
TUTORIAL

Interactive Pharmacometric Applications Using R and the
Shiny Package

J Wojciechowski, AM Hopkins and RN Upton*

Interactive applications, developed using Shiny for the R programming language, have the potential to revolutionize the
sharing and communication of pharmacometric model simulations. Shiny allows customization of the application’s user-
interface to provide an elegant environment for displaying user-input controls and simulation output–where the latter
simultaneously updates with changing input. The flexible nature of the R language makes simulations of population variability
possible thus promoting the combination of Shiny with R in model visualization.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, e21; doi:10.1002/psp4.21; published online 18 March 2015

A population pharmacokinetic and/or pharmacodynamic
model can be thought of as an elegant and concise
description of the underlying mechanisms and variability in
a data set. A robust simulation model is an important tool
for predicting new data—the consequences of changes in
the dosing regimen or covariate influences. Population
models have found important roles in the development, reg-
ulation, and optimal use of pharmaceuticals.1,2 However,
the process of making predictions from population models
has been largely time-consuming, and remained the prov-
ince of dedicated pharmacometricians using specialized
software limiting its wider applicability.3

Recent developments such as the ggplot24,5 package for

the R data analysis and statistical language6 have allowed

sophisticated and flexible plotting of data and population

model output. However, the plots are static and to investi-

gate different values for model parameters the models

need to be re-simulated and plots updated manually. The

Berkeley Madonna software provides an alternative

approach where models can be specified as differential

equations and the simulated results shown in real-time for

different parameter values by use of sliders.7 While Berke-

ley Madonna has found useful roles in presenting model

predictions to nonpharmacometricians, it is proprietary soft-

ware (albeit inexpensive) and is not readily adapted to sim-

ulations of variability.
Recently, developments in the R language, and in particu-

lar the Shiny package for R,8 have allowed R programmers
to interactively show the output for R programs to Web-
browsers. Given the general nature of the R language, it is
possible to program interactive pharmacometric models with
a Shiny Web-browser interface that can be viewed on the
localhost (user’s own computer) or on another computer
accessed by means of the Internet. Applications such as a
dosing-education tool aimed at high school students (https://
acp-unisa.shinyapps.io/OpenDay/) and a population model
simulation tool complete with simulated variability (https://
acp-unisa.shinyapps.io/Ibuprofen/) have been developed
using the Shiny package and R and can be viewed without

an R installation or files containing R code. Unlike other
Web-page design methods, only previous experience with
the R programming language is required. R and Shiny main-
tain Berkeley Madonna’s key feature of reactively updating
output in response to changing input by means of widgets
(such as sliders and radio buttons) but owing to the flexible
R language and combination with extension packages, the
pharmacometrician has control in coding all elements of a
population model, the appearance of the application’s user-
interface, and generated output. We believe such Shiny
Web applications have the potential to provide a convenient
method of providing model simulations to a broad audience,
which may be useful to pharmacometricians and nonphar-
macometricians alike.

The aims of this tutorial are to:

• Introduce the application of the Shiny package to phar-
macometric model simulations

• Describe the fundamental R code needed to create a
Shiny Web application

• Show example code for the three Web applications of
increasing complexity

• Briefly describe the various options for deploying Shiny
Web applications

GETTING SHINY

This tutorial is primarily targeted toward intermediate/
experienced R programmers such as those who use R for
processing raw data and NONMEMVR output, statistical
analyses, and have some experience in coding pharmaco-
metric models in R (nonetheless, an annotated example
script for coding a population model in R is available as
Supplementary Pharmacometric Model Example). It is
not recommended to learn R and Shiny concurrently. R is
an open source data analysis language and can be down-
loaded from http://www.r-project.org. There are several
online resources for learning R. Shiny is a package for R

Australian Centre for Pharmacometrics, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia. *Correspondence: R Upton
(richard.upton@unisa.edu.au)
Received 17 October 2014; accepted 24 January 2015; published online on 18 March 2015. doi:10.1002/psp4.21

Citation: CPT Pharmacometrics Syst. Pharmacol. (2015) 4, e21; doi:10.1002/psp4.21
VC 2015 ASCPT All rights reserved

https://acp-unisa.shinyapps.io/OpenDay/
https://acp-unisa.shinyapps.io/OpenDay/
https://acp-unisa.shinyapps.io/Ibuprofen/
https://acp-unisa.shinyapps.io/Ibuprofen/
http://www.r-project.org

developed by RStudio, and needs to be installed in a given
R installation. There are several ways to install packages in
R depending on the operating system and R interface. One
convenient method is to install the RStudio integrated
development environment for R (http://www.rstudio.com/)
and use the Tools/Install Packages menu. RStudio will auto-
matically install any additional package dependencies. A list
of software and R package versions used in the develop-
ment of this tutorial’s examples is available in Table 1. For
those less familiar with R, it is important to note that R and
its package libraries develop and update at a fast pace.
Therefore, in the future the latest versions of the packages
used in this tutorial may not be backward compatible with
the code presented here.

USING SHINY

Shiny applications are built using two R scripts that communi-
cate with each other: a user-interface script (ui.R), which con-
trols layout and appearance; and a server script (server.R),
incorporating instructions for user-input, processing data, and
output by utilizing the R language and functions from user-
installed packages. Tutorials and exercises for building Shiny
applications are provided by RStudio on the Shiny website9

and are accompanied by articles that describe capabilities of
Shiny beyond the scope of the tutorials, a reference page for
Shiny functions, as well as a gallery of examples supported
by code. The Shiny package also includes 11 built-in exam-
ples referred to by the Shiny by RStudio tutorials.

