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Abstract
APETALA2/Ethylene-Responsive Factor (AP2/ERF) gene family is plant specific transcrip-

tion factor. It plays critical roles in development process, tolerance to biotic and abiotic

stresses, and responses to plant hormones. However, limited data are available on the con-

tributions of AP2/ERF gene family in barley (Hordeum vulgare L.). In the present study, 121

HvAP2/ERF genes in barley were identified by using bioinformatics methods. A total of 118

HvAP2/ERF (97.5%) genes were located on seven chromosomes. According to phyloge-

netic classification of AP2/ERF family in Arabidopsis, HvAP2/ERF proteins were divided

into AP2 (APETALA2), RAV (Related to ABI3/VP), DREB (dehydration responsive element

binding), ERF (ethylene responsive factors) and soloist sub families. The analysis of dupli-

cation events indicated that tandem repeat and segmental duplication contributed to the

expansion of the AP2/ERF family in barley. HvDREB1s/2s genes displayed various expres-

sion patterns under abiotic stress and phytohormone. Taken together, the data generated

in this study will be useful for genome-wide analysis to determine the precise role of the

HvAP2/ERF gene during barley development, abiotic stress and phytohormone responses

with the ultimate goal of improving crop production.

Introduction
The APETALA2/Ethylene-Responsive Factor (AP2/ERF) gene family is one of largest gene
families, encoding plant-specific transcription factors. The AP2/ERF superfamily is defined by
the AP2/ERF domain, which consists of about 60 to 70 amino acids and is involved in DNA
binding. The AP2/ERF superfamily is divided into AP2 (APETALA2), RAV (Related to ABI3/
VP), DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and
soloist sub families [1–4]. The AP2 subfamily members contain multiple AP2/ERF domains or
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lacking a conserved WLGmotif within AP2/ERF domain, the RAV subfamily transcription
factors include a single AP2/ERF domain and B3 domain, DREB and ERF subfamily possess
only one AP2/ERF domain, the remaining genes are defined as soloist [1]. The AP2/ERF gene
members play an important role in the regulation of plant development and tolerance to biotic
and abiotic stresses [4–12]. With more extensive plant genome sequences, AP2/ERF gene fam-
ily have been identified in various plants, such as Arabidopsis [3], rice [3], maize [4], sorghum
[13], soybean [14], foxtail millet [15]. However, no research has been performed for the identi-
fication and characterization of the AP2/ERF family in barley.

Salinity and drought are two of the most serious abiotic stress factors. Plants have evolved
on the molecular level to survive these environmental stresses. Plant hormone ABA also plays
an important role in improving the tolerance of plants to drought and salinity [16–19]. The
DREBs/CBFs (Dehydration Responsive Element Binding proteins/C-repeat CRT binding tran-
scription factors), hereafter referred as DREBs is a major member of AP2/ERF gene family,
which binds to DRE (A/GCCGAC) and/or the CRT (TGGCCGAC) core cis-acting sequences
in promoters of drought and salt responsive genes and regulates stress-responsive genes [20].
The ectopic overexpression of DREB genes in plant systems resulted in improved salt stress tol-
erance as positive regulator [20–22]. Enhanced expression of OsDREB2A and OsDREB1F
results in improved drought and salt stress tolerance in rice and Arabidopsis [22]. In rice,
OsDREB1A and OsDREB1F were induced by cold stress. OsDREB1F was also induced by
drought, salt and ABA treatment. Over-expression of OsDREB1A and OsDREB1F resulted in
with higher tolerance to drought, high-salt stress in Arabidopsis [20–21]. In Arabidopsis, a cbf2
mutant was identified by using a reverse genetic approach, in which the CBF2/DREB1C gene
was abnormal. cbf2mutant showed increased tolerance to drought and salt stress. Expression
analysis indicated that CBF2/DREB1C negatively regulated the expression of CBF1/DREB1B
and CBF3/DREB1A [23]. Remarkably, DREB1/2 genes were induced under drought and salt
stress, indicating cross-talk between them [17, 21, 24–26]. These results suggest that the func-
tions of DREB1s and DREB2s genes in combination with ABA are conserved both in monocot
and dicot plants, and play an important role in plant drought and salt stress responses [20].

