
foods

Article

Characteristics of Pork Muscles Cooked to Varying
End-Point Temperatures

Reagan N. Cauble 1, Jase J. Ball 1, Virginia E. Zorn 2, Tristan M. Reyes 2, Madison P. Wagoner 2,
Madison M. Coursen 2, Barry D. Lambert 3 , Jason K. Apple 4 and Jason T. Sawyer 2,*

����������
�������

Citation: Cauble, R.N.; Ball, J.J.;

Zorn, V.E.; Reyes, T.M.; Wagoner,

M.P.; Coursen, M.M.; Lambert, B.D.;

Apple, J.K.; Sawyer, J.T.

Characteristics of Pork Muscles

Cooked to Varying End-Point

Temperatures. Foods 2021, 10, 2963.

https://doi.org/10.3390/

foods10122963

Academic Editor: Andrea Garmyn

Received: 25 October 2021

Accepted: 26 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA;
rncauble@uark.edu (R.N.C.); jase.ball@zoetis.com (J.J.B.)

2 Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; vez0001@auburn.edu (V.E.Z.);
tzr0039@auburn.edu (T.M.R.); mpw0035@auburn.edu (M.P.W.); mmc0067@auburn.edu (M.M.C.)

3 Department of Animal Sciences, Tarleton State University, Stephenville, TX 76402, USA;
blambert@tarleton.edu

4 Department of Animal Sciences and Veterinary Technology, Texas A&M University—Kingsville,
Kingsville, TX 78363, USA; jason.apple@tamuk.edu

* Correspondence: jts0109@auburn.edu; Tel.: +1-334-844-1519

Abstract: M. biceps femoris (BF), m. semimembranosus (SM) and m. semitendinosus (ST) from
fresh pork ham were evaluated for characteristics of quality after cooking to an internal endpoint
temperature of 62 ◦C or 73 ◦C. Fresh ham muscles from the left side (N = 68) were cut into 2.54 cm
thick chops and allocated to cooking loss, Warner–Bratzler shear force (WBSF), pH and instrumental
cooked color analysis. Cooking losses were greater (p < 0.0001) for SM and chops cooked to an
internal temperature of 73 ◦C (p < 0.0001), whereas WBSF did not differ (p = 0.2509) among the
three muscles, but was greater (p < 0.0001) in chops cooked to 73 ◦C. Fresh muscle’s pH was greater
(p < 0.05) in ST than BF or SM. Lastly, the interactive effect (p < 0.05) of muscle × endpoint temperature
for ST chops cooked to 73 ◦C was lighter (L*), but, when cooked to 62 ◦C, they were more red (a*),
more yellow (b*) and incurred less color change from red to brown than BF or SM. The current results
suggest it is plausible for BF, SM and ST to be considered for alternative uses instead of traditional
value-added manufacturing.

Keywords: cooking loss; instrumental cooked color; pork; Warner–Bratzler shear force

1. Introduction

Meat and meat products comprise a large percentage of the human diet [1]. Global
meat consumption has continually risen from 23.10 kg per person per year in 1961, to
42.20 kg in 2011 [2]. The increased human consumption of meat has resulted in a correlated
increase in final market hog live weight from 109.32 kg in 1962 to 128.82 kg in 2014,
according to previous [3] market analytics. Additionally, a growing demand for leaner
pork products has modified pork production practices [4] through genetic improvements
for feed conversion, lean tissue development and reduction of the time to market weight [4].

In response to consumer demand for a healthier, leaner product, the pork value
program initiated by the National Pork Producer’s Council (NPPC) in the 1980s, has led
to a steady change in carcass merit buying programs resulting in a pork product with
decreased adipose tissue and increased muscle development [5]. In accordance with
the merit buying program, the United States has moved toward genetic selection for
increased lean growth in pork carcasses; however, poor-quality meat characteristics have
been associated with this variation in production practices for pigs. Altered production
practices have reportedly affected post mortem pH decline, post rigor calpastatin activity
and overall tenderness [6]. In addition, as previous authors have noted, changes in meat
quality of pork resulting in greater carcass lean weight can cause declines in palatability
and acceptability of pork products among consumers [7].
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Pork eating quality is affected by a combination of appearance, flavor, tenderness
and juiciness [8]. To meet these consumer-focused expectations, the pork industry has
established pork quality standards so that pork muscles presented in a retail setting are
firm, without exudation and possess a pinkish–red color [9]. Nonetheless, the industry
relies heavily on fresh color as a quality indicator and a method to identify substandard
pork in pork carcasses and retail cuts. Conditions affecting the structural integrity of post
mortem muscle can affect overall meat quality and functionality [5] and may influence
carcass merchandising values, along with cooked or processed quality [10].

