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Abstract

Background: Milk yield for Holstein cows has doubled over five decades due to genetic selection and changes to
management, but the molecular mechanisms that facilitated this increase are mostly unknown. Epigenetic
modifications to the cattle genome are a plausible molecular mechanism to cause variation in milk yield and our
objective was to describe genome-wide DNA methylation patterns in peripheral blood mononuclear cells (PBMC)
from mature Holstein dairy cows with variable milk yield.

Results: Whole genome MeDIP-seq was performed following DNA extraction from PBMC of 6 lactating dairy cows
from 4 different herds that varied in milk yield from 13,556 kg to 23,105 kg per 305 day lactation. We describe
methylation across the genome and for 13,677 protein coding genes. Repetitive element reads were primarily
mapped to satellite (36.4%), SINE (29.1%), and LINE (23.7%) regions and the majority (78.4%) of CpG sites were
sequenced at least once. DNA methylation was generally low upstream of genes with the nadir occurring 95 bp
prior to the transcription start site (TSS). Methylation was lower in the first exon than in later exons, was highest for
introns near the intron-exon junctions, and declined downstream as the distance from the gene increased. We
identified 72 differentially methylated regions (DMR) between high milk yield cows and their control, and 252 DMR
across herd environments.

Conclusions: This reference methylome for cattle with extreme variation in milk yield phenotype provides a
resource to more fully evaluate relationships between DNA methylation and phenotype in populations subject to
selection. The detection of DMR in cows of varying milk yield suggests potential to exploit epigenetic variation in
cattle improvement programs.
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Background
Molecular mechanisms that confer phenotypic diversity
and that facilitate selective change include DNA methyla-
tion [1]. Indeed, genetic selection may act partly through
altered epigenetic profiles as DNA sequence variation is
reported to cause shifts in DNA methylation [2].
Holstein (Bos taurus) cattle are the most numerous of

dairy cattle breeds and produce the largest volumes of
milk, fat and protein [3]. Selection for yield in Holstein
cattle has increased genetic merit for milk production by
3713 kg, a ~ 59% increase, since 1960 [4]. Changes to

cow housing, feeding, and management have increased
milk yield by an additional 2503 kg, with the combined
effect of genetic selection and management resulting in
an approximate doubling of milk yield in five decades.
While highly successful, the genes and physiological
processes which have been altered to facilitate such
increases remain elusive. A notable exception is a
binucleotide substitution in the diacylglycerol
O-acyltransferase 1 (DGAT1) gene that causes a lysine
to alanine substitution at position 232 (K232A) [5, 6].
The alanine variant results in higher milk and protein
yield, but is not economically advantageous in many
markets because of a substantial correlated decline in
milk-fat yield. DGAT1 is the largest quantitative trait
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locus (QTL) for milk, fat, and protein yield [7] re-
ported to date.
More recently, with the development and application of

the Illumina BovineSNP50 BeadChip [8] and subsequent
BeadChips of varying marker density [9], dairy cattle se-
lection programs have incorporated genomic predictions
facilitated by marker genotypes for thousands of loci
spread across the genome [10]. Genomic analysis has
largely confirmed the quantitative model of many small ef-
fects that cumulatively account for a high degree of vari-
ation [11], but understanding of how selection alters
performance remains elusive. Collaborative efforts to se-
quence a large reference population of cattle from many
breeds, such as the 1000 bull genomes project [12], will
provide further insights into DNA sequence variation and
potential impacts of such variation on cattle phenotypes
[13], but increasing gene marker density beyond ~ 50,000
markers has not improved the accuracy of genomic pre-
dictions by a substantial degree to date [14].
While significant efforts have been expended studying

associations of DNA sequence variation with cattle per-
formance, epigenetic variations and their contribution to
milk yield and cow health have received little attention
and there are no known epigenetic-QTL for milk yield.
Of particular interest to dairy cattle breeders would be
linkages between epigenetic variation and the health of
cows. Selection for yield [15], higher levels of confine-
ment, and shifts in housing and feeding stratagies [16]
are unfavorably associated with cow health and well-
being. Emerging evidence from humans has shown a
role for epigenetics in important cattle diseases [17] such
as metabolic failure [18, 19], respiratory infection [20],
and lymphoma [21], but this has not been studied exten-
sively in livestock species.
Shifts in DNA methylation are plausible molecular

mechanisms for phenotypic change in milk yield and
cow health due to selection and management [22], but
the cattle methylome must be more completely de-
scribed before such effects can be determined [23]. The
objective of this study was to identify genome-wide
DNA methylation patterns in Holstein peripheral blood

mononuclear cells (PBMC) to provide a resource for fur-
ther investigation into causes of phenotypic variation in
high milk-yield dairy cows.

