as the initial values for the next iteration until the corrections are small enough.

In contrast to close-range registration, some aerial images are usually captured by metric cameras
or calibrated cameras, e.g., data II. In this case, the intrinsic parameters are exactly known, so the
correction terms of the intrinsic parameters become unnecessary in the registration. As a result,
the weight matrix with respect to the virtual observation equations of the intrinsic parameters can be
then set as large as possible to force the correction terms to be as close to zeros as possible. In other word,
different weight matrices can be used to adapt to a wide variety of cameras, including metric cameras
in traditional airborne photogrammetry and non-metric cameras in low altitude photogrammetry.

Besides, the weight with respect to Equation (5) can be estimated by using equation as follows:

wP = w
σ2

I
σ2

L
, (7)

where w is the weight with respect to the Equation (3), and is set as 1 in the experiments; σI represents
the matching precision of the optical images; σL represents the accuracy of the LiDAR data.

As the matching precision of the images and the accuracy of the LiDAR data are unknown for the
experiment data, σI and σL are empirically set to 0.5 pixel and 0.5 average point distance of the LiDAR
data respectively in this paper, i.e.,: {

σI = 0.5
σL = f

H ×
δ
2 ×

1
∆

, (8)

where f is the focus length, H is the flying height, δ is the average point distance of the LiDAR data,
and ∆ is the pixel size.

3. Implementation

3.1. Implementation Flow

The implementation flow of the extended method can be divided into preprocessing for preparing
the inputs and iterative calculations for refining the registration, as shown in Figure 2.

Though the extended registration method need not to match the aerial optical images with
the LiDAR intensity or depth images, the matching between different optical images are important.
The reason is that matching between different optical images provide the redundancy for connecting the
LiDAR data with the aerial images. In this paper, scale-invariant feature transform (SIFT) operator [60]
is chosen to do the optical image matching, just because SIFT-based matching has the property of being
invariant to image scaling, image rotation, and partial illumination change.
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In addition, if extra GPS/INS data is available, the initial values of the ground point
coordinates can be estimated directly by intersecting the conjugate rays of the aerial optical images.
Otherwise, the free net bundle adjustment module of DPGrid [61] is then employed to calculate
the exterior orientation parameters of the images and construct the ground point coordinates under
an arbitrary coordinate system. Thereafter, similar to Zheng et al. [57], 3 pairs of coarse conjugate
points between the free net and the LiDAR data are then selected manually to estimate the initial
values of the exterior orientation parameters and the object point coordinates. Such initial values are
regarded as the inputs of the iterative calculations, as shown in Figure 2.

In the iterative calculations, the exterior orientation parameters, the intrinsic parameters, and the
ground point coordinates are refined simultaneously by solving Equation (6). Such procedure can
minimize the distances from the photogrammetric matching points to the corresponding tangent
planes of the terrestrial LiDAR data surface. However, the exact tangent plane corresponding to
a certain photogrammetric matching point is difficult to identify, so the approximate tangent plane at
the closest LiDAR point to the estimated photogrammetric matching point is used in practice. For this
reason, the calculations is actually an iterative procedure as follows (Figure 2):

(1) Preprocess the data for estimating the initial values, i.e., the exterior orientation parameters,
the object point coordinates, and the intrinsic parameters;

(2) Find the closest 3D point to the photogrammetric matching point from the LiDAR data, and fit
a local plane to estimate the normal vector using the surrounding LiDAR points;

(3) Discard the gross 3D points and check if the distances from the photogrammetric matching points
to the corresponding tangent planes are all small enough to go to step 8. Otherwise, go to step 4.

(4) Construct the error equations and normal equations with the initial parameters, and then
reduce the structure parameters (the corrections of the coordinates of the 3D points) of the
normal equations;

(5) Solve the reduced normal equations for acquiring the corrections of the exterior orientation
parameters and the intrinsic parameters, and further obtain the corrections of the ground point
coordinates with back-substitution;

(6) Correct the parameters and estimate the unit weighted root mean square error (RMSE);
(7) Check if the RMSE or the corrections are small enough to go to step 2. Otherwise, go to step 4,

using the corrected parameters as the initial parameters;
(8) Evaluate the accuracy and output the results.