Fresh pork ham is typically used in highly processed products such as sausages and
value-added formulations. Fresh pork ham is rarely considered for use in a retail cut
setting. However, some examples of value-added ham processing include but are not
limited to water-added hams, smoked, cured, or spiral-cut hams. Further processed pork
products generally require a large percentage of fresh pork ham, which can be smoked or
roasted using a dry or liquid curing brine that alters the final product’s color, flavor and
tenderness [11].

Today’s health-conscious consumer now perceives pork as a healthy, tasty, low fat food
staple at the time of meat purchasing in the retail setting [5]. Therefore, an analysis muscles
from the fresh pork ham could provide another fresh pork option in a retail setting and
possibly increase pork carcass’ value. Thus, a greater understanding of the factors affecting
fresh and cooked pork muscle’s characteristics is necessary. Therefore, the objective of this
study is to identify the cooked characteristics of the biceps femoris (BF), semimembranosus
(SM) and semitendinosus (ST) muscles from pork ham.

2. Materials and Methods
2.1. Raw Materials

Cross-bred gilts were harvested using humane slaughter conditions under USDA (EST.
no. M85B, JBS Swift and Co., Beardstown, IL, USA) inspection at a commercial processing
facility. Carcasses were blast-chilled after standard harvesting procedures for 90 min, then
fabricated into primals. The left ham from pork carcasses (N = 68) was identified, vacuum
packaged and shipped under refrigerated conditions to the University of Arkansas Abattoir
(Fayetteville, AR, USA) for further fabrication and dissection into subprimals. Hams were
skinned using a hand-held pork skinner (S-1011, Best & Donovan, Cincinnati, OH, USA),
fabricated into BF, SM and ST and trimmed practically free of subcutaneous fat. Whole
muscles were identified based upon the corresponding ham identification number from
the processing facility. Muscles with identical packing numbers were vacuum-packaged
together and stored at 0 ◦C for 24 h.

After individually identifying and vacuum-packaging in barrier bags (3mil, Koch
Supplies, North Kansas City, MO, USA), the muscles were transported under refrigerated
conditions to the Tarleton State University meat laboratory (Stephenville, TX, USA), where
they were stored at −10 ◦C for 72 h. Subprimals were placed into a blast freezer at −20 ◦C
for 45 min for crust freezing prior to cutting. Chops were cut from the frozen muscles using
a commercial band saw (44SFH-LP, Biro, Marblehead, OH, USA) set to 2.54 cm; then, chops
were vacuum-packaged individually using a double chamber vacuum-packaging machine
(C500, Multivac Inc., Kansas City, MO, USA) and labeled with individual identification.
The total number of chops collected per muscle from each ham was quantified with a
collection of six chops from BF and SM and four chops from ST from each subprimal
(N = 68) per muscle. After cutting, packaging and labeling, all chops were stored at −10 ◦C
until laboratory procedures could be completed.

Chops were analyzed for objective tenderness, moisture loss, pH and instrumental
cooked color. Chops were assigned randomly to an end-point internal cooking temperature
of either 62 ◦C or 73 ◦C. Three chops from each BF and SM were randomly assigned
to tenderness and cooking loss, the remaining three chops were analyzed for pH and
instrumental cooked color. Four chops were collected from the ST and randomly assigned.
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Two chops were assigned to measure tenderness and cooking loss and the remaining two
chops were analyzed for pH and instrumental cooked color.