Results
Animals
Blood was collected from the coccygeal vein (tail vein)
of 6 lactating Holstein dairy cows from four commercial
Pennsylvania dairy farms. Results from their official gen-
omic evaluation for milk, fat and protein yields plus
phenotypic records for yield during the parity of DNA
sampling are reported in Table 1.
Four cows represented case-control pairs and the

protocol for selecting these pairs is described in the
methods. All cows were housed in tie-stalls and fed a
total-mixed ration that was top-dressed according to the
cow’s nutritional requirements. The intermediate milk
yield cows were from farms that allowed pasture access
for lactating cows during the summer, whereas the
case-control cows remained confined during lactation.
The high milk yield cows averaged 21,052 kg of milk
during the parity of blood sampling, whereas control
cows averaged 14,677 kg of milk. The 2 remaining cows
were selected from separate herds to increase the num-
ber of cows and environments represented and had milk
yield that was intermediate (16,236 kg) to the high and
control cows. Identifying cows with extremely high milk
yield required that we sample cows from generally
well-managed herds; consequently, our control cows had
milk yield that was somewhat higher than the national
average of 12,087 kg for Holsteins [3].

General methylation patterns in the genome of Holstein
cows
Clean reads were aligned to btau4.0 with an average
across cows of 64% of clean reads uniquely mapped; of
these 60% were mapped to repetitive elements and 40%
to unique sequences. The proportion of unique reads
mapped to non-repetitive elements near gene bodies is
shown in Fig. 1. These reads were most likely to be
mapped to introns (15.0%); the combined proportion for

Table 1 Official genomic estimated breeding values, observed yields, age, and parity of DNA sampling

Cow Description gEBV
Milk (kg)

gEBV
Fat (kg)

gEBV
Protein (kg)

Milk (kg) Fat (kg) Protein (kg) Age
(mo.)

Parity

F1H Farm 1 Case 624 8 5 23,105 1028 674 61 2

F1L Farm 1 Control − 1316 −26 −25 15,798 498 477 71 2

F2H Farm 2 Case − 967 −12 −34 19,000 764 533 84 4

F2L Farm 2 Control − 740 −56 −34 13,556 454 369 85 5

F3I Farm 3 − 907 −57 −40 16,094 576 443 69 4

F4I Farm 4 171 −15 −6 16,379 685 463 116 4

gEBV = genomic estimated breeding values provided from the Council on Dairy Cattle Breeding; positive values indicate that cows are expected to produce more
milk, fat or protein than the average cow born in 2010 and negative values indicate cows expected to produce less. Milk, fat and protein yields (kg) are
standardized to a constant 305 day parity length and age [54]
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the other gene elements totaled 2.2% with the 5′-un-
translated region accounting for only 0.03% of reads.
Figure 2 reports the proportion of repetitive element
reads, which were primarily mapped to satellite (36.4%),
SINE (29.1%), and LINE (23.7%) regions. The majority
(78.4%) of CpG sites were sequenced at least once and
19.8% were sequenced at a depth of 5 or greater. In con-
trast, the genome-wide sequencing depths were 28.5%
and 3.7% for depths of ≥1 or ≥ 5, respectively. CHG (H
= A, C, or T) sites (43.5%) were more likely to be se-
quenced at least once than CHH sites (38.5%). The pro-
portion of reads mapped by CpG density is shown in
Fig. 3. Approximately two-thirds of reads were mapped
to regions that contained between 5 and 20 CpG per kb.
The proportion of the genome covered by methylation

peaks ranged from 7.38% (cow F4I) to 10.52% (cow F1L)
with an average of 8.43%. Average peak size ranged from
735 bp to 1080 bp for cows F3I and F1L, respectively. The

proportion of gene element types covered by a peak is dis-
played in Fig. 4. The majority of coding sequence (86.8%)
and 5′-untranslated region sequence (76.8%) resided
within a methylation peak. In contrast, only 11.6% of in-
tronic sequence was covered by a peak. Coordinates for
peak regions are reported for each cow in Additional file 1:
Table S1, Additional file 2: Table S2, Additional file 3:
Table S3, Additional file 4: Table S4, Additional file 5:
Table S5, and Additional file 6: Table S6.