It is obvious that the photogrammetric matching points are much sparser than the LiDAR data.
Hence, to reduce the calculation time, instead of calculating all the normal vectors of the LiDAR data
during preprocessing, we just estimated the normal vectors of the closest points to the photogrammetric
matching points during the iterative calculations.
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What is more, the airborne data is different from the terrestrial data, e.g., airborne LiDAR data is
generally much greater in size than those of close-range data, and there may be some discontinuities
against to the smoothness hypothesis of the LiDAR data surface. The solutions to these problems are
further introduced in the following two sections.

3.2. Organization Structure of the LiDAR Data

As mentioned previously, the airborne LiDAR data generally contains so many 3D points that we
are difficult to process them. To overcome this difficulty, the LiDAR data is divided into several small
blocks in the procedure. Specifically, we partition the LiDAR data into different blocks according to
their XY-coordinates in the size of W × H (4 km× 4 km for each small block in this paper), as shown
in Figure 3.Sensors 2018, 18, x 9 of 20 
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To further improve the computational efficiency, we make use of a K-D tree [62] to manage the
LiDAR points for each small block. K-D tree is known as a space-partitioning data structure for
organizing points in a k-dimensional space, and it was useful for us to efficiently search the closest
point of a certain photogrammetric matching point from a small LiDAR data block.

Once the LiDAR data is partitioned, the photogrammetric matching points are also classified
into those blocks according to their current ground coordinates. Thus, the closest point search in
step 2 of the iterative calculations can then be done block by block. As the current ground coordinates
of the photogrammetric matching points are coarse in the iterations, the closest point of a certain
photogrammetric matching point and its neighborhood may not be exactly located in the classified
block, but also possibly in the neighbor blocks. For example, as shown in Figure 3, suppose that
a photogrammetric matching point is classified into the 13th block, but its closest LiDAR point and
its neighborhood may be located in the 7th, 8th, 9th, 12th, 13th, 14th, 17th, 18th, or 19th blocks in
actual. Therefore, to find the closest LiDAR point of the photogrammetric matching point (and the
neighborhood of closest LiDAR point), we can make use of the K-D trees to do the search respectively
in the 7th, 8th, 9th, 12th, 13th, 14th, 17th, 18th, and 19th blocks at first, and then further find the
optimum from those search results.

In addition, the strategy to do the search block by block in order is used in this paper. Take Figure 3
for example, the search are done in order of the shown numbers. If the search of the photogrammetric
matching points classified in a block is finished, we can then go to the next neighbor block. In such case,
only a part of the current blocks needs to be reloaded and updated, e.g., when we go to the 14th block
from the 13th block, only the 9th, 12th, and 19th blocks need to be updated by the 6th, 15th, and 16th
blocks respectively. With such strategy, the iterative calculations can be easily applied to large-scale
geometric registration of aerial images with LiDAR data with thousands of millions of points.
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3.3. Discard the Gross Points

There are several inevitable factors that need to be eliminated in the geometric registration
procedure. Generally, the main factors that need to be eliminated can be summarized as follows:
(1) a few patches of the surface are discontinuities and against to the smoothness hypothesis,
e.g., the vegetation regions, and some corners and edges; (2) the ranges of the aerial images and
the LiDAR data are not exactly consistent to each other; (3) inevitable gross points are sometimes
produced during the image matching.

To eliminate first two factors, when the nearest point to a photogrammetric matching point
has been searched, principal component analysis (PCA) is used to estimate the normal vector [63],
where the eigenvector with respect to the minimum eigenvalue can be seen as the estimation of the
normal vector. The PCA was done by using the 3 × 3 covariance matrix of the 3D coordinates
of the first 10 nearest neighbor LiDAR points to the nearest LiDAR point of the photogrammetric
matching point. Actually, according to our experience, we can also set the neighborhood size as
10–15 points. Such setting is able to obtain similar estimation results without obviously difference
from neighborhood size of 10.