Barley is considered as the most salt and drought tolerant among cereal crops but cultivars
show considerable variation to different tolerances [27]. With growing world population,
global food production should be meet the demands by improving abiotic tolerance of crops,
and has become the focus for enhancing breeding efforts [27]. In the present study, we identi-
fied 121HvAP2/ERF genes in barley by using bioinformatics methods and constructed a phylo-
genetic tree. Most of the HvAP2/ERF genes were localized to chromosomes using drawing
tools and duplication events were also analyzed. The expression patterns of one hundred and
seven AP2/ERF genes were detected using published RNA sequencing. Finally, the expression
level of twenty one genes in response to drought, high-salt stress and exogenous ABA was per-
formed by Quantitative real-time PCR. These results will be useful in further investigation of
the AP2/ERF family in plants.

Materials and Methods

Sequence database searches
Multiple database searches were performed to collect all members of the barley HvAP2/ERF
gene. Barley sequence data were sourced from the Morex assembly (http://webblast.ipk-
gatersleben.de/barley/) [28], Gramene (http://ensembl.gramene.org/Hordeum_vulgare/Info/
Index) and NCBI database (http://www.ncbi.nlm.nih.gov/). We used the BLAST programs
(TBLASTN and BLASTN) which is available on the IPK barley genome database and NCBI
barely EST database. We used the amino acid sequence of the AP2/ERF domain from
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Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa L.) and maize (Zea mays L.) as a query
sequences [3, 4]. To increase the extent of the database search results, we also performed the
database searches using amino acid sequences of the AP2/ERF genes of some members of the
Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/) [29]. Barley HvAP2/ERF can-
didate genes with expected (E) values less than 1.0 were retrieved and the non-redundant
sequences were examined for the presence of conserved AP2/ERF domain using the domain
analysis programs Pfam (Protein family: http://pfam.sanger.ac.uk/) [30], HMMSCAN (https://
www.ebi.ac.uk/Tools/hmmer/search/hmmscan) and SMART (Simple Modular Architecture
Research Tool: http://smart.embl-heidelberg.de/) with the default cutoff parameters [31]. The
isoelectric points and protein molecular weights were obtained with the help of the proteomics
and sequence analysis tools on the ExPASy proteomics server (http://expasy.org/) [32]. The
gene names of HvDREB and HvERF was given according to the ascending order of AP2/ERF
domain of analysis in DREB and ERF subfamily. The gene names ofHvAP2 and HvRAV was
given according to the ascending order of the phylogenetic tree in the AP2 and RAV subfamily.

Chromosomal location, gene structure, promoter and duplication events
of HvAP2/ERF genes
The chromosomal locations were retrieved from the Gramene (http://ensembl.gramene.org/
Hordeum_vulgare/Info/Index). All genes were mapped to the chromosomes with MapDraw
software [33]. The exon/intron structures were constructed using GSDS (http://gsds.cbi.pku.
edu.cn/) [34]. Maximum 2,000 bp promoter regions were examined to identify cis-regulatory
element using PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). Tan-
dem duplication genes were identified manually if they were within 10 predicted genes or
within 30 kb apart of each other and marked on the barley physical map [35]. Segmental dupli-
cations were identified by BLASTP ten predicted proteins upstream and downstream of each
HvAP2/ERF [36].

Phylogenetic tree analysis
Full-length amino acid sequences of HvAP2/ERF genes identified in barley were aligned using
the Clustal X 1.83 program with default pairwise and multiple alignment parameters. The phy-
logenetic tree was constructed based on this alignment result using the neighbor joining (NJ)
method in MEGA version 6 with the following parameters [37]: Poisson correction, pairwise
deletion, uniform rates and bootstrap (1000 replicates). Conserved motifs were investigated by
multiple alignment analyses using MEME version 3.0 [38].