Geometric mean reads (GMR)
Following a visual inspection of results [24] and consid-
ering preliminary descriptive statistics, it was clear that
reads were not normally distributed across cows or gen-
omic regions. Skewed distributions were not unexpected
as MeDIP enrichment preferentially targets GC rich re-
gions because they are highly methylated and because of
the existence of hypermethyated sites [25, 26]. Bias can

Fig. 1 Proportion of reads mapped to gene elements. Percent of reads mapped 2 kb upstream of the transcription start site, in the 5′-untranslated
region, in the protein coding sequence, in introns, in the 3′-untranslated region, and 2 kb downstream of the transcription termination site

Fig. 2 Proportion of repetitive element reads mapped to each different element. Percent of repetitive element reads mapped to satellite/
centromeric, LINE, SINE, long terminal repeats, and other types of repetitive DNA sequence

Dechow and Liu BMC Genomics  (2018) 19:744 Page 3 of 12



also be introduced during library construction, particu-
larly during PCR amplification of GC rich fragments
[26]. Therefore, we derived a geometric mean reads
(GMR) to describe general methylation patterns for this
group of animals which is described in the methods. Fig-
ure 5 demonstrates alignment reads from two regions of
the same length (~ 860 bp). Figure 5a demonstrates a re-
gion where two cows have a large number of reads,
whereas Fig. 5b demonstrates a region with similar reads
for all cows. The average normalized reads count (NRC)
across these six cows was higher for the more variable
region (0.32) than for the less variable region (0.28) des-
pite four of the cows having more reads in the second
region. The average GMR (μGMR) reflects that the ma-
jority of cows had more reads for the less variable region
(μGMR = 1.61) than for the region with high variance
(μGMR = 1.44).

GMR of 13,677 unique Bos taurus protein coding
genes downloaded from Ensembl [27] with completed
coding sequence start and end coordinates were ana-
lyzed in the present study. μGMR for 1 kb upstream;
first, middle and last exons; first and last intron; and
1 kb downstream are presented in Fig. 6 for these genes.
Reads were generally low in the upstream region with
the nadir μGMR occurring at 95 bp upstream of the
TSS. μGMR was lower in the first exon than in later
exons, particularly in the first half of initial exons. The
middle exon tended to be most highly methylated,
whereas the last exons were generally highly methylated
at the beginning of the exon and had lower methylation
in the second half of the exon. μGMR was highest for in-
trons near the intron-exon junctions and were lowest in
the middle and declined downstream as the distance
from the gene increased.

Fig. 3 Proportion of reads in relationship to the number of CpG sites per kb. The percentage of reads mapped to genomic regions by the
relative density of CpG sites per kb

Fig. 4 Proportion of genomic elements covered by a methylation peak. The percentage of total length for each gene element covered by a DNA
methylation peak divided by the total length of each element in the genome for 2 kb upstream of the transcription start site, the 5′-untranslated
region, the protein coding sequence, introns, the 3′-untranslated region, and 2 kb downstream of the transcription termination site
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Genome wide methylation patterns
μGMR in non-overlapping 10 kb windows was deter-
mined to evaluate genome wide methylation patterns of
uniquely mapped reads for all chromosomes (except for
the Y chromosome) (see Additional file 7: Figure S1).

Visually, there appeared to be fewer reads mapped to
the centromeric ends of many chromosomes than
mapped to the remainder of the chromosome. μGMR in
the first 500 kb of the centromeric end (average of 0.81
± 0.68 across all chromosomes) were less (P < 0.001)

Fig. 5 Average normalized reads count versus geometric means reads for two example regions. Individual cow alignments [23] for two ~ 860 bp
regions. Panel a. demonstrates alignments for a region with high variability among cows on BTA19:57,555,882-57,556,746 and that is a significant
environmental DMR, whereas panel b. demonstrates alignments for a region with minimal variation on BTA24:49,317,728-49,318,588. The identification
of the cow corresponding to each panel is provided along with the total number of reads mapped to the region across all cows, the NRC, and μGMR

Fig. 6 Average geometric means reads across 13,677 genes. Average geometric means reads (μGMR) 1 kb upstream and 1 kb downsteam (blue);
first, middle, and last exons (red); and first and last introns (black) for 13,677 bovine genes
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than the last 500 kb of the distal end (average of 1.06 ±
1.00) and middle of the chromosomes (average of 1.07 ±
0.51). These μGMR only represented uniquely mapped
reads and not repetitive satellite sequences which would
be expected to concentrate at the centromeric ends of
the chromosome. μGMR for the distal end and middle
of the chromosomes were not different, but μGMR was
significantly less variable for middle of the chromosomes
than for the centromeric and distal ends (P < 0.001).
There were also large differences among chromosomes
with the lowest for the X chromosome (μGMR = 0.64)
and Bos taurus autosome (BTA) 6 (μGMR = 1.00),
whereas BTA19 (μGMR = 1.25) and BTA27 (μGMR =
1.26) had the highest rates. The Spearman rank correl-
ation between μGMR across 1 Mb windows with the
number of protein coding genes in the window was 0.39
(P < 0.0001), indicating that higher gene density was as-
sociated with higher μGMR.