Suppose the distance from the photogrammetric matching point to its nearest point in the LiDAR
data is d, and the eigenvalues of the covariance matrix are λ1 ≥ λ2 ≥ λ3 ≥ 0.

Given two thresholds, Td for identifying the different ranges, and Tλ for identifying the
discontinuities: if d ≥ Td, or λ3

λ1+λ2+λ3
≥ Tλ, the nearest point is then discarded as gross points.

Several cases for accepting/rejecting the closest LiDAR points are illustrated in Figure 4.
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Note that, the observation number is usually large for the registration, so we only need to
discard the gross points that are relative obvious. As a result, Td and Tλ can empirically set as some
conservative values (Td = 2δ and Tλ = 1

6 for our experiments).
Though the PCA method is effective to detect most of the significant gross points caused by

discontinuities and different ranges, the strategy proposed by Zheng et al. [57] is still needed to
eliminate the influence of the gross points caused during the image matching. The strategy is started
by giving a gross error rate signed ε (ε = 5 for the experiments) followed by the following steps:
(1) The photogrammetric matching points are firstly put in order according to the distances to the
LiDAR data surface; (2) Then, ε percent of the photogrammetric matching points with the greatest
distances are removed as gross points; (3) Finally, the calculations is done by using the remaining points.
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If the discontinuities or the range differences is considered, we need just discard the gross nearest
LiDAR points rather than the photogrammetric matching points. In this case, Equation (5) are missing,
while corresponding collinearity Equation (3) can be remained. The remaining collinearity equations
can still provide the connection constraints for the aerial optical images. Therefore, the iterative
calculations is also able to adapt to the case that the ranges of the aerial images and the LiDAR data
are not well consistent to each other. Besides, an average of at least 20 valid patches per optical image
is considered in the experiments. As a result, a minimum of about 20 valid patches per image can be
suggested for the registration.

3.4. Assess the Registration

As shown in Figure 4, the results are assessed after the iterative calculations. As in any other least
squares solution and Zheng et al. [57], the unit weighted root mean square (RMS) error is firstly used
to evaluate the iterative calculations. Base on Equation (6), the expression is as follows:

RMS0 =

√
VTWV + VT

PWPVP + VT
I WIVI

n− nT − nP − nI
, (9)

where n is the number of the observations, and nT , nP, and nI are the numbers of exterior parameters,
ground 3D coordinates for the photogrammetric matching points, and intrinsic parameters, respectively.
In addition, the unit weighted RMS of the photogrammetric image matching point observations and the
distance observations are also used to evaluate the iterative calculations. They can be expressed as follows:

RMSI =

√
VTWV

nIm
, (10)

RMSd =

√
VT

PWPVP

nd
, (11)

where nIm and nd are the number of image point observations and the distance observations.
Check point (CP) is another one of the most often used accuracy assessment method in

photogrammetry. The main steps can be summarized as follows:

(1) Measure the 3D coordinates corresponds to the CPs from the aerial optical images by using
forward intersection, Pi(Xi, Yi, Zi) (i = 1, 2, · · · , n, and n is the number of the CPs);

(2) Calculate the errors by comparing the measured Pi with the coordinates of the corresponding CP
P̃i(X̃i, Ỹi, Z̃i),

∆i = P̃i− Pi = (∆Xi, ∆Yi, ∆Zi), (12)

where: 
∆Xi = X̃i − Xi
∆Yi = Ỹi −Yi
∆Zi = Z̃i − Zi

, (13)

(3) Calculate the statistics of the errors of CPs, for example, the minimum error (MIN), the maximum
error (MAX), the mean of the errors (∆), and the root mean square errors (σ),

∆ = (∆X , ∆Y, ∆Z) = (
1
n

n

∑
i=1

∆Xi,
1
n

n

∑
i=1

∆Yi,
1
n

n

∑
i=1

∆Zi), (14)