This tutorial provides three working pharmacometrics ori-
ented examples of Shiny Web applications (available online
as Supplementary Instructions and Supplementary Exam-
ples S1-S3). To enhance a reader’s understanding of how
to write a Shiny application, it is recommended that this
tutorial be read in conjunction with the supplementary code
available online and running the applications locally using R
or by means of the Internet. They can be accessed at the
following Web addresses:

• Flip-Flop Kinetics Application (Example 1): https://acp-
unisa.shinyapps.io/FlipFlop/

• Preliminary Patient Education Tool Application (Example
2): https://acp-unisa.shinyapps.io/OpenDay/

• Ibuprofen in Pre-Term Neonates Application (Example 3):
https://acp-unisa.shinyapps.io/Ibuprofen/

To run any of the applications locally in R or RStudio, an
installation of the Shiny package (and any dependencies) is
required, and ui.R and server.R scripts for the application
saved in the same directory (i.e., a folder titled with the
application’s name). To launch the application from RStudio
open each ui.R and server.R script in RStudio and click
“RunApp,” which will appear in the top right hand corner of
the source pane. Launching an application from R requires
setting the working directory to where the application folder
is located, and using the runApp function. When initiating,
Shiny will open a Web-browser window for the application.

STRUCTURE OF A SHINY APPLICATION

In this section, we will discuss the core elements of the ui.R
and server.R scripts required to create an application. Our first
example for creating a user-interface in ui.R and application
instructions in server.R is the Flip-Flop Kinetics application—
Example 1 (supplementary code available online). This appli-
cation implements a model for a hypothetical drug described
by one-compartment first-order absorption kinetics. It illustrates
the concept that for this type of model, there are two parame-
ter sets that give identical results: one with absorption rate
faster than elimination rate, and the other with elimination rate
faster than absorption rate (flip-flop kinetics).10

Figure 1 features a screenshot of the application’s
browser window with a plot of the concentration–time profile
for the drug over a 24-h period, with sliders that control the
values for the absorption and elimination rate constants, ka

and ke, respectively, and volume of distribution, V. Initially
(Figure 1), the application’s plot shows an example where
elimination is rate limiting as the value of ka is greater than
ke (ka 5 2, ke 5 0.2). When the sliders change, thus allow-
ing the values of the rate constants to approach each other,
the plot automatically updates in response. When ka is
less than ke, the roles of the constants in describing the
concentration–time profile swap and the absorption rate
constant limits the decline of drug. For example, pairs of val-
ues such as ka 5 0.2 and ke 5 2 when flipped to corre-
spond with the other rate constant (and V is also changed
accordingly), do not change the outcome of the plot (Figure
1). Rather than a series of simulations and static plots to
explore this system, Shiny has allowed the user to control
and observe the roles of the rate constants simultaneously.

The ui.R script (supplementary code available online)
encodes instructions for the application’s layout, appear-
ance, user-input widgets (interactive Web elements such as
sliders, buttons, selection boxes, check boxes, etc.), and
the output to be displayed. The main elements describing
the user-interface of this application are shown below:

fluidPage(fluidRow(
h2(“Flip-Flop Kinetics”),

Table 1 Software versions used in development of example material

Software/R Package Library Version

R 3.1.2

RStudio 0.98.977

Google Chrome 39.0.2171.99

Shiny 0.11

ggplot2 1.0.0

deSolve 1.11

plyr 1.8.1

compiler 3.1.2

doParallel 1.0.8

reshape2 1.4.1

grid 3.1.2

MASS 7.3–37

MBESS 3.3.3

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

2

CPT: Pharmacometrics & Systems Pharmacology

http://www.rstudio.com/
https://acp-unisa.shinyapps.io/FlipFlop/
https://acp-unisa.shinyapps.io/FlipFlop/
https://acp-unisa.shinyapps.io/OpenDay/
https://acp-unisa.shinyapps.io/Ibuprofen/

plotOutput(“plotCONC”),
sliderInput(“KA”, “Absorption Rate Con-

stant:”, min 5 0.1, max 5 2.1, value 5 2, step 5

0.1),
sliderInput(“KE”, “Elimination Rate Con-

stant:”, min 5 0.1, max 5 2.1, value 5 0.2, step
5 0.1),

sliderInput(“V”, “Volume of Distribution
(V):”, min 5 1, max 5 10, value 5 10, step 5

0.05),
align 5 “center”))

All code for the contents of the user-interface is required
to be within the brackets of a layout function. Layout func-
tions such as fluidPage (there are a number available) cre-
ate a canvas for the interface and use fluidRow to position
user-input widgets (sliderInput—a function for creating a
slider) and output (plotOutput—function for plot object).
Each layout function has its own framework for positioning
elements where others, including fixedPage and navbar-
Page, can create different styled pages based on their own
functions. However, they all follow the same hierarchical
structure where element functions (such as widgets—
sliderInput) are embraced within a positioning function
(such as fluidRow), within a layout function (fluidPage).
Functions of the same level are written as a string within
their superior function, separated by “,”.