Partially methylated domains (PMD)
Genomic regions with suppressed levels of methylation
have been described as PMD [28], and such regions were
apparent when evaluating μGMR across 10-kb windows.
We used a permutation test to empirically identify PMD.
There were 4725 PMD covering 511.2 Mb (~ 19%) of
the genome identified, with 16% of autosomes and 66%
of the X chromosome falling within a PMD. The largest
single PMD was from 74.4 to 79.7 Mb on the X chromo-
some, whereas the largest autosomal PMD stretched
from 72.5 to 76.7 Mb on BTA12.
There were 1153 genes located in significant PMD, in-

cluding 898 autosomal genes and 255 on the X chromo-
some. This represented 6.8% of the 13,156 autosomal

genes and 48.9% of the X genes. The PMD genes were
submitted to DAVID [29, 30] for functional evaluation
with 1021 matching known genes. There were 29 signifi-
cant (FDR adjusted P < 0.05) functional annotation
charts that are reported in Additional file 8: Table S7. Of
those, 14 were part of an annotation cluster with an en-
richment score of 31.91. The annotation charts for genes
in that cluster are reported in Table 2 and encompassed
224 total genes, including 101 genes belonging to the Ol-
factory Transduction KEGG pathway [31].

Putative differentially methylated regions (DMR)
There were 72 DMR with a significant false discovery
rate (FDR; P < 0.05) identified by determining the fold
change in a standardized number of reads in case versus
control cows as described in the methods. The chromo-
some, starting position and ending position of the DMR
are provided in Additional file 9: Table S8. An additional
252 environment specific DMR (Additional file 10: Table
S9) were identified with 229 associated with farm 1, 24
associated with farm 2, and 1 that was associated with
both herds. There were 2 regions that were identified as
both case-control DMR and environmental DMR.
Additional file 11: Figure S2 (case-control) and Add-

itional file 12: Figure S3 (environmental) show the most
significant DMR within their broader genomic region of
up to 40 kb from genomic elements that included
known protein coding genes, pseudogenes, uncharacter-
ized ncRNAs, and spliceosomal RNAs. In some in-
stances, multiple putative DMR are located in close
proximity. Additionally, the reads mapped to the third
most significant environmental DMR represented the re-
gion with high variability in Fig. 5a. Genes (108) that

Table 2 Significant functional annotation charts [29, 30] from the most highly enriched cluster for genes located within partially
methylated domains

Category Term No. of genes Fold Change FDR

GOTERM_MF_DIRECT olfactory receptor activity 112 4.4 5.70E-41

INTERPRO Olfactory receptor 112 4.4 5.00E-40

UP_KEYWORDS Olfaction 112 4.4 6.20E-40

UP_KEYWORDS Sensory transduction 117 3.9 4.40E-37

GOTERM_MF_DIRECT G-protein coupled receptor activity 119 3.5 2.50E-33

KEGG_PATHWAY Olfactory transduction 101 3.8 5.20E-32

UP_KEYWORDS G-protein coupled receptor 133 3.2 8.50E-32

INTERPRO GPCR, rhodopsin-like, 7TM 134 3.2 9.60E-32

INTERPRO G protein-coupled receptor, rhodopsin-like 133 3.2 9.80E-32

UP_KEYWORDS Transducer 134 3.0 3.10E-29

GOTERM_BP_DIRECT G-protein coupled receptor signaling pathway 93 3.4 9.30E-24

UP_KEYWORDS Receptor 151 2.3 4.60E-21

UP_KEYWORDS Cell membrane 143 1.9 5.30E-12

GOTERM_CC_DIRECT plasma membrane 172 1.6 5.00E-08
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were within 5 kb of a DMR were submitted to DAVID
[29, 30] for functional evaluation with 96 matching
known genes. Eight genes (listed Additional file 13: Table
S10) were identified as part of two significant annotation
charts of HOX (SMART) and homeobox (INTERPRO)
with FDR adjusted P < 0.10.

Discussion
Epigenetic descriptions in high yielding dairy cattle that
have undergone intensive genetic selection can serve as
a model to examine effects of selection on DNA methy-
lation. We focused on DNA methylation in PBMC for
this study because blood is accessible and farmers are
unlikely to approve of invasive tissue sampling from the
elite, high yielding cows that are of particular interest
because they are population outliers. While blood is ac-
cessible, PBMC are also a mixed cell population which
may make the epigenetic signal less clear; nevertheless,
it was previously reported that CpG site variability in
leukocytes could serve as an accurate predictor if CpG
site variability in other tissues [32]. The large deviations
of expected to actual milk, fat, and protein yield (Table 1)
suggest that the differences in milk yield were not attrib-
utable to DNA sequence variation.
Many features of the cattle methylome reported here