σ = (σX , σY, σZ) =

(√
1
n

n

∑
i=1

∆X2
i ,

√
1
n

n

∑
i=1

∆Y2
i ,

√
1
n

n

∑
i=1

∆Z2
i

)
, (15)
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σXY =
√

σ2
X + σ2

Y, (16)

Measuring the 3D coordinates (Pi) from the aerial optical images can be done easily by using
photogrammetric software such as DPGrid developed by Wuhan University, so we just need to focus
on how to measure the CPs from the LiDAR data. To make the measurement being more accurate,
only some artificial feature points are selected as our CPs in this paper. As shown in Figure 5, we need
to manually select some LiDAR points along the artificial lines or in the artificial planes at first, and then
fit their equations. Accordingly, the 3D coordinates of the CPs (P̃i) are finally calculated by using the
intersections of two artificial line segments or three artificial planes.
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Figure 5. Methods to measure the 3D coordinates of the CPs from LiDAR data: the right is the 3D points
measured from the LiDAR data, and the left is the corresponding image points; (a,b) are measured by
using the intersection of two artificial line segments; (c,d) are measured by using the intersection of
three different artificial planes.
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4. Results

4.1. Results of Unit Weighted RMS

The unit weighted RMS of the experiments is estimated by Equations (7)–(9) after the registration,
and the results are illustrated in Table 2. The table shows that the unit weighted RMS of the
photogrammetric image matching point observations (RMSI) is able to reach a sub-pixel level (0.45 to
0.62 pixel), and the unit weighted RMS of the distance observations (RMSd) ranges from 0.18 to 0.34 m,
i.e., about 0.27 to 0.4 times of the average point distance of the LiDAR data.

Table 2. Results of the unit weighted RMS of the registration.

Data RMS0 RMSI (mm) RMSd (m)

I 0.0022 0.0027 0.18
II 0.0026 0.0037 0.20
III 0.0036 0.0052 0.34
IV 0.0033 0.0062 0.24

4.2. Re-Projection of the LiDAR Data

To verify the correctness of the iteration calculations, we further re-project several typical subsets
of the LiDAR data to the aerial optical images. As shown in Figure 6, there are obvious biases between
the optical images and the re-projection of the LiDAR data before the iterative calculations of the
registration, while they are seen to be eliminated by the iterative calculations. Furthermore, take data
I as an example, the correctness can also illustrate coarsely from the orthophoto map generated by
using the registered LiDAR data and images, as shown in Figure 7.
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4.3. Statistics of the Check Point Errors

To further test the actual accuracy, several CPs are measured by using the method described
in Figure 5. In this paper, the numbers of the CPs of data I–IV are 74, 42, 16, and 14, respectively.
Take data I as an example, the distribution of the CPs are laid out widely and evenly in the survey
areas, as shown in Figure 8.
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The actual errors are evaluated by using the differences of the CP coordinates between those
measured from the optical images and the LiDAR data, i.e., Equations (10) and (11). Take the case of
data I, the errors of the CPs are shown in Figure 9. The figure shows that the accuracy of the registration
is greatly improved by the iterative calculations. Such conclusion can be further verified by using the
statistics of the errors before and after the iterative calculations, as shown in Table 3. The horizontal
accuracy is able to reach 1/4 to 1/2 of the average point distance of the LiDAR data after the iterative
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calculations, while the vertical accuracy can be improved to 1/8 to 1/4 of the average point distance of
the LiDAR data by the iterative calculations.Sensors 2018, 18, x 15 of 20 

 

 
(a) 

 
(b) 

Figure 9. Errors of the check point (data I): (a) before the iterative calculations; (b) after the 
iterative calculations. 