Error messages related to Shiny (and other loaded R
packages) appear in the loaded Web browser upon applica-
tion initiation, and once the application is terminated they
also appear in the R Console. Examining if pairs of function

brackets are closed before running the application can help

limit a large number of error messages. In particular, func-

tions placed earlier in the script are more difficult to track

when ui.R becomes more detailed. Using free source code

editor software, or directly writing scripts from RStudio, is

encouraged when writing Shiny applications as they can

aid in highlighting any unclosed brackets (among other nav-

igational and editing benefits). If there is a major error in

which the application is not functional a Web-browser page

will still open, however, will be grayed-out. Other error mes-

sages generally provide a line number referring to the

source code or the function name in question. When testing

the coding of a pharmacometric model, it is recommended

to write a generic R script ensuring that it runs successfully

before incorporating the model into a Shiny application.
The structure of server.R code plays an important role in

defining instructions for the application, while minimizing
redundant computation and maximizing application speed
(Figure 2). The function, shinyServer, requires an input
object (values called from ui.R) and an output object
(objects to be called by ui.R). Objects that change depend-
ing on input from widgets in the ui.R, such as input$KA in

Figure 1 Flip-Flop Kinetics application. Shown are screenshots of the application featuring a one-compartment first-order absorption
model running in a browser-window. The calculated concentration–time profile over 24 h is plotted as a red solid line. Left: Upon appli-
cation initiation, elimination is rate limiting, with slider values of absorption rate constant (KA) 5 2, elimination rate constant (KE) 5
0.2, volume of distribution (V) 5 10. Right: The slider values for KA and KE have been reversed where KA 5 0.2 and KE 5 2, i.e.,
absorption is rate limiting. For pairs of values to give identical results, the slider for V also needs to be changed (V is a scalar that
allows the same numerical solution).

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

3

www.wileyonlinelibrary/psp4

this example, are termed “reactive.” Every time input from a
widget changes, the value for the reactive object updates to
reflect this change.

Expressions for defining and processing reactive objects
are required to be enclosed within a render* function (for
returning reactive output to the user-interface, where *
denotes an object description such as “plot,” “table,” or
“text”) or a reactive expression (often for controlling a, or
series of, reactive data frames that can be sent to the user-
interface by render* functions). The renderPlot function
(Figure 2) containing reactive input objects (KA, KE, and V
from sliders), expressions for calculating concentration
(CONC), and a ggplot25 object plotting resultant concentra-
tions over time (plotobj), will re-execute with every reaction
to a widget change and will store the updated plot object as
plotCONC for the output object. Detailed code can signifi-
cantly slow down the application; therefore, it is best to limit
code within render* and shinyServer functions to just that is
reactive or computationally simple. Code at the beginning
of the script before shinyServer is only run once on applica-
tion initiation. This area is the most appropriate place for
loading libraries, source code, datasets, and constant
expressions (such as defining time) that do not need to be
called each occasion when input from a widget changes,
thus limiting redundant computation time. These functions
and libraries can also be stored in a third script called
global.R.

BUILDING A USER-INTERFACE (ui.R)

Example 2 is a Shiny application that incorporates several
layout functionalities and widgets in its ui.R script (supple-
mentary code available online). Shiny’s variety of customiz-

able layouts and prebuilt widgets allows easy development
of user-interfaces for applications. From the options avail-
able, developers can explore layouts that adapt to the differ-
ent browser sizes of devices (i.e., phone, tablet, or
computer), add a sidebar or tabs that organize and differen-
tiate between input (widgets) and output (tables, plots, etc.),
or change what is visible when specific input conditions are
met. The example application implements a simple patient
education tool developed for an Open Day at a university.

Figure 3 features a screenshot of the application’s
browser window with a plot of the 10-d concentration–time
profile for a hypothetical orally administered drug with one-
compartmental first-order absorption kinetics affected by
patient age (on clearance) and weight (on volume of distri-
bution). When the slider values for age, weight, and dose
change, or when a dose frequency is selected, the plot of
the concentration–time profile is updated. The application
was intended to provide final year high school students and
their parents with no background in pharmacy or pharma-
cokinetics an understanding of why some drugs require
altered dosing regimens for different ages and weights to
prevent subsets of patients experiencing toxicity or lack of
efficacy. The students and their parents were able to also
explore profiles with missed or doubled doses by means of
integrated check boxes.

Layout
Shiny calls elements in the ui.R script sequentially, i.e.,
from top to bottom, and left to right. Within a layout func-
tion, elements inside are ordered in the sequence they are
to appear in the user-interface. Figure 3 features a fixed-
Page layout—a page layout that aligns elements, such as
input control widgets or output plots and text, in rows and
columns in a fixed width. Rows (fixedRow) allow embraced

Figure 2 server.R excerpt from flip-flop kinetics application. The output object, plotCONC, uses the renderPlot function to call widget
values for absorption rate constant (KA), elimination rate constant (KE), and volume of distribution (V) from the user-interface, creates
a data frame consisting of drug concentrations (CONC) at each specified time-point (TIME; time sequence not shown), and plots the
concentration–time profile using the ggplot25 package. As output and the renderPlot function are reactive, they are placed within
shinyServer.