Comparative genomics analysis among barley, maize, rice,
Brachypodium and foxtail millet
Comparative genomics analysis was performed according to Lata et al [15]. The protein
sequences of HvAP2/ERF proteins were carried out BLASTP search against protein sequences
of maize, rice, Brachypodium and foxtail millet (http://gramene.org/; www.phytozome.net),
orthologous genes was also performed reciprocal BLASTP search to conform relationship
among them. Cutoff with E-value�1e-05 and at least 80% similarity were considered signifi-
cant. The amino-acid sequence of paralogous and orthologous AP2/ERF proteins combined
the corresponding CDS sequences among barley, maize, rice, Brachypodium and foxtail millet
were aligned using Clustal W, and then analyzed by using PAL2NAL (http://www.bork.embl.
de/pal2nal/) for calculating the synonymous (Ks) and non-synonymous (Ka) substitution rates
[39].
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Expression profiling analysis of the HvAP2/ERF genes
Gene expression data from eight tissues of the cultivar ‘Morex’ were obtained by making use of
the barley genome database (http://apex.ipk-gatersleben.de/apex/f?p=284:10: 6281639160219::
NO). Eight tissues of the cultivar ‘Morex’ earmarking stages of the barley life cycle, including
4-day embryos dissected from germinating grains, roots and shoot from the seedlings (10 cm
shoot stage), young developing inflorescences (5 mm), developing inflorescences (1–1.5 cm),
developing tillers at six leaf stage (the third internode), 5 and 15 days post-anthesis developing
grain (DPA) (bracts removed), which were selected for deep RNA sequencing (RNA-seq) [28].
The expression patterns are presented as heat maps in green/yellow/red/ coding, which
reflected the FPKM (Fragments Per Kilobase of transcript per Million mapped reads) with red
indicating high expression level, yellow indicating middle expression level, and green indicat-
ing low expression level.

Plant materials and treatments
Barley Gairdner was a salt-sensitive variety and CM72 was a salt-tolerant variety [40–41].
Whole-plant responses to salinity, polyethylene glycol (PEG) and abscisic acid (ABA) were
studied in glasshouse by using a hydroponic culture technique. Seeds of Gairdner and CM72
were sterilized with 5% sodium hypochlorite for 10 min and rinsed with distilled water, then
germinated on wet filter paper at 20°Cfor 3 days. The germinated seeds were transferred into
60-well plastic containers (25 L) with aerated hydroponic solution similar to that used by
Wu et al [42]. The pH of the hydroponic solution was adjusted to 6.8 using 1 M HCl as
required. All solutions were renewed weekly. Plants were grown in a greenhouse, and a tem-
perature of 20°C/day and 15°C/night. Three weeks old seedlings were exposed to 250 mM
NaCl, 20% PEG and 100 μMABA for 0 h, 1 h, 6 h, 12 h, 24 h and 48 h. After treatment, root
and leaf were collected and immediately frozen in liquid nitrogen for RNA extraction with
three biological replicates. For each replicate, ten plants of each genotype were used for RNA
analysis.

Quantitative real-time PCR analysis of barley HvDREB1s/2s genes
under salt, drought and phytohormone treatment
Total RNA of each sample was isolated using an RNA extraction kit (TRIzol reagent, Invitro-
gen, USA) and incubated with RNase-free DNase I (TaKaRa, Japan) for removing DNA con-
tamination. Quality and yields of RNA were analyzed by agarose gels electrophoresis and
NanoDrop 1000 Spectrophotometer V 3.7. First strand cDNA was generated from 2 μg total
RNA with M-MLV reverse transcriptase (TaKaRa, Japan) by using random primers. Specific
primers for quantitative real-time PCR analysis were listed in S1 Table. Reaction was carried
out in 20 μl reaction system containing 10 mM Tris-HCl (pH 8.5), 50 mM KCl, 2 mMMgCl2,
0.4 μl DMSO, 200 mM dNTPs, specific PCR primers 10 pmol, Taq DNA polymerase 1 U,
SYBR GREEN I fluorescence dye 0.5 μl. Quantitative real-time PCR was performed using a
ViiA™ 7 Real-Time PCR System(Applied Biosystems, USA). The running protocol was as fol-
lows: 94°C for 3 min, followed by 40 cycles at 94°C for 30 s, 58°C for 30 s, 72°C for 30 s, and a
final extension of 72°C for 5 min. ADP-ribosylation factor 1-like protein(ADP) was used as an
internal control [43]. All reactions were run in triplicate. Ct values were determined by the
ViiA™ 7 software with default settings. The relative expression levels of target genes were deter-
mined using 2-ΔΔCt method [44]. For each sample, PCR was performed with three biological
replicates.
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Results