2.2. Cooking Loss

Chops were thawed using refrigerated conditions for 24 h at 2 ◦C and were then
removed from packaging prior to cooking. Chops were identified using Styrofoam trays
(2s, Walton’s Inc., Wichita, KS, USA) with corresponding muscle type, identification number
and internal end-point cooking temperature. Thawed chops were removed from their
individual packages, patted dry with a paper towel to remove excess moisture and weighed.
A digital scale (ML1501E, Mettler Toledo, LLC, Columbus, OH, USA) was calibrated and
an empty Styrofoam tray was placed onto the scale and zeroed. After all raw weights
were recorded, chops were placed on a griddle (Model 07061, National Presto Industries
Inc., Eau Claire, WI, USA) pre-heated to 176.6 ◦C. During cooking, chops were flipped
every two minutes to insure even cooking occurred. The internal temperature of each chop
was taken using a handheld digital thermometer (Model C28 K, Koch Supplies, North
Kansas City, MO, USA) after six minutes of cooking. Once the geometric center of the chop
reached the required cooking temperature, chops were removed from the griddle, placed
onto a tray and allowed to cool to room temperature (23 ◦C) according to recommended
procedures outlined by [12].

Cooled chops were weighed after cooking and the cooked weight of each chop was
recorded. Cooking loss was calculated by subtracting the cooked weight from the initial
raw weight; that number was then divided by the raw weight and multiplied by 100,
as follows: [Raw Weight − Cooked Weight] ÷ Raw Weight × 100. Only after collecting
cooking loss data was Warner–Bratzler shear force testing conducted on the same chops.

2.3. Warner–Bratzler Shear Force

The chops used for measuring WBSF were cooked using the same procedures as
described above for measuring cooking loss. Upon completion of cooking, cooling of
chops to room temperature (23 ◦C) and cooking loss analysis, no less than six, 1.27 cm
diameter cores were taken parallel to the muscle fiber orientation from each chop using
a manual cork borer. Each core was sheared once in the center with a Warner–Bratzler
compression V-notch cutting blade attachment on an Instron Universal Testing Machine
(Instron Corp., Canton, MA, USA), equipped with a 490 N load cell and a crosshead speed
of 250 mm/min [12]. The peak forces were averaged for the six cores and used to represent
the shear force value of the chop. Kilograms of shear force were converted to Newtons of
force (kg of shear force × 9.8).

2.4. Fresh Muscle pH

The chops selected for pH analysis were thawed under refrigerated conditions for
24 h at 2 ◦C prior to measuring fresh/thawed muscle pH. Intramuscular pH readings
were taken using a glass pH probe (IM2100, Pelican Products, South Deerfield, MA, USA)
which was calibrated before testing using a 4 pH and a 7 pH (TW-2500-4 and TW-2500-7,
ThermoWorks, American Fork, UT, USA) buffer. Three readings were taken by inserting
the probe into three random locations within each chop and recorded. The three readings
were averaged to determine the fresh muscle pH per chop.

2.5. Instrumental Cooked Color

The chops allocated to cooked color measurements were cooked using the same
procedures as described previously for cooking loss and WBSF. After cooking and cooling
at room temperature (23 ◦C) for three minutes prior to slicing, instrumental color lightness
(L*), redness (a*) and yellowness (b*) were measured. Prior to collecting instrumental color
values, the colorimeter was calibrated using standard black and white tiles [12]. The chops
were cut just off the center (parallel to the chop flat surface) and color readings were taken
immediately across the exposed surface. Instrumental color readings were measured using
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a Hunter MiniScan EZ (Model 4500 L, HunterLab, Reston, VA, USA). The L*, a* and b*
values were determined from the mean of three readings on the surface of each chop using
illuminant A, a 10◦ standard observer and a 25 mm viewing aperture. Lastly, reflectance
values within the spectral range from 400 to 700 nm were used to capture the surface color
changes from red to brown by calculating the reflectance ratio of 630 nm:580 nm [13].

2.6. Experimental Design and Statistical Analysis

The data collected throughout this study were analyzed using the PROC Mixed
procedures of SAS (SAS Institute, Inc. Cary, NC). All data were analyzed as a 3 × 2
factorial design with three muscles (BF, SM and ST) and two end-point internal cooking
temperatures (62 and 73 ◦C). Muscle, end-point internal cooking temperature and their
interaction were fixed effects whereas chop served as the random effect. The analysis of
variance was generated using the mixed models procedure, for moisture retention (cooking
loss), instrumental tenderness (WBSF), pH and instrumental internal cooked color. Least
squares means were generated using the Kenward–Roger fixed effect SE method and, when
significant (p < 0.05) F-values were observed, least squares means were separated using
pair-wise t-tests.