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

4

CPT: Pharmacometrics & Systems Pharmacology

Figure 3 Preliminary patient education tool application. Shown are screenshots of the application featuring a one-compartment first-
order absorption model running in a browser-window. The concentration–time profile is depicted as the solid red line, and black hori-
zontal dashed lines represent the hypothetical therapeutic window (drug is ineffective at less than 2.5 mg/L, and toxic when greater
than 5 mg/L). Top: Upon application initiation, the “Dose Frequency” selection box is pre-set to once daily and the output plot displays
the concentration–time profile for the hypothetical drug over 10 d (10 doses) accordingly. Bottom: A scenario where the twice-daily dos-
ing regimen is selected. The plot automatically updates to show the concentration–time profile when 20 doses are administered within
the same 10-d period. The “missed dose” and “double dose” checkboxes also automatically update to describe specific doses in the
twice-daily regimen.

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

5

www.wileyonlinelibrary/psp4

elements to appear on the same line, whereby columns
(column) delegate the horizontal space and the position for
an element within a 12-unit wide grid. Unlike fixedPage, flu-
idPage (and fluidRow) allows the page layout to adjust to
the dimensions of the browser that the application is run-
ning in. Below represents an excerpt of the code describing
the heading layout in Figure 3.

fixedPage(fixedRow(
column(10, h2(“How many times a day and at

what dose do you need to take this medication so
that it is effective but not toxic?”, align 5

“center”), offset 5 1)),

Elements are each assigned a column and a width. Add-
ing elements below the heading requires another row and
repeating the process underneath the existing code using
fixedRow and column, with the same dimensions above or
different ones depending on the content to be added. How-
ever, fixedPage and fluidPage layouts are not limited to fixe-
dRow and fluidRow functions, respectively. The application
exploits a sidebarLayout (equivalent level to fixedRow) to
create a sidebar shown as a bordered section with a back-
ground in the user-interface. Rather than arranging elements
into columns, sidebarLayout can assign them to the sidebar
with sidebarPanel or to an unformatted area with mainPanel.
Other layout functions include tabsetPanel and navlistPanel
for dividing the user-interface into discrete sections (i.e., sep-
arate tabs or items on a navigation list for different plots or
tables that would be cluttered if in one section).9

Widgets
Shiny widgets are interactive elements that allow users to
explore different values or categories of parameters or varia-
bles. They store values chosen by the user, which are called
by server.R, processed by render* functions or reactive
expressions for output, and sent to the user-interface for dis-
play. Therefore, changing a widget will change the value
called by server.R and the resulting output object. The Shiny
package comes with a family of prebuilt widgets—paired with
an R function and a logical string of arguments. They have
help available by typing “?” and the widget’s input function
name into R (i.e., ?sliderinput). Every widget function requires
a name (for input values to be called from ui.R by server.R
that will not be seen by the user) and a label argument (that
labels the widget in the user-interface seen by the user).
Other arguments that complete the function are dependent
on the widget type such as value, min, max and step for
sliders (widget type for age and weight in Figure 3), and
choices for selection boxes. A benefit that some widgets
have over others is that they can ensure users are con-
strained to selecting only plausible values or scenarios—
either restricting for biological plausibility or by the limits of
what has been coded in server.R. The application has widg-
ets for patient age, weight, dose, and dose frequency with
the option to miss a dose or double it, in the sidebar. Below
is the ui.R widget code for the selection box representing
“Dose Frequency,” within the positioning function—sidebarPa-
nel (supplementary code available online for other widgets).

sidebarPanel(selectInput(“FREQ”, “Dose
Frequency:”, choices 5 list(“Once daily” 5 1,
“Twice daily” 5 2, “Three times daily” 5 3),
selected 5 1)),

A selection box is created by the selectInput function
where “FREQ” is the widget’s name called into server.R as
input$FREQ and “Dose Frequency:” is its user-interface
label. It also requires an argument for choices—a list of text
labels allocated to a numerical value. It can be customized
to include selected (assign the numerical value of one of
the choices to appear on application start-up), allow for
multiple choices, and allocate a width of the box in pixels.
As dose frequency is a categorical variable, the selection
box was used to limit options a user could choose, opposed
to entering any value. This was not just for clinical practical-
ity (avoiding eight times daily regimens and restricting to
integers), but for each dosing regimen an R expression
was required, hence all possible values could not be coded
(supplementary code available online—refer to server.R).
However, these restrictions could have been achieved with
a slider widget that restricted a user to only slide the bar
between 1, 2, or 3 where “1” was once daily, “2” was twice
daily, and “3” was three times daily, for example.

sliderInput(“FREQ”, “Dose Frequency (times per
day):”, min 5 1, max 5 3, value 5 1, step 5 1),

Given the target audience, a selection box was able to
provide a concise description with its use of text than a
slider (that would have required interpretation of the scale’s
values in its label or other text). Deciding on a widget
requires consideration of the user-audience, ability to com-
municate its intent and the type of variables that it will be
attached to, i.e., continuous versus categorical.