Identification of the AP2/ERF family genes in barley genome
To identify the AP2/ERF genes in barley, BLAST searches of the barley databases were per-
formed using the AP2/ERF domains of the Arabidopsis, rice and maize protein as a query
sequences. A total of 121HvAP2/ERF genes from the entire barley genome were identified as
potential ones encoding AP2/ERF domain (S2 and S3 Tables). Among which 33HvAP2/ERF
genes (33/121, 27.3%) were found splice variants of primary transcripts. The number of alter-
nate transcript ranged from 2 to 7 (S3 Table). Based upon the phylogenetic classification of
AP2/ERF family in Arabidopsis, 19 HvAP2/ERF proteins were classified into AP2 subfamily
(S4 Table), with containing one AP2/ERF domain without WLGmotif, two (HvAP2-1/3/5/6/
7/8/9/11/12/14/17) or three (HvAP2-18) AP2/ERF domain, the remaining members only con-
tained (S4 Table). Six of the proteins, containing both AP2 and B3 domains, were classified
into the RAV subfamily (S4 Table). Of the remaining 95 proteins that have only one AP2/ERF
domain, 41 members were classified into the DREB subfamily and 54 members were placed in
the ERF subfamily based on the conserved motif (S4 Table). A soloist gene including an AP2/
ERF like domain sequence was assigned due to a lack of homology with the other HvAP2/ERF
genes (S4 Table). All the identified HvAP2/ERF genes encode proteins ranging from 123
(HvERF3.5) to 659 (HvAP2-1) amino acids along with a protein mass from 13.38 kD to 69.73
kD and protein pI ranging from 3.98 (HvDREB2.11) to 11.87 (HvERF6.5) (S3 Table).

Table 1 shows the comparison of the AP2/ERF genes from Arabidopsis, maize, rice, foxtail
millet and barley. In barley, 95HvAP2/ERF genes were classified into the DREB/ERF subfam-
ily. The number of the genes in Arabidopsis, maize, rice and foxtail millet were 122, 163, 131
and 138, respectively [3–4, 15]. In AP2 subfamily barley, Arabidopsis, maize, rice and foxtail
millet had 19, 18, 44, 36, and 28HvAP2/ERF genes, respectively. Six barley HvAP2/ERF genes
were predicted to encode proteins with an AP2/ERF domains and B3 domains, which were
classified into the RAV subfamily. Similar numbers of genes were also found in Arabidopsis,
maize, rice and foxtail millet in RAV subfamily (Table 1).

Chromosomal location and structure of HvAP2/ERF genes
One hundred and eighteen HvAP2/ERF genes (97.5%, 118/121) were located on 7 chromo-
somes; three genes (HvERF2.15, HvERF2.17 and HvERF4.4) were not found the precise

Table 1. Summary of the AP2/ERF superfamily in Arabidopsis, rice, maize, barley and foxtail millet.

Classification Group Barleya Arabidopsisb Riceb Maizec Foxtail Milletd

AP2 sub family 19 18 36 44 28

Multiple AP2/ERF domain 13 14 22

Single AP2/ERF domain (without WLG motif) 6 4 22

DREB/ERF sub family 95 122 131 163 138

DREB sub family 41 57 65 48

ERF sub family 54 65 98 90

RAV 6 6 7 3 5

Soloist 1 1 0 0 0

Total 121 147 164 210 171

a) Some members of HvAP2/ERF genes were derived from the Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/) [29].

b) Nakano et al., 2006 [3];

c) Liu et al., 2013 [4].

d) Lata et al., 2014[15]

doi:10.1371/journal.pone.0161322.t001
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chromosome and physical locations on barley genome (Fig 1, S3 Table). Chromosome 6 had
the largest number of HvAP2/ERF genes (29 genes) while only eight genes were located on 4H.
Other chromosomes contained 13–22HvAP2/ERF genes. Gene structural analyses showed that
mostHvAP2/ERF genes contain one exon (87/121, 71.9%), the remainingHvAP2/ERF genes
shared 2 (19 genes), 4 (3 genes), 5 (1 gene), 6 (1 gene), 7 (4 genes), 8 (2 genes), 9 (3 genes) and
10 exons (1 gene) (S1 Fig). Duplication events analysis indicated that 22 (22/121, 18.2%)
HvAP2/ERF genes were tandem repeated (S5 Table) and 6 (6/121, 5.0%)HvAP2/ERF genes
were segmentally duplicated (S6 Table). The tandem duplicated genes contained six clusters,
the largest cluster located on chromosome 5, which including six genes, chromosome 2 and 7
contained one gene pairs, respectively, chromosome 6 including 3 clusters. Remarkably, three
HvAP2/ERF gene pairs displayed segmentally duplicated, including HvAP2-5 and HvAP2-8,
HvRAV-1 and HvRAV-2,HvERF3.6 and HvERF3.9 gene pairs.