are shared with those from other species. The well de-
scribed decline in promoter methylation [33, 34] (Fig. 2)
was apparent. There is growing evidence that methyla-
tion is associated with alternative splicing across tissues
[35] and that DNA methylation marks exon boundaries
[36]. High levels of methylation across exons with a
rapid decline of intronic methylation as distance from
the exon-intron junction increased should be expected if
methylation was a key exon marker. This was evident
here with average methylation levels in the middle of in-
trons as low as levels observed in the upstream region.
Genes associated with the sensory perception of smell
were highly enriched in human PMD [28]. We also
found olfactory related genes to be enriched in PMD
(Table 2), suggesting that PMD may be consistent across
species. We noted a positive correlation between DNA
methylation levels and gene density, which was previ-
ously reported for pigs [33] and in humans [37].
DNA methylation patterns from fetal and adult longis-

sumus dorsi muscle were previously reported for Chin-
ese Qinchuan cattle using a MeDIP-seq approach [34].
Average peak lengths were 974 (fetal) to 994 bp (adult)
which are similar to our observations; a smaller propor-
tion of the genome was reported to covered by a peak
(4.4% for fetal and 4.6% for adult muscle) than was ob-
served in the current study. They also observed more
peaks aligned to regions with 5 to 10 bp per kb, whereas
we observed higher levels between 15 and 20 bp. Reads
mapped to gene elements were most likely to be aligned

to an intron in both fetal and adult muscle, as we ob-
served in the current study (Fig. 1). However, this was
the result of the long length of introns in comparison to
other gene elements. In contrast, a very small percentage
of reads aligned to the 5′-untranslated region, but ap-
proximately 90% of 5′-untranslated region and coding
sequences had a methylation peak both fetal and adult
muscle tissue which is similar to what we observed in
PBMC.
Higher rates of DNA methylation are reported for

most genes on the inactive X chromosome when com-
pared with the active X-chromosome [38], resulting in
higher X-chromosome DNA methylation rates for fe-
males than for males [33]. However, hypermethylation of
the inactive X is concentrated on promotors of silenced
genes and other features of the X-chromosome may re-
sult in lower chromosome wide DNA methylation levels.
The frequency of CpG islands on the human X was re-
ported to be half of the genome-wide frequency, gene
density is low on the X, and most X genes are relatively
short [39].
We are unable to determine whether any of the DMR

are directly responsible for phenotypic variation because
a functional evaluation of epigenetic alterations is be-
yond the scope of this study and the transcriptomic data
are not available for these individuals. For this reason,
we refer to these regions as putative DMR. Nevertheless,
there were regions that appear to harbor differential
methylation and that have been previously associated
with phenotypic variation in cattle. The putative DMR
in the SECTM1 region (Additional file 11: Figure S2 k)
is intriguing because of SECTM1 function and previ-
ously reported associations with cattle performance.
Genes with roles in immune function are strong candi-
dates for differential methylation in this study because
we isolated DNA from PBMC. SECTM1 is highly
expressed in leukocytes [40] and SECTM1 and CD7 are
reported to be INF-γ induced co-stimulators of T-cell
proliferation [41]. SECTM1 appears to have a role in in
cattle immunity as there was a reported 2.73 fold in-
crease in SECTM1 expression in Angus cattle that were
resistant to parasitic infection than in those that were
susceptible [42]. Humans are reported to have a single
SECTM1 gene whereas there are multiple paralogs in
cattle that have undergone positive selection [43]. The
60S ribosomal protein L7 pseudogene (Additional file 7:
Figure S1f) was reported to have reduced expression in
cattle with tuberculosis [44]. Additional regions have
plausible relationships to differential methylation or
immune function. For instance, the NLK pathway
(Additional file 11: Figure S2c) is associated with tran-
scriptional silencing via the methylation of PPARG target
promoters at histone H3K9 (http://www.uniprot.org/uni-
prot/Q9UBE8) [45], whereas three putative environmental
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DMR (Additional file 12: Figure S3a) are associated with
FCGR2B which is associated with B-cell antibody produc-
tion and immune complex phagocytosis (http://www.uni-
prot.org/uniprot/P31994) [45].
The functional annotation analysis indicated that

homeobox genes were overrepresented in regions with
DMR. Homeobox genes are reported to be differentially
expressed in leukocytes [46]. However, caution is war-
ranted when evaluating this pathway because of the rela-
tively small number of genes [8] that were part of these
functional charts.

Conclusions
Evaluating DNA methylation in populations that have
undergone intense genetic selection may further our un-
derstanding of the role of DNA methylation in popula-
tion change. We describe DNA methylation patterns for
dairy cows with extreme phenotypes for milk yield and
report the existence of putative DMR with plausible, but
unverified, relationships to phenotypic and performance.
This reference methylome for high producing Holstein
cows provides a resource to more fully evaluate such re-
lationships between variation in DNA methylation and
phenotypic variation.