It is easy to get inundated with widgets that crowd the
user-interface, and it is likely that not all widgets are
required to be freely available to the user. Shiny offers
options that can hide and show elements (including widg-
ets) when specific conditions are met through the use of
conditionalPanel in ui.R or renderUI in server.R. In the pre-
vious example, the selection box for “Dose Frequency” was
pre-set to “once daily” (selected 5 1) and Figure 3 high-
lights that in this state, the checkboxes for missed/doubled
doses read, “Dose Missed on Day 3” and “Dose Doubled
on Day 4.” When “twice daily” is selected, not only does
the plot change to reflect twice daily dosing but the descrip-
tions of missed/doubled doses change too (Figure 3). Here
is an example of how this can be achieved using the condi-
tionalPanel function within sidebarPanel in the ui.R script:

conditionalPanel(condition 5 “input.FREQ
55 2”,
checkboxInput(“DOSE26”, “Second Dose Missed

on Day 2:”, value 5 FALSE),
checkboxInput(“DOSE27”, “First Dose Doubled

on Day 3:”, value 5 FALSE)),

The condition argument is an expression evaluated repeat-
edly to determine if the subsequent elements should be

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

6

CPT: Pharmacometrics & Systems Pharmacology

displayed. Hence, only when the input for FREQ (selection
box widget name for “Dose Frequency”) equals “2,” the two
checkbox widgets enclosed within conditionalPanel will
appear. As seen by the label arguments for each checkboxIn-
put function, the descriptions were designed to be reflective
of the selected dose frequency. Rather than labeling the
checkboxes as “Missed dose” or “Double next dose” for all
regimens, the phrases describe the affected dose by day and
which dose within that day of the 10-d period. This guided
users to where on the time-scale a change in concentration
would occur when boxes were ticked. As checkbox widgets
do not take numerical values, their value argument for initial
input only handles TRUE or FALSE—where FALSE is not
ticked and does not affect concentration.

There are many other widget types. Those most applica-
ble to pharmacometrics include radio buttons (radioBut-
tons—discussed later), slider ranges (sliderInput—where
two end-points on a slider can be selected and the value
argument takes two values), and download buttons (down-
loadButton). PDF reports of output can be generated from
applications using R Markdown (http://rmarkdown.rstudio.
com/) and the knitr11 package. This requires a high level of
R programming experience and is beyond the scope of this
tutorial.

Headings, lines, and breaks
Some Shiny functions have taken on names and functions
equivalent to the HTML5 language such as those for creat-
ing headings. Heading (h) functions are coded into the lay-
out the same way as widgets—in a positioning function
such as fixedRow. Headings can be created in different
sizes, where h1 produces a first level header (largest),
h6—a sixth level header (smallest), and p creates a para-
graph of text. Heading alignment is adjusted using the align
argument:

h2(“How many times a day and at what dose do
you need to take this medication so that it is
effective but not toxic?”, align 5 “center”)

Lines, hr(), and breaks, br(), create a division between
the heading and the functional elements of the application.
Both can assume any level of the layout hierarchy, i.e., can
be the same level as positioning functions such as fixe-
dRow or the same as widgets.

Displaying reactive output
Shiny *Output functions call reactive R objects defined in
server.R to the user-interface, where * denotes an object
description such as “plot,” “table,” or “text.” They are built
into the user-interface in the same manner as widgets by
placing an *Output function within a positioning function in
the ui.R script. The excerpt from ui.R below uses plotOut-
put to add a reactive plot to mainPanel that is updated
when the user changes a widget:

mainPanel(plotOutput(“plotCONC”, height 5

600, width 5 800))

Every *Output function requires a name for the reactive
object that will be called from server.R. Here, plotOutput takes
the argument, “plotCONC,” where plotCONC is a ggplot25

object in server.R (supplementary code available online). The
names of output objects are not seen by users and *Output
functions do not take label arguments; therefore, headings or
titles need to be built into the expression for the reactive object
in server.R or a heading element in ui.R. Each *Output func-
tion is unique and apart from the common name argument,
they can take their own specific arguments (for example, plo-
tOutput can also take height and width arguments to define
the dimensions of the plot). The names of other *Output func-
tions are quite self-explanatory to their task such as textOut-
put, imageOutput, tableOutput, htmlOutput, and uiOutput.

DEFINING APPLICATION INSTRUCTIONS (server.R)

The server controls the processing of user-input to display out-
put to the user-interface. For those experienced with the R lan-
guage, writing server.R consists of using the same packages,
functions, and arguments to process information as previously
in R with the only difference being considering whether specific
tasks need to be placed in the reactive part of the script.

The server.R script (Example 2) is divided into two sec-
tions: an area for calling and processing reactive input and
creating reactive output enclosed within shinyServer, and an
area for nonreactive expressions and functions not depend-
ent on widget-input (outside of shinyServer). The premise
for the arrangement is based on separating expressions
and functions that need to be re-evaluated upon input
changes and those that never need to. All code before shi-
nyServer (loading package libraries, defining a time
sequence, ggplot25 themes and the function for a differential
equation system) will be executed once on application initia-
tion and will not be re-executed unless the Web-browser for
the application is refreshed or the application is re-run from
R. The results of these commands are not dependent on
changes from input, thus their position outside of shiny-
Server limits the re-evaluation of nonreactive code. On the
other hand, the reactive expression and the render* function
within shinyServer of this example are re-executed on every
change of a widget as they are dependent on widget input.