Phylogenetic tree of the HvAP2/ERF proteins in barley
The AP2/ERF family genes are plant-specific transcription factors. Based on alignment of the
HvAP2/ERF domain of barley, 121 barley HvAP2/ERF genes were classified into the DREB,
ERF, AP2 and RAV subfamilies, and one soloist (Fig 2, S3 Table). Phylogenetic trees of the
AP2, RAV, DREB and ERF subfamilies in barley were constructed (Fig 2). A total of 41 DREB
subfamily genes distributed into the A1, A2, A4, A5 and A6 groups in barley, including 11, 12,
6, 5 and 7 genes, respectively (Fig 2, S2 Fig). Additionally, 54 genes belonging to the ERF sub-
family in barley distributed into the B1-B6 groups, including 6, 18, 9, 10, 6 and 5 genes, respec-
tively (Fig 2, S2 Fig). In addition, 19 genes were classified into the AP2 subfamily and six genes
into the RAV subfamily (Fig 2).

Fig 1. The chromosome location of theHvAP2/ERF genes in barley. The red lines represent tandemly duplicated gene pairs.

doi:10.1371/journal.pone.0161322.g001
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Conserved motifs of the HvAP2/ERF proteins
Conserved motifs can provide evidence for further classification as it is likely that identical
motifs exhibit similar functions. Five conserved motif (Motif 1–5) were analyzed by using
MEME software to identify conserved motifs among proteins in the families and subfamilies.

Fig 2. The phylogenetic analysis ofHvAP2/ERF genes in barley.

doi:10.1371/journal.pone.0161322.g002
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The MEME motif analysis revealed that different HvAP2/ERF proteins had different conserved
motifs (Fig 3, S3 Fig). All of the HvAP2/ERF genes had the full AP2/ERF domain and Motif 1
(S3 Fig, S4 Table). In addition, motif 2, 3 and 4 were detected in most of theHvAP2/ERF genes
(S2 Fig). Remarkably, motif 5 only observed in HvAP2-16 and HvERF2.1–2.10 (S2 Fig). Two
conserved amino acids in the AP2/ERF domains differ between DREB and ERF [45]. In DREB/
ERF subfamily, the 14th valine (V14) and the 19th glutamic acid (E19) are conserved in AP2/
ERF domain of HvDREB protein, whereas alanine (A) and aspartic acid (D) are conserved in
the corresponding positions of the HvERF proteins (S3 Fig).

Orthologous relationships of HvAP2/ERF genes among grass species
To investigate the relationship of HvAP2/ERF genes among grass species, comparative geno-
mics was carried out between barley, maize, rice, Brachypodium and foxtail millet (S7–S10
Tables). The largest number of orthology of genes was 18 (18/121, 15%) between barley and
Brachypodium (S10 Table), followed by rice (12/121, 10%) (S8 Table), foxtail millet (9/121,
7%) (S10 Table) and maize (6/121; 5%) (S9 Table). ForHvAP2-10, barley shared a greater
orthology with maize (81%), rice (83%), Brachypodium (86%) and foxtail millet (88%), suggest-
ing that HvAP2-10 shared the similar functions in different species.

Expression pattern analysis of barley HvAP2/ERF genes under different
development stage
Expression profiling analysis of the gene family can provide important clues regarding their
functions [46]. One hundred and seven HvAP2/ERF genes were detected by RNA sequencing,

Fig 3. Conserved domains of HvAP2/ERF proteins in barley.

doi:10.1371/journal.pone.0161322.g003
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14HvAP2/ERF genes had no transcript in any tissue (Fig 4). The transcripts of 49HvAP2/ERF
genes (49/107, 45.8%) were detected in four days embryo after germinating. 40 (40/107, 37.4%)
and 68 (68/107, 63.6%) HvAP2/ERF genes were detected in root and shoot from seedling,
respectively. 66 (66/107, 61.7%) HvAP2/ERF genes were found expressed in developing tillers
(six-leaf stage). In addition, 45 (45/107, 42.1%) and 59 (59/107, 55.1%) HvAP2/ERF genes were
expressed in young fluoresce (5 mm and 1–1.5 cm length) and developing grains (5 and 15
DPA), among whichHvERF2.11 displayed extremely higher expressed in 15 DPA than 5 DPA
developing grains. Remarkably, HvERF2.3 and HvERF2.4 displayed higher expression level in
developing tillers than other tissues. Indicating that expression analysis could be contributed to
functional analysis ofHvAP2/ERF genes in barley.