5. Discussion 

5.1. Discussion on the Accuracy 

Since the RMSI ranges from 0.45 to 0.62 pixel, we can firstly conclude that the matching precision 
of the optical images should reach a sub-pixel level. Furthermore, the RMSd is improved to 
approximately 0.18 to 0.34 m by the iterative calculations, which is much less than the average point 
distance of the LiDAR data. As a result, the model and the solution are proved to be feasible for the 
bundle adjustments in the registration. On the other hand, the results of the re-projection of the 
LiDAR data can further verify the correctness for the registration, as the biases between the optical 
images and the re-projection of the LiDAR data can be eliminated by the iterative calculations in the 
registration, as shown in Figure 6. 

Except for the feasibility and the correctness, the actual accuracy is assessed by comparing object 
point coordinates measured from the registered optical images with the corresponding 3D 
coordinates measured from the LiDAR data. Both the qualitative visualization (Figure 9) and the 
quantitative statistics (Table 3) of the check point errors show that the actual accuracy can be greatly 
improved and reach a relative high level with the iterative calculations. The conclusion can be further 
enhanced by comparing the actual accuracy with some results of other authors. For example, Table 4 
and Table 5 show several methods provided by some other authors together with corresponding 
error statistics in the past. 

Comparing with Table 3, we can find that most of the errors for our experiments are smaller 
than those of Table 5. The horizontal accuracy ranges from 0.25 m to 1.24 m for those authors, 
but only 0.17 m to 0.27 m for us. And the vertical accuracy of those authors is about 0.13 m to 
1.06 m, while ours is 0.10 m to 0.15 m. Such comparisons still hold even when the error statistics 
are converted to multiples of the average LiDAR point distance. For those authors, the horizontal 
accuracy is approximately 0.25 to 1.8 times of the average point distance, while 0.13 to 1.56 times 

Figure 9. Errors of the check point (data I): (a) before the iterative calculations; (b) after the
iterative calculations.

Table 3. Error statistics before and after the iterative calculations of the registration (Unit: m).

Data
Before the Iterative Calculations After the Iterative Calculations

MIN MAX ∆ σ σXY MIN MAX ∆ σ σXY

I
∆X −12.86 36.92 −3.175 9.270

13.86
−0.375 0.400 −0.020 0.192

0.270∆Y −24.38 30.69 −3.982 10.30 −0.445 0.355 −0.004 0.189
∆Z −93.31 355.9 24.747 97.13 −0.293 0.286 −0.012 0.134

II
∆X −0.750 0.964 0.080 0.369

0.437
−0.205 0.282 0.027 0.126

0.165∆Y −0.489 0.499 0.061 0.235 −0.185 0.199 −0.008 0.107
∆Z −7.049 1.592 −2.160 3.035 −0.130 0.196 0.031 0.096

III
∆X −0.508 0.271 −0.081 0.219

0.585
−0.271 0.241 −0.053 0.159

0.225∆Y −0.434 1.048 0.389 0.542 −0.225 0.290 0.063 0.158
∆Z −0.984 1.617 0.237 0.710 −0.147 0.230 0.066 0.150

IV
∆X −0.299 1.136 0.518 0.644

0.806
−0.161 0.289 0.038 0.147

0.218∆Y −0.183 0.917 0.393 0.486 −0.276 0.227 −0.040 0.161
∆Z −1.746 2.207 0.014 0.937 −0.179 0.246 0.024 0.120
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5. Discussion

5.1. Discussion on the Accuracy

Since the RMSI ranges from 0.45 to 0.62 pixel, we can firstly conclude that the matching precision of
the optical images should reach a sub-pixel level. Furthermore, the RMSd is improved to approximately
0.18 to 0.34 m by the iterative calculations, which is much less than the average point distance of
the LiDAR data. As a result, the model and the solution are proved to be feasible for the bundle
adjustments in the registration. On the other hand, the results of the re-projection of the LiDAR data
can further verify the correctness for the registration, as the biases between the optical images and
the re-projection of the LiDAR data can be eliminated by the iterative calculations in the registration,
as shown in Figure 6.