Reactive expressions
Some applications require more complex processing of
multiple reactive objects and data, that when placed inside
render* braces significantly slow the application’s re-
evaluation of the output. Furthermore, there may be instan-
ces where a reactive data frame may need to be called by
multiple render* functions, which cannot be achieved when
enveloped in a single one. In this application (Example 2),
a data frame of time and concentrations at each time-point
is constructed from reactive objects controlled by user-input
widgets surrounded by reactive braces (just like a render*
function). The content of the reactive data frame is used to
produce a reactive plot of the concentration–time profile
(renderPlot). A skeleton of the reactive expression of the
server.R script for this application is provided below:

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

7

www.wileyonlinelibrary/psp4

http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/

Figure 4 Ibuprofen in preterm neonates application. Shown are screenshots of the application featuring the population model by Gre-
goire et al. (2008)14 running in a browser-window. The blue solid line represents the simulated median concentrations for R-ibuprofen
over the 72-h period, and the red solid line and the boundaries of the red shaded ribbons are the median, and the 10th and 90th per-
centiles for simulated S-ibuprofen concentrations, respectively. Black horizontal dashed lines represent the IC50 for COX-1 (2.5 lg/ml)
and COX-2 (16.5 l/ml) enzymes. Top: Upon application initiation, the number of individuals simulated is small (10) for rapid loading of
all Web-page elements, and the IV loading-bolus-bolus regimen doses most commonly used in practice (10-5-5 mg/kg) is selected.
Bottom: A scenario where 1,000 concentration–time profiles of the same regimen as above are simulated.

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

8

shinyServer(function(input, output) f
sim.data <- reactive(f
#Series of expression and functions (R package

functions and user-defined) that collect widget
values called by input$X to create a data frame
called sim.data.df, comprised of time and the
drug concentration. g)

The reactive expression uses a series of R expressions that
use widget input to return an object, or in this case a data
frame—sim.data.df, that updates whenever widgets change.
As discussed in Example 1, reactive objects are required to be
enclosed within a render* function or a reactive expression.
Therefore, in Example 2, all user-input widget values that are
involved in the creation of sim.data.df are enclosed within the
reactive function defining sim.data. In addition to widget values
such as input$X, all expressions dependent on reactive input
for defining sim.data are required to be within the reactive bra-
ces—this includes “if” statements, differential equations (as
seen in Example 3), installed package functions, and standard
R functions. However, reactive expressions cannot send their
object to the user-interface; therefore, doing so requires a
render* function, such as renderPlot.

Sending output to the user-interface
Objects appearing in the user-interface reactive to widget
input or dependent on a reactive data frame (such as
sim.data.df) are built into the output object by shinyServer.
An element, such as plotCONC, defining a ggplot25 object
is defined within the shinyServer braces (outside the reac-
tive expression) as:

output$plotCONC <- renderPlot(f plotobj <-
ggplot(sim.data()) 1 . . . 1 . . .

print(plotobj) g)

Each output object requires a render* function that corre-
sponds to the type of reactive object needed to be made.
In pharmacometrics, data are often in the form of a table,
which is illustrated by a plot or further analyzed to obtain a
statistical summary. Therefore, renderPlot, renderText, and
renderTable are commonly required to display a reactive
plot, text or table, respectively. Example 2 uses renderPlot
to create plotCONC using the data frame—sim.data.df,
where sim.data is called using its name followed by paren-
theses. As sim.data is reactive, it will check if the widget
input has changed, update the data, and renderPlot will re-
draw the plot accordingly.

Here, the ggplot25 package is used to create the plot
object. The ggplot argument initializes a ggplot object and
states the input data frame, from which defined variables
can be used to create a plot. Although not shown as part of
Example 2, creating a table object may require further proc-
essing of sim.data that can be achieved by an R function
with sim.data as the input:

output$tableObject <- renderTable (f
function.name <- function(sim.data) f

#Expressions modifying sim.data into a new
summary data frame g
function.name(sim.data())
g) #Brackets closing “output$tableObject”

This demonstrates a scenario where sim.data can be
simultaneously used to create multiple, or combinations of,
reactive plots and tables using a single reactive expression,
which could not be achieved if all code was embraced in a
single render* function. For creating a reactive text object,
the structure of the previous code can be followed using
renderText in place of renderTable in server.R.

SIMULATING POPULATION MODELS WITH R AND
SHINY

Shiny applications can use R packages such as deSolve12

(differential equation solver) to represent population models
as differential equations. A population model in Shiny
allows stochastic simulation of model predictions that
embody, for example, between subject variability. Tradition-
ally, this has been achieved by simulating, for example,
concentration–time profiles for several individuals adminis-
tered a dosing regimen (i.e., using NONMEMVR),13 plotting
the outcome (often summarized by a median and confi-
dence intervals) and saving the image, and repeating the
process for a new dose. The plots created are static and
the process of simulation can be time-consuming thus
rationalization of the number and types of regimens tested
is often required. Shiny applications allow for graphical out-
put to be produced simultaneously with changing input
(such as dosing regimen or covariate values); therefore, the
user can rapidly view the results of candidate scenarios.
Although other model visualization software such as Berke-
ley Madonna can also simultaneously update output, they
are not readily adapted to simulate variability.