Methods
Animals and blood samples
Ten mL of whole blood was obtained from the coccygeal
vein of 6 lactating Holstein dairy cows located on 4
commercial Pennsylvania dairy farms (Pennsylvania
State Institutional Animal Care and Use Committee
protocol number 28889). Following centrifugation, the
buffy coat was extracted and stored (− 20 °C) until DNA
was extracted with a DNeasy® Blood & Tissue Kit (QIA-
GEN Sciences, Germantown, MD) per manufacturer
instructions.
In order to identify commercial cows with extreme

high milk yield phenotypes, we contacted 15 farms that
participated in a milk testing program and that had herd
average production approximately 50% greater than the
average of Pennsylvania herds. The highest milk yielding
cow from each herd and the poorest milk producing
herd-mate of a similar age and parity were then selected
and genotyped to generate genomic estimated breeding
values (Table 1). Following genotyping, we selected two
case-control pairs to maximize the likelihood that yield
differences were due to epigenetic changes independent
of DNA sequence variation. Additional potential
case-control pairs were genotyped, but not selected for
MeDIP-seq because yield deviations appeared to be ex-
plained largely by differences in genotype. The two inter-
mediate production cows were also selected from the
pool of high producing herds.

MeDIP-seq and GMR
MeDIP-seq and a bioinformatics analysis was conducted
by BGI (Shenzhen, China). Library construction followed
a previously described protocol [47] and consisted of
genomic DNA fragmentation (100–500 bp by sonic-
ation), 3′-A overhang and ligation of sequencing adap-
tors (Illumina Pair-End DNA Sample Prep Kit),
denaturing of double-stranded DNA, immunoprecipita-
tion via 5-mC antibody, and PCR amplification and size
selection (200–300 bp, including adaptor sequence).
Both methylated DNA controls and unmethylated DNA
controls were used with each DNA sample to validate
the pulldown procedure. Approximately 100 million
paired-end reads were generated for each cow and the
49 bp ends were sequenced using an Illumina HiSeq
2000 sequencer. Sample libraries were indexed to facili-
tate multiplexed sequencing per lane [48].
Raw reads were processed to remove those containing

5′ or 3′ adapter sequences, unknown or low quality bases.
The remaining clean reads were aligned to btau4.0 (http://
hgdownload.cse.ucsc.edu/goldenPath/bosTau4/chromo-
somes) using the Short Oligonucleotide Analysis Package
(v1 [49]). Whole genome peak scanning was conducted
with MACS 1.4.0 (http://liulab.dfci.harvard.edu/MACS/)
and only included reads with 2 or fewer mismatched bp.
Peaks were aligned to btau4.0 and coordinates were then
converted (https://genome.ucsc.edu/cgi-bin/hgLiftOver)
to UMD 3.1 [50]. The analysis of repeats was conducted
using RepeatMasker (http://www.repeatmasker.org) and
repeat annotations were retrieved from the USCS database
(http://hgdownload.cse.ucsc.edu/goldenPath/bosTau4/big-
Zips/bosTau4.fa.out.gz). CpG islands were regions of
≥200 bp, G + C content ≥50%, and the ratio of observed to
expected CpG > 0.6 [51].
A second alignment to the current bovine assembly

[50] was completed by Appistry, Inc. (St. Louis, MO,
USA). The quality of reads in BAM files after alignment
was evaluated with Picard (http://broadinstitute.githu-
b.io/picard/) and median quality scores ranged from 29
to 31. The number of reads per nucleotide (NR) was ex-
tracted using the mpileup option of SAMtools [52] with
a minimum mapping quality ≥15. The GMR was deter-
mined as GMR = emean(ln(NR + 1)) – ln (2)/6 in SAS (v 9.4;
SAS Institute Inc., Cary, NC). The + 1 term was added
so that the natural log could be derived for cows with no
reads at a given nucleotide and the -ln (2)/6 partly
removes the + 1 term and sets GMR = 1 if a single cow
has a single read at a nucleotide. GMR was set to 0 if all
6 cows had no reads at a given nucleotide. A normalized
reads count was calculated for the regions depicted in
Fig. 1 as (RC*1,000,000)/(URC) where RC = the number
of reads mapped to the region and URC = the total num-
ber of genome wide reads mapped to a unique sequence
for each cow.
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We standardized exon and intron lengths so that gen-
eral methylation patterns for exons, introns, and
exon-intron junctions could be described as opposed to
non-specific methylation levels across the gene body.
Exon lengths were standardized to the median exon
length, which were 159 bp for first exons, 128 bp for all
middle exons, and 503 bp for last exons. If there were
more than 159 bp for the first exon, the first 79 bp were
classified as nucleotides 1 to 79, the last 79 bp were clas-
sified as 81 to 159, and all others were classified as nu-
cleotide 80. If there were fewer than 159 bp, the first
50% of nucleotides were associated with the first nucleo-
tides of the exon, whereas the last 50% were associated
with the last nucleotides of the exon. The same ap-
proach was used for the other exons and introns, with
median intron lengths of 2616 bp for first introns and
1343 bp for last introns.