Except for the feasibility and the correctness, the actual accuracy is assessed by comparing object
point coordinates measured from the registered optical images with the corresponding 3D coordinates
measured from the LiDAR data. Both the qualitative visualization (Figure 9) and the quantitative
statistics (Table 3) of the check point errors show that the actual accuracy can be greatly improved and
reach a relative high level with the iterative calculations. The conclusion can be further enhanced by
comparing the actual accuracy with some results of other authors. For example, Tables 4 and 5 show
several methods provided by some other authors together with corresponding error statistics in the past.

Table 4. Information on the data and the methods of some other authors for the registration 1.

Author Image
GSD (m)

Image
Number

LiDAR Point
Distance (m)

CP
Number Method

Kwak
et al. [31] 0.25 - 4 0.68 13 Bundle adjustment with centroids of plane

roof surfaces as control points.

Mitishita
et al. [32] 0.15 3 0.70 19 Bundle adjustment with the centroid of

a rectangular building roof as a control point.

Zhang
et al. [33] 2 0.14 8 1.0 9

(1) Bundle adjustment with control points
extracted by using image matching
between the LiDAR intensity images and
the optical images;
(2) Bundle adjustment with building
corners as control points

Xiong [34] 0.09 84 0.5 109 3 Bundle adjustment with multi-features as
control points.

1 Xiong [34] is supervised by Zhang [33], so the method proposed by Xiong [34] can be seen as a development of the
methods provided by Zhang et al. [33]; 2 Zhang et al. [33] provided both the results of bundle adjustment with
building corners and bundle adjustment with matching points; 3 37 horizontal CPs and 72 vertical CPs; 4 Kwak et al.
[31] didn’t provided the image number of their experiments.

Table 5. Error statistics provided by authors with respect to Table 4 (Unit: m).

Author σX σY σXY σZ

Kwak et al. [31] 0.76 0.98 1.24 1.06
Mitishita et al. [32] 0.21 0.31 0.37 0.36
Zhang et al. [33] 1 0.24 0.28 0.37 0.23
Zhang et al. [33] 2 0.16 0.19 0.25 0.13

Xiong [34] 0.23 0.22 0.33 0.13
1 Accuracy of the registration implemented by using bundle adjustment with control points extracted by image
matching between LiDAR intensity images and optical images; 2 Accuracy of the registration implemented by using
bundle adjustment with building corners as control points.

Comparing with Table 3, we can find that most of the errors for our experiments are smaller than
those of Table 5. The horizontal accuracy ranges from 0.25 m to 1.24 m for those authors, but only
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0.17 m to 0.27 m for us. And the vertical accuracy of those authors is about 0.13 m to 1.06 m, while ours
is 0.10 m to 0.15 m. Such comparisons still hold even when the error statistics are converted to multiples
of the average LiDAR point distance. For those authors, the horizontal accuracy is approximately
0.25 to 1.8 times of the average point distance, while 0.13 to 1.56 times for the vertical accuracy.
Besides, as shown in Table 4, the optical image number of those authors are generally much less than
our experiments. As a result, we are confident to enhance that the iterative calculation method can
reach a relative high level even for large-scale aerial optical images and airborne LiDAR data.

5.2. Discussion on the Efficiency

In addition to accuracy, efficiency is also very important for registration in practice.
Hence, we further take data I as an example to count the total running time for the registration
method in this paper. Our program was developed by using C++ Language and executed with
an Asus notebook (Intel (R) Core (TM) i5-2450M CPU@2.50 GHz (4 CPUs), ~2.50 GHz, 4096 MB RAM,
Windows 7) in a single thread. The time was counted from the beginning of the preprocessing for
preparing the inputs to the end of the iterative calculations for the refinement. The result show that
about 31.5 h (1892 min) was consumed for registering the 1432 aerial optical images with the LiDAR
data, i.e., an average of 79 s per image.