The third example Web application (Figure 4) demon-
strates how stochastic simulation in Shiny can be used to
explore a series of ibuprofen dosing regimens for patent
ductus arteriosus (PDA) closure in preterm neonates less
than 32 weeks gestation (Example 3; supplementary code
available online). The application embodies a population
pharmacokinetic model of ibuprofen enantiomers, R- and
S-ibuprofen, in preterm infants14 described as a series of
differential equations. The model includes one-compartment
models for each of R- and S-ibuprofen with unidirectional
bioconversion of R-ibuprofen into S-ibuprofen and the effect
of increasing postnatal age increasing elimination of the R-
enantiomer.14 Using the R programming language, the appli-
cation simulates a patient population from random sampling
of the parameter distributions of the population model to
provide each individual with their own parameter set.
Parameter sets and the differential equation system are pro-
vided as input to a differential equation solver to calculate
the concentration–time profiles for R- and S-ibuprofen from
0 to 72 h at 15-min increments for each individual of the
population. From the resultant data frame, the median and
lower and upper percentiles for S-ibuprofen concentrations

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

9

www.wileyonlinelibrary/psp4

(red solid line and shaded ribbon, respectively) and median
R-ibuprofen concentrations (blue solid line) are calculated,
plotted and displayed in the user-interface (Figure 4).

The model embodies important information about the
pharmacokinetics of each enantiomer in neonates, from
which changes in the concentration–time profile can be
examined and re-examined when input doses or regi-
mens change. This application incorporates radio buttons
to represent two dosing regimens (SELECT). The
“loading-bolus-bolus” regimen reflects the most common
pharmacotherapeutic management for PDA closure in
preterm neonates consisting of three intravenous (IV) ibu-
profen doses administered every 24 h; a 10 mg/kg IV
loading dose on day one (LDOSE, often within first 12 h
of life), and two subsequent 5 mg/kg IV doses (BDOSE)
on days two and three (i.e., 10-5-5 mg/kg). A second
course of a higher dosed regimen (20-10-10 mg/kg) is
also commonly administered in individuals with PDA
resistant to the first course,15 which can be simulated by
adjusting the “Loading Dose” and “Bolus Dose” sliders.
“Loading-continuous infusion” is a regimen which has not
been commonly implemented in this practice. This Shiny
application can explore the loading dose (LDOSE) and
72-h continuous infusion rate (CDOSE) required to
achieve 90% of S-ibuprofen concentrations above the
IC50 for cyclooxygenase-2 (COX-2; 16.5 lg/ml),16 and
how it compares with current practice. Radio buttons take
similar arguments to selection boxes by commonly shar-
ing choices and selected:

radioButtons(“SELECT”, “Dosing Regimen:”,
choices 5 list(“Loading-Bolus-Bolus” 5 1,
“Loading-Continuous Infusion” 5 2), selected
5 1),

As there are only two options, the radio buttons display
all possible options to the user without adding considerable
length to the sidebar. This application also includes several
other widgets. Using sliders, users can explore the effect of
“delaying” therapy on the profiles for R- and S-ibuprofen by
increasing the postnatal age (AGE) of the population, and
the changes in the median and percentile predictions
depending on the number of individuals (n) simulated. The
selection box containing percentile values for the prediction
intervals (CI) controls the proportion of concentrations dis-
played in the plot. Finally, the submit button (SUBMIT)
labeled “Simulate” has two functions:

• Prevents the application from automatically updating on
every widget change

• Clicking it controls when to re-simulate once widget
selections have been finalized

Incorporating a large number of widgets allows a variety
of scenarios to be simulated without altering the input data-
set, model code or R processing code for output.

Simulating concentration–time profiles for a population
The cornerstone of Shiny applications is their ability to
simultaneously update output when input changes. When

simulating a large population and solving differential equa-
tions it is imperative that speed is not compromised. This
includes writing efficient R code, placing nonreactive code
outside of shinyServer, compiling functions that are re-
called when widget input changes and running processes
in parallel where applicable.

In Example 3, random number generators simulate n
number of random effect parameters for each parameter
from a normal distribution (mean of zero and standard devi-
ation defined by the model’s variability for each population
parameter). The value of one random effect parameter is
matched with others generated in the same position of the
n-value long sequence, where the population’s parameter
values are log-normally distributed and calculated using the
population value and the individual’s value for the random
effect for the corresponding parameter. Although not dem-
onstrated in this example, simulation with random unex-
plained variability or a variance-covariance matrix requires
adaptation of the code provided in the example script for
coding a population model in R (supplementary material
available online). As the population size is dependent on
widget input, n, code defining parameter values is reactive
and required to be placed in a reactive expression in shiny-
Server. Despite being subject to re-evaluation upon each
widget change, this code is computationally simple and
does not impede on the application’s speed.

Defining and solving a system of differential equations
Many pharmacokinetic systems are too complicated to be
expressed as an analytical solution; therefore, we yield to
the computationally slower option of using differential equa-
tions. The model14 in Example 3 can be coded in R as
(supplementary code available online):

dA[1] 5 RateL 1RateCB 1K21*A[2] -KE1*A[1]
dA[2] 5 RateL 1RateCB -K21*A[2] -

(KE210.155*((T1AGE)/24))*A[2]

Where dA[1] and dA[2] are the differential equations
describing the rate of change in the amount of S- and R-
ibuprofen, respectively. RateL is a function describing the
input of R- and S-ibuprofen into their respective compart-
ments by means of a 15-min loading dose infusion, RateCB
is a function describing two subsequent IV bolus doses or
a 72-h continuous infusion depending on which regimen is
selected, K21 is the unidirectional bioconversion of R- to S-
ibuprofen, and KE1 and KE2 are the elimination rate con-
stants for S- and R-ibuprofen, respectively.