Expression analysis of HvDREB1s/2s genes under abiotic stresses and
phytohormone treatments
Plant growth is affected by various abiotic stresses, such as drought, high salinity, and low tem-
perature [21]. Moreover, many HvDREB1s/2s genes are induced under stress conditions and
phytohormone [4, 11, 17, 21–22, 26]. As shown in Fig 5, the quantitative real-time PCR was
performed, including 11HvDREB1s genes and 10HvDREB2s genes. Most ofHvDREB1s and
HvDREB2s displayed similar expression patterns between Gairdner and CM72 in root and leaf
tissue. Under salt stress, HvDREB1.11 was up-regulated in Gairdner and down-regulated in
CM72 in root tissue, the fold change value ranged from 0.41 to 1.00 and 0.79 to 1.35 in

Fig 4. The expression profile of HvAP2/ERF genes in eight tissues of barley. The expression patterns
are presented as heat maps in green/yellow/red/ coding, which reflected the FPKM with red indicating high
expression level, yellow indicating middle expression level, and green indicating low expression level.

doi:10.1371/journal.pone.0161322.g004
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Gairdner and CM72, respectively (S11 Table). However, HvDREB2.6 showed the opposite
expression pattern.HvDREB1.3 and HvDREB2.8 were up-regulated in CM72 but down-regu-
lated in Gairdner in leaf tissue after 12 h treatment. In contrast,HvDREB1.8, HvDREB1.12, and
HvDREB2.10 were down-regulated in CM72 and up-regulated in Gairdner in leaf tissue (Fig
5A). Remarkably, HvDREB2.8 exhibiting more than a 1-fold change value in Gairdner and
CM72 under high salt stress in root tissue (S11 Table). Under drought stress, HvDREB1.8
showed higher expression in CM72 than Gairdner, while HvDREB1.9 showed less expression
in CM72 than Gairdner in root tissue. Both genes displayed down-regulated after early treat-
ment (1 h time point) in leaf tissue (Fig 5B).HvDREB2.8 displayed up-regulated expression in
both root and leaf tissue in both varieties with the expression level in leaf being higher than
that in root tissue (Fig 5B), the average fold change value was 1.72 and 3.00 in root and leaf tis-
sue, respectively (S11 Table).

The plant hormone ABA has important roles in improving the tolerance of plants to
drought and salinity stresses [16]. The Quantitative real-time PCR was also carried out to ana-
lyze the expression level of selected 21HvDREB1s and HvDREB2s genes after ABA treatment
(Fig 5C). The heat maps indicated thatHvDREB1.3 exhibited higher expressed in Gairdner
than in CM72 in root tissue with the average fold change value of 1.61 and 0.37, respectively
(S11 Table). On the contrary, HvDREB1.3 was up-regulated expressed in CM72 and down-reg-
ulated expressed in Gairdner in leaf tissue. The expression level ofHvDREB2.8 was dramati-
cally increased in Gairdner with 3.99-fold change value than CM72 with 1.56-fold change
value in both tissues, however, HvDREB2.6 displayed the opposite expression pattern (S11
Table).