Statistical analysis
Statistical analyses were performed with SAS. Differ-
ences in μGMR between the centromeric ends, middle,
and distal ends of chromosomes were evaluated with the
TTEST procedure. Likewise, tests of heterogeneous vari-
ance between the centromeric ends, middle, and distal
ends of chromosomes were evaluated with the TTEST
procedure.

Identification of putative DMR
There were 1,223,424 regions with a length of 200 bp to
4199 bp (1,186,289 autosomal and 37,135 X chromo-
some) with regions defined as a continuous stretch of
nucleotides with reads present for one or more cows; re-
gions that were less than 200 bp apart were merged. Less
than 1% of initial regions were > 4000 bp in length and
those large regions were split into regions of 4000 bp
with a restriction that the last segment had to be at least
200 bp in length; this resulted in 1514 regions with a
length between 4000 bp and 4199 bp. The log2 of the
total number of reads per region was determined for
each cow and then standardized within cow to a mean
of 100 and standard deviation of 5. We derived a relative
standardized fold change to identify DMR for case ver-
sus control cows because t-tests identified regions with
low variation among cows as significant even if the dif-
ferences between case and controls were minimal. We
used a standardized change because cows may have zero
reads in a region preventing direct calculation of the ra-
tio between case and control cows.
A permutation test was conducted to determine ex-

pectations for case-control and environmental distribu-
tions. Reads from a randomly selected region were
drawn and then the two cows from farm 1 (F1H and
F1L) were jointly assigned to either herd environment 1,
herd environment 2, or herd environment 3 at random.

Cows from farm 2 were then randomly assigned to one
of the two remaining herd environments, with cows F3I
and F4I assigned to the final environment. This resulted
in 6 possible herd environment combinations. Within
each herd environment, one cow was randomly assigned
to be the high yield case cow, with the second cow from
the environment serving as the control. This yielded 8
possible case-control combinations within each herd en-
vironment, for a total of 48 randomly assigned scenarios
which are shown in Additional file 14: Table S11. This
process was repeated 58,724,352 times, which was a rate
of 48 samples per region with replacement. The actual
number of times a region was randomly drawn ranged
from 19 to 85.
The ratio of standardized reads for the randomly

assigned case cow to the randomly assigned control was
determined for herd environment 1 and herd environ-
ment 2, and the mean of those two ratios determined for
each permutation. The ratio was not determined for the
third herd environment because only data from two of
the farms (farm 1 and farm 2) were case-control pairs.
The mean (1.000) and standard deviation (0.0198) were
then applied to the mean ratio of the two actual
case-control pairs to determine the P-Value for the ob-
served fold changes. P-Values were multiplied by 2 to
account for the two-tailed aspect of the test. The
P-Values from all regions were then evaluated with the
MULTTEST procedure of SAS to derive the
genome-wide FDR.
To identify putative environment specific DMR, we

first derived the mean of standardized reads for cows
randomly assigned to herd environment 1, herd environ-
ment 2, and herd environment 3. The ratio of mean
standardized reads for a single herd environment to the
mean of standardized reads for all other cows was then
derived for each permutation. The resulting mean
(1.000) and standard deviation (0.0187) were then used
to derive P-Values for ratios for farm 1 and farm 2.
While the intermediate milk yield cows (F3I and F4I)
were used to derive permutations, they were not from
the same herd so were not considered when identifying
putative environment specific DMR as at least two ob-
servations per environment are required [53]. A single
dataset that contained P-Values from each herd com-
parison and from all regions (3,670,272 P-Values) was
then evaluated with the MULTTEST procedure of SAS
to derive the genome-wide FDR.
Genes located within 5 kb of a DMR were submitted

to DAVID [23] for functional evaluation with a medium
classification stringency. There were 53 genes that fell
within this range of a DMR and with a FDR adjusted P
< 0.05. Therefore, we relaxed the FDR adjusted P-Value
threshold to P < 0.10 which increased the number of
genes to 108. The background genes were 13,677 unique
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bovine protein coding genes downloaded from Ensembl
[23] which represented the pool of genes that we could de-
tect overlapping DMR; of those, 12,980 were successfully
converted to DAVID id numbers. We assumed default
values which included medium classification stringency,
and with annotation to three functional categories
(COG_ONTOLOGY, UP_KEYWORDS, UP_SEQ_FEA-
TURE), three gene ontology terms (GOTERM_BP_DIR-
ECT, GOTERM_CC_DIRECT, GOTERM_MF_DIRECT),
one pathway (KEGG_PATHWAY), and three protein do-
mains (INTERPRO, PIR_SUPERFAMILY, SMART).