According to the literatures collocated by us, few authors have reported the time consumption
for their registration, except for Kim et al. [36]. The registration of Kim et al. [36] is based on plane
estimation and alignment for depth consistency between the LiDAR depth map and the optical
image depth map generated by using edge-preserving dense matching. According to their reports,
an average of 131 s per 1000 × 688 image is required for the registration. As the frame size of the aerial
optical image used in our experiments are much larger than those of Kim et al. [36] (6732 × 8984 and
7680 × 13,824 vs 1000 × 688), we can declare that the time consumption of our method is satisfactory
and acceptable in practice. Note that our program is run in a single thread, so if multi-threads or
a higher performance computer are used, the efficiency should be further greatly improved.

5.3. Discussion on Some Supplementary Notes

When we compare the results of unit weighted RMS with the statistics of the CP errors more
carefully, we find that actual horizontal RMS error (σXY) is greater than the GSD of the aerial optical
images, but the RMSI can reach a sub-pixel level. However, they are actually not conflicting. The RMSI

can mainly indicate the matching precision of the aerial optical images, so the RMSI is able to be
less than a pixel. Nevertheless, the actual accuracy of the registration is not only decided by the
image matching precision, but also the average point distance and the accuracy of the LiDAR data.
Though the accuracy is unknown, the average point distance of the LiDAR data is much larger than
the GSD for our experiments. This can explain the reason why the RMSI can reach a sub-pixel level
while σXY is greater than the GSD.

As shown in Table 3, another unusual thing is that the actual vertical RMS error (σZ) is seen to
be smaller than σXY. In fact, such a phenomenon was also happened in other research, as shown in
Table 5. The reason can be explained by using the results provided by Kaartinen et al. [64]: in contrast
to traditional photogrammetry, airborne LiDAR data usually has a higher vertical accuracy and a lower
horizontal accuracy. For the experiments, the GSD of the aerial optical images is much higher than the
average point distance of the LiDAR data, so the actual registration accuracy should be determined
mainly by the accuracy of the LiDAR data. In other words, it is similar to the LiDAR data that the
actual horizontal accuracy is lower than the vertical.

Note further that our experimental data also has the following characteristics as shown in Table 1:
(1) All the data sets mixed urban areas together with rural areas; (2) Data III and IV share the same
point clouds, but their aerial optical images are captured in different time; (3) The data contains both
the cases with calibrated and uncalibrated optical images. Although the experimental data has so
many different characteristics, there is no significant difference being found in registration results
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for different data sets. So, we can finally declare that the method has broad applicability across the
geometric registration of aerial optical images with airborne LiDAR data.

6. Conclusions

In this paper, a method to register close-range optical images with terrestrial LiDAR points is
extended to large-scale aerial optical images and airborne LiDAR data. The extended method is
implemented by minimizing the distances from the photogrammetric matching points to the LiDAR
data surface. It can not only keep the advantages of implementation without linear and planar feature
extraction and non-rigid deformation correction without extra camera calibration or ground control
points, but also prove to have broad applicability across the geometric registration of variety of
large-scale aerial optical images with airborne LiDAR data. The experiments show that the actual
accuracy can be greatly improved and reach a relative high level with the iterative calculations,
i.e., 1/4 to 1/2 of the average point distance of the LiDAR data for the horizontal accuracy, and 1/8 to
1/4 for the vertical accuracy. In addition, the statistics of the running time can further show that the
efficiency of the extended method is satisfactory and acceptable in practice. Therefore, the extended
method is accurate, feasible, efficient, and practical for broad registration of large-scale aerial optical
images and airborne LiDAR data.

Although the method is proved to be practical for the registration of large-scale aerial optical
images with airborne LiDAR data in the experiments, there are still a few places left for improvement
in our future work. For example, σI and σL are simply set to 0.5 pixel and 0.5 average point
distance of the LiDAR data respectively for determining the weight with respect to Equation (5).
As a result, the accuracy of the LiDAR data is not really taken into account for the adjustment.
Hence, further studies are still needed on the determination of the weight with respect to Equation (5) or
the estimation of σI and σL. Besides, if the LiDAR data is approximately a whole plane, the calculation
becomes ill-conditioned. One possible solution is to combine the method with other point matching or
linear feature-based approaches. To further improve the method, we will plan to try our best to solve
those problems in the future.
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