Fig 5. The expression analysis of HvDREB1s andHvDREB2s genes in response to salinity,
dehydration and Abscisic acid (ABA). A, B, and C represent heat maps showing differential gene
expression patterns in response to salinity, dehydration and ABA at 0 h, 1 h, 6 h, 12 h, 24 h and 48 h time
point.

doi:10.1371/journal.pone.0161322.g005
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Promoter analysis is a vital method to identify regulatory networks between environment
stimulation and gene expression. Therefore, a cis-element scan was carried out to identify the
potential regulatory elements response to abiotic stress and hormones. A total of 82 cis-regula-
tory elements were observed at least in oneHvDREB1s/2s genes (S12 Table). Several cis-regula-
tory elements were involved in abiotic stress and phytohormone response. For example, ABRE
(abscisic acid responsiveness element) and DRE (Dehydration-responsive element) involved in
18 and 1 HvDREB1s/2s genes, respectively, both of them were identified as cis-regulatory ele-
ments that participated in ABA-dependent and ABA-independent response to dehydration-
inducible genes [16] (S12 Table). In addition, GARE-motif (gibberellin-responsive element),
AuxRR-core (cis-acting regulatory element involved in auxin responsiveness) and MBS (MYB
binding site involved in drought-inducibility) were also detected in promoter of regions (S12
Table).

Discussions

Characterization of the barely AP2/ERF superfamily
AP2/ERF superfamily is one of the largest groups of transcription factor family in plants,
which also plays an important role in the transcriptional regulation involving in complicated
developmental processes, biotic and abiotic stress, including seed germination, flower develop-
ment and leaf senescence, fruit ripening, and responses to salt, drought, low temperature and
pathogen attack [10, 12, 20, 47–51]. Based on the sequencing of plant genome, the AP2/ERF
gene family was widely analyzed in plants [3–4, 13–15, 52–54]. However, there is still little
information about barley HvAP2/ERF genes. To further investigate the AP2/ERF family in bar-
ley, 121HvAP2/ERF genes were identified from 79379 (high-confidence and low-confidence
genes) annotated genes and genome DNA database [28]. Each of them has notable features
with at least one conserved AP2/ERF domain. Remarkably, the number of HvAP2/ERF gene in
barley was less than Arabidopsis (147 genes), maize (210 genes) and rice (164 genes) [3, 4]. In
addition, the numbers of some subfamilies were similar. For example, the numbers of AP2 sub-
family in barley and Arabidopsis were 19 and 18, respectively, being half of the number in rice
and maize. The numbers of RAV subfamily in barley, Arabidopsis, rice and foxtail millet were
6, 6, 7 and 5, respectively. On the contrary, the numbers of other subfamilies were significantly
different. For example, 95 genes were identified in the DREB/ERF subfamily in barley. The
numbers of genes were 122, 131, 163 and 138 in Arabidopsis, rice, maize and foxtail millet,
respectively. Recently, it has been reported that segmental duplication events and tandem
duplication events in plants were contributed to the expansion of the AP2/ERF family, suggest-
ing that pressure was the predominant force acting on the evolution of the AP2/ERF family [3–
4, 15]. In the present study, the Ka/Ks ratio for tandem duplicated and segmental duplication
gene-pairs in barley HvAP2/ERF genes less than 1.0 expect HvERF2.8 andHvERF2.9 gene
pairs, indicating that HvAP2/ERF genes undergoing purifying selection in gene expansion (S5
and S6 Tables). The smaller number of genes in AP2/ERF family in barley suggested that there
may be more other HvAP2/ERF genes existing in the unknown genomic regions or chromo-
some duplication events was restricted in barley evolutionarily expansion.

Conserved motifs in transcription factors play an important role in gene function [1]. A
total of fifty conserved motifs outside of the AP2/ERF domain were detected in Arabidopsis
[3]. In the present study, we analyzed five motifs of AP2/ERF proteins, motif 1 (partial of AP2/
ERF domain) was observed in all gene members, other motifs were outside the AP2/ERF
domain. Previous studies revealed that DREB and ERF subfamily contained conserved WLG
motif in AP2/ERF domain [3–4]. In the present study, WLG motif was highly conserved in
DREB and ERF subfamily, as well as in RAV and Solosist subfamily (Table 1, Fig 2). Sequence
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alignment of ERF subfamily has revealed 14th alanine and the 19th aspartic acid of AP2/ERF
domain are conserved, whereas valine and glutamic acid residues are conserved at the corre-
sponding positions of DREB subfamily [3]. The two conserved amino acids are located on the
β-sheet in the AP2/ERF domain, which is important for binding to the target DNA sequences
[1]. The AP2/ERF domain of DREB and ERF sub family were well-conserved among Arabidop-
sis, rice and maize [3–4]. Remarkably, all DREB and ERF subgroups were completely conserved
in Val-14 and Ala-14 acid residues, respectively. However, in the present study, seventeen
DREB gene members were conserved in Glu-19, meanwhile fifty ERF subfamily gene members
were completely conserved in Asp-19, only HvERF1.6/2.12 was not conserved in Asp-19
amino acid residues. These conserved amino acid residues probably indicate crucial roles for
DREB/ERF sub family genes involved in different forms of physical interaction with DNA [1].