Identification and evaluation of PMD
A permutation test was conducted to identify significant
PMD. The genome was partitioned into non-overlapping
10 kb windows and the proportion of each window cov-
ered by the methylated regions described above was de-
termined. A moving average of percent coverage for ten
consecutive 10 kb windows was then determined. We
drew ten windows at random (with replacement) with
this process was repeated 1 million times. Based on the
permutation test, the average percent coverage across
ten consecutive 10 kb windows was expected to fall
below 25% for 1% of ≥100 kb moving average windows if
methylation levels in adjoining 10 kb windows are inde-
pendent. Genomic regions with less than this amount
were considered significant PMD at P < 0.01. Genes lo-
cated within a PMD were submitted to DAVID [23] for
functional evaluation using the same background genes
and defaults as described for DMR.
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nucleotide, length, summit, tags, Log P, and fold enrichment of
significant peaks for Farm 1, case. DNA methylation peak information for
Farm 1, case. (XLSX 14158 kb)

Additional file 2: Table S2. Chromosome, start nucleotide, end
nucleotide, length, summit, tags, Log P, and fold enrichment of
significant peaks for Farm 1, control. DNA methylation peak information
for Farm 1, control. (XLSX 13541 kb)

Additional file 3: Table S3. Chromosome, start nucleotide, end
nucleotide, length, summit, tags, Log P, and fold enrichment of
significant peaks for Farm 2, case. DNA methylation peak information for
Farm 2, case. (XLSX 14201 kb)

Additional file 4: Table S4. Chromosome, start nucleotide, end
nucleotide, length, summit, tags, Log P, and fold enrichment of
significant peaks for Farm 2, control. DNA methylation peak information
for Farm 2, control. (XLSX 13499 kb)

Additional file 5: Table S5. Chromosome, start nucleotide, end
nucleotide, length, summit, tags, Log P, and fold enrichment of
significant peaks for Farm 3. DNA methylation peak information for Farm
3. (XLSX 14317 kb)

Additional file 6: Table S6. Chromosome, start nucleotide, end
nucleotide, length, summit, tags, Log P, and fold enrichment of
significant peaks for Farm 4. DNA methylation peak information for Farm
4. (XLSX 13513 kb)

Additional file 7: Figure S1. Average geometric mean reads per
nucleotide over 10 kb windows and the number of annotated genes per
Mb. Columns representing the μGMR of non-overlapping 10 kb windows
for each chromosome and overlaid with an indication of the number of
genes in each region. (PDF 1474 kb)

Additional file 8: Table S7. Functional annotation charts of genes
located within partially methylated domains with the number of genes,
fold enrichment, and FDR adjusted P-Value of the annotation chart. The
functional category, term, number of genes, fold enrichment, and FDR
adjusted P-Value of functional annotation charts with FDR adjusted P
< 0.05. (DOCX 13 kb)

Additional file 9: Table S8. Location (chromosome, starting and ending
nucleotide) of putative case-control differentially methylated regions, false
discovery rate (FDR) adjusted P-value, and number of reads mapped to
the region for case and control cows. The chromosome, starting nucleo-
tide, ending nucleotide, FDR adjusted P-Value, and number of reads for
each case and control cow for 72 regions with differential methylation.
(DOCX 17 kb)

Additional file 10: Table S9. Location (chromosome, starting and
ending nucleotide) of putative environmental differentially methylated
regions, false discovery rate (FDR) adjusted P-value, and number of reads
mapped to the region for all cows. The chromosome, starting nucleotide,
ending nucleotide, FDR adjusted P-Value, and number of reads for each
cow for 289 regions with differential methylation. (DOCX 29 kb)

Additional file 11: Figure S2. The location and surrounding genomic
region for the top 11 most significant case-control differentially methyl-
ated regions. NCBI Genome Data Viewer of regions that harbor putative
DMR with the location of each DMR and identification of nearby genes
from NCBI Bos taurus Annotation Release 105, 2016-01-26. (PDF 294 kb)

Additional file 12: Figure S3. The location and surrounding genomic
region for the top 10 most significant environmental differentially
methylated regions. NCBI Genome Data Viewer of regions that harbor
putative DMR with the location of each DMR and identification of nearby
genes from NCBI Bos taurus Annotation Release 105, 2016-01-26. (PDF
119 kb)

Additional file 13: Table S10. Eight homeobox genes associated with
a differentially methylated region (DMR) that were part of a single
functional annotation chart with an FDR adjusted P < 0.05. Ensembl gene
ID, gene name, location of DMR, and location of gene TSS. (DOCX 12 kb)

Additional file 14: Table S11. 48 sampling scenarios implemented in
permutations to identify significance thresholds for identifying
differentially methylated regions. A list of the high and low cow selected
for each herd for each of the 48 sampling strategies. (DOCX 13 kb)
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