3. Results and Discussion
3.1. Cooking Loss

There was no interactive effect (p > 0.4725) of muscle × temperature on cooking loss
of the BF, SM, or ST ham chops. However, there was a significant (p < 0.0001) main effect
of the muscle as SM expelled the greatest percentage of water during the cooking process
(Figure 1) and BF displaced the least. Furthermore, a significant (p < 0.0001) main effect
of endpoint temperature was detected for pork ham chops cooked (Figure 2) to a 73 ◦C
internal cooking temperature, resulted in a greater percentage of cooking loss than chops
cooked to 62 ◦C. These results agree with previous findings [14], when comparing pork
loin chops cooked to endpoint temperatures of 60 ◦C or 80 ◦C.
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In another study, boneless loin chops were evaluated for cooked characteristics when
cooked to an internal temperature of 63 ◦C [15]. It was reported that cooking loss percentage
across 284 loin chops averaged 16.46% [15]. In comparison, ham chops in the current study
cooked to a 62 ◦C endpoint temperature averaged 27% cooking loss, suggesting that BF, SM
and ST could result in variation within the sensory spectrum of tenderness and juiciness
because of greater cooking loss.

In an additional pork muscle study [16], where eight different pork roasts were cooked
to four internal temperatures, it was reported that, as the cooking temperature increased, a
subsequent increase in cooking loss occurred. Furthermore, these authors indicated that
the boneless ham roast had the greatest cooking loss, which could be in relation to the
variation in quality of ham muscles.

Few, if any, previous studies have evaluated the individual muscles from pork ham.
However, similar research work [17] evaluating beef steaks from the biceps femoris, longis-
simus lumborum and the deep pectoralis, cooked to nine endpoint temperatures and using
various cooking methods, reported a greater cooking loss for the biceps femoris than the
longissimus or pectoralis steaks, regardless of endpoint temperature or cookery method.
Even though the previous findings for cooking loss occurred in beef muscles from the
beef round, the results of meat cookery in pork ham cuts concur that these muscles can be
considered dryer and tougher cuts.

3.2. Warner-Bratlzer Shear Force

Regardless of the lack of interactive (p = 0.5524) effect of muscle × temperature,
there were no differences (p = 0.2509) in WBSF for the main effect of muscles from pork
ham (Figure 3). However, the main effect for WBSF of ham chops cooked to an internal
temperature of 73 ◦C were significantly greater (p < 0.0001) than ham chops cooked to
an internal endpoint temperature of 62 ◦C (Figure 4). Unfortunately, sensory taste panels
were not conducted during this study to support additional assessments of tenderness
evaluation for these muscles from pork ham.



Foods 2021, 10, 2963 6 of 9Foods 2021, 10, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 3. Main effect of ham muscle on Warner–Bratzler shear force (N) in pork ham muscles (BF, SM and ST) cooked to 
an internal temperature of 62 °C or 73 °C. Bars lacking a common superscript differ (p ≤ 0.05). 
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internal temperature of 62 ◦C or 73 ◦C. Bars lacking a common superscript differ (p ≤ 0.05).
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A Warner–Bratzler shear force analysis conducted previously [14] reported that in-
creased end-point cooking temperatures can result in an increase in shear force values.
Furthermore, it was noted [14] that instrumental tenderness values for myofibrillar force
increased as endpoint temperature increased, but the same instrumental measures for
connective tissue force have been reported to decrease.

In contrast, additional results [16] did not report a significant correlation between
increased endpoint temperature and shear force. These variations reported for instrumental
tenderness values for pork muscles may be attributed to modifications in experimental
design, cookery method, muscle, or cutting technique (roast vs. chop) for retail marketing.

Interestingly, it has been reported [17] that the beef biceps femoris is more tender when
cooked between 40 ◦C and 60 ◦C and tenderness decreased when the endpoint cooking
temperature increased to 80 ◦C. Changes in tenderness as result of cooking are likely due
to a greater amount of collagen in the biceps femoris and less collagen solubilization at a
greater degree of doneness. Surprisingly, when compared to the longissimus lumborum, the
biceps femoris was tougher for both cooking methods, regardless of endpoint temperature
and cookery method [17].