Expression analysis indicated HvAP2/ERF genes may play important
roles during plant growth, abiotic stress and hormone response
Tissue-specific expression data at a given developmental stage is useful for identifying genes
involved in defining precise nature of individual tissues. In the present study, the expression
pattern of one hundred and sevenHvAP2/ERF genes were detected by RNA sequencing, it was
contribute to investigate the function of theHvAP2/ERF genes in barley. Remarkably, HvAP2-
12 gene also named as Cleistogamy 1 (Cly1)/HvAPETALA2 (HvAP2), which was an ortholog of
AP2 (AT4G36920.1), TOE3 (AT5G67180.1) and rice AP2-like gene Os04g0649100 [55–56]. In
situ RNA hybridization indicated that the Cly1 transcript was detected in the lodicule up to the
stamen primordium stage [55]. Another gene HvDREB2.2 also named Nud (Nudum), which
control covered/naked caryopsis in barley and was expressed in the caryopsis at two weeks
after anthesis rather than in hulls or leaves [57]. In the present study, HvAP2-12 displayed rela-
tive high expression level in developing tillers at six leaf stage, the transcript of HvDREB2.2
gene was only detected in developing grains (5 DPA). Therefore, more sophisticated specificity
expression analysis is helpful to parse the function of HvAP2/ERF genes.

Plants were involved in adverse environmental stresses in their natural environments. On
the molecular levels, they have evolved a wide range of mechanisms to cope with them. In
plants, the genes respond to drought and high-salt stress involved in two ABA dependent and
two ABA-independent signal transduction pathways [16–17]. A phylogenetic tree of the
HvDREB1s andHvDREB2s proteins and their orthologs from Arabidopsis, maize and rice was
constructed (S4 Fig).HvDREB2.9 was an orthology gene of OsDREB2A with improving
drought and salt stress tolerance in rice and Arabidopsis, which had no obvious difference after
drought, high-salt and ABA treatment although promoter contained multiple ABREs in barley.
The expression level of HvDREB1.1 and HvDREB1.2 were decreased after 6 h, on the contrary,
OsDREB1F as an orthology gene ofHvDREB1.1 andHvDREB1.2 was increased after drought,
high-salt and ABA treatment [20]. Remarkably, some HvDREB1s andHvDREB2smay be dis-
played different functions in plants. HvDREB1.8 was orthology gene of OsDREB1A which was
induced by drought, high-salt stress and also ABA treatment in root, the expression level of
HvDREB1.8 was higher in CM72 than Gairdner. In addition, HvDREB1.3/1.4/2.8 was increased
under drought and salt stress, as well asHvDREB2.8 response to ABA treatment. Further analy-
sis revealed thatHvDREB1.3 and HvDREB1.4 were identified as homologous to OsDREB1C
genes in rice whereas OsDREB1C showed constitutive expression [21].HvDREB2.8 was a
homologous of maize ZmDREB2.7 which enhanced tolerance to drought stress by overexpres-
sing ZmDREB2.7 in transgenic Arabidopsis [4] (S4 Fig). However,HvDREB2.8 displayed higher
expression level in Gairdner than CM72 except in leaf under salt stress. An ABRE functions as
a cis-acting DNA element involved in ABA-regulated gene expression, which was observed in
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promoter regions of dehydration-inducible genes. In the present study, promoter analysis
revealed thatHvDREB1.3/1.4/1.8/2.8 contained multiple ABREs, suggesting that these genes
are involved in ABA-dependent response under drought and high-salt conditions (S12 Table).
Therefore, gene expression analysis ofHvDREB1s and HvDREB2s should help us to investiga-
tion the molecular mechanisms of environment adaptability of plant under abiotic stress and
hormone response, the function of differentially expressed genes between Gairdner and CM72
should be further investigated in relation to abiotic stress and hormone response.
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(TIF)

S2 Fig. Conserved motifs of HvAP2/ERF proteins in barley.
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