3.3. Fresh Muscle pH

Muscle pH (Figure 5) of fresh ham chops was captured prior to conducting cookery
analysis. Values of fresh muscle pH were greater (p < 0.0002) in ST than the either BF
or SM. The current values for pH concur with previous research results [18] reporting in
longissimus dorsi chops cooked to three internal temperatures with greater pH values
reported to have a redder (a*) internal color. It is possible that the influence on internal
cooked color may be attributed to the ability of a higher pH inhibiting myoglobin from
thermal denaturation [19]. Furthermore, it has been reported [18] that b* values could
also be affected by a greater muscle pH value. The results for fresh muscle pH of the
current study within ST agree with the previous studies that report greater pH values and
subsequent greater yellowness (b*) values.
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In addition to internal color, cooking losses recorded in the current study agree with
previous results [8] reporting that lower pH values can increase, leading to greater cooking
loss. Moreover, this same study [8] reported that, as pH values increased, little to no
difference in cooking loss occurred. As noted previously, SM recorded the greatest cooking
loss which could be attributed to the lower pH value.

3.4. Instrumental Cooked Color

There was an interactive effect (p < 0.05) for muscle and end-point temperature on
all instrumental cooked color values (Table 1). The SM was lighter (p ≤ 0.0338) when
cooked to an internal temperature of 73 ◦C than all other muscles, regardless of end-point
temperature. In addition, internal cooked redness was greater (p < 0.0001) for the BF and
ST ham chops cooked to an end-point temperature of 62 ◦C. However, ham chops from
ST were more yellow (p < 0.0001) than either BF or SM, regardless of internal temperature.
Changes from red to brown of ham chops during the cooking process were greatest
(p < 0.0001) in SM when cooked to an internal temperature of 73 ◦C.

Table 1. Interactive effect of temperature × muscle for instrumental internal cooked color of muscles from pork ham.

Endpoint Temperature

62 ◦C 73 ◦C
BF SM ST BF SM ST SEM * p-value

Lightness (L*) 1 73.79 c 75.85 b 70.76 d 73.77 c 77.41 a 73.05 c 0.527 0.0338
Redness (a*) 2 14.61 b 13.45 c 19.75 a 13.41 c 12.14 d 12.92 cd 0.329 0.0001

Yellowness (b*) 3 15.24 c 15.43 bc 21.01 a 15.76 b 15.40 bc 15.79 b 0.191 0.0001
From Red to

Brown (630:580) 4 1.86 b 1.73 c 2.41 a 1.51 de 1.46 e 1.56 d 0.037 0.0001

1 Lightness (L*) values are a measure from darkness to lightness (larger value indicates a lighter color; 100 is white and 0 is black);
2 Redness (a*) values are a measure of redness (larger value indicates a redder color; +60 is red and −60 is green); 3 Yellowness (b*) values
are a measure of yellowness (larger value indicates a more yellow color; +60 is yellow and −60 is blue); 4 Red:Brown is a calculated ratio of
spectral values 630 nm:580 nm which represents a change in color from red to brown (larger value indicates a redder color); a,b,c,d,e Means
lacking a common superscript letter differ (p ≤ 0.05); * SEM, standard error of the mean of the interaction.

The internal cooked color results tend to agree with a previous research work [18]
reporting that increased endpoint temperatures decreased the redness (a*) values for
longissimus dorsi chops. It is widely known that the current results for internal cooked
color are attributed to myoglobin denaturation that occurs in fresh meat during the cooking
process. Moreover, these results support that increasing internal temperature of pork ham
chops results in decreased myoglobin, causing lower redness (a*) values [19,20].

Previous research works have suggested [13,16] that pork should be cooked to an
internal temperature of 71.1 ◦C. The results from this study tend to agree that a degree of
doneness of 73 ◦C may be considered more ideal than 62 ◦C due to consumer preferences
and assumptions on cooked color for pork meat products. Even though chops cooked to
62 ◦C were redder than those cooked to 73 ◦C, historically, an internal appearance that is
browner/grayer for pork products has been perceived to be safer by consumers.

4. Conclusions

The current results suggest that fresh muscles cut into chops from BF, SM and ST and
cooked to a cooler degree of doneness result in a more objectively tender product. It is
apparent that consumer or trained sensory panel evaluation would have further supported
these initial findings on pork ham quality. However, these initial findings lend support
that muscles from pork ham may have a plausible role in the retail counter for consumer
fresh meat purchases. It should be noted, additional research evaluating underutilized
pork muscles from ham and shoulder may provide access to new consumer-friendly retail
portions. A focus on simulated retail display, lipid oxidation and instrumental fresh color
would enhance the realm of knowledge for these pork cuts in a fresh retail application.
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