In Example 3, lsoda of the deSolve12 package is used to
calculate the amount of R- and S-ibuprofen in each of their
respective compartments every 15 min from 0 to 72 h.

The lsoda function takes several arguments:

sim.data <- lsoda(y 5 A_0, times 5 TIME, func
5 DES, parms 5 THETAlist)

Where A_0 (y) are the initial/state values of the differen-
tial system, TIME (times) specifies times for calculating A in
each compartment, DES (func) is an R function of the

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

10

CPT: Pharmacometrics & Systems Pharmacology

differential equations for the model, and THETAlist (parms)
is a list of parameter values used in the function DES.

Example 2 also incorporated a differential equation sys-
tem (one-compartment first-order oral absorption kinetics)
where lsoda solved for the amount of drug at each of the
pre-specified times. Only one parameter set was used to
simulate a concentration–time profile, ultimately repre-
senting one individual as a solid red line (Figure 3). lsoda
can only take one set of parameter values, i.e., one value
for each rate constant—KA and K10 as for Example 2 or
one value for each of K21, KE1, and KE2 as in Example 3.
However, Example 3 is able to explore the effects of dif-
ferent covariate values or dosing regimens on a popula-
tion, and can determine median concentrations and
prediction intervals. Each individual’s parameter set of
this example is arranged as a single row in the parameter
data frame, which is provided as input to the R function,
simulate.conc (containing lsoda, and expressions for ini-
tial conditions and input parameters). Using ddply from
the plyr17 package, simulate.conc is passed to each row
of the parameter data frame to calculate the amount of R-
and S-ibuprofen at each time given each individual’s
parameter set.

The application in Example 3 instantly updates after click-
ing the “Simulate” button when the slider value for n is 10
individuals. However, predictions for the median, and upper
and lower percentiles are poor as shown by jagged lines
(Figure 4). Increasing the population size to 1,000 increases
update time (time dependent on computer processing power)
as the application is processing more information, but
achieves an improved prediction of the time-course.

In this example, a slider determines population size.
Every time the widget changes, the reactive expression
within shinyServer recognizes that its stored values are
out-dated and they are re-evaluated to accommodate the
new values. When a user is highly active, i.e., rapidly
changing widget values, the application can be updating
many times a second. In this example, moving the
“Number of Individuals” slider rapidly from 10 to 1,000
causes the application to update and show predictions for
1,000 individuals. However, if a user accidentally moves
the slider to 900, pauses, and moves the slider to 1,000,
the application will update first to reflect 900 individuals
and will update again to reflect the intended 1,000—
approximately doubling the time. This is also an issue
when 1,000 individuals are required but the user is fine-
tuning the desired dose. Here, the “Simulate” button dic-
tates when to update the application allowing users to
modify their selections before running a simulation.

Increasing application speed using compiled functions
The main advantage of using Shiny is that it allows for
automatic updating when input changes—but when the R
code and function is computationally intense such as for
stochastic simulations it may need a minute or more to
update the plot, thus negating the reactive benefits of
Shiny. Speed increases may be possible by using the com-
piler6 package for R. R is an interpreted language which
means code is saved as text files which is reduced to
machine instructions at runtime. In contrast, compiled lan-

guages save the code directly to an executable file of
machine instructions often with speed benefits. The com-
piler package and the cmpfun function provide some of the
benefits of compiled code in R by implementing a byte
code compiler. There is a time overhead in initially compil-
ing a function, but thereafter the compiled function is usu-
ally faster to run. In Example 3, the functions defining the
model’s differential equations (DES), and for solving the
system (simulate.conc) are called n times (number of simu-
lated individuals) on every widget change as they are both
enclosed in the reactive expression for sim.data. Each of
the functions can be compiled using the cmpfun function of
the compiler package:

DES.cmpf <- cmpfun(DES)
simulate.conc.cmpf <- cmpfun(simulate.conc)

Increasing application speed using parallel processing
On computers with multiple processors, multiple cores, or
both, it is possible to increase application speed using par-
allel processing. The doParallel18 package and its depend-
encies, foreach19 (for creating a loop structure) and
parallel,6 can assign multiple cores to a function on both
Windows and Unix-like platforms (such as Mac OS X).
Computationally intense jobs, such as calculating concen-
tration–time profiles from differential equations for 1,000
individuals in Example 3, can be executed faster when split
and assigned to multiple cores of the computer as each
fragment is run parallel in time. If four cores are used, a
population of 1,000 is divided into four groups of 250 indi-
viduals and executed simultaneously. Like compiling a func-
tion, time is required initially to set up the cluster of cores,
and the more cores that are assigned, the longer the initial
set-up time.

Setting up a cluster of cores for parallel processing is
written in the server.R script outside shinyServer. Below is
an excerpt of code from Example 3 for setting up a cluster
of cores, which is operational on both Windows and Mac
OS X platforms (mainly written to accommodate Windows).

cl <- makePSOCKcluster(detectCores() - 1)
clusterEvalQ(cl, list(library(deSolve),

library(foreach)))
registerDoParallel(cl)

When the doParallel package is installed, R can detect
the number of cores the computer has by using the detect-
Cores() function. Here, makePSOCKcluster creates multiple
copies (in this example, one less than the number of com-
puter cores) of R that communicate over sockets. clusterE-
valQ sends the required packages to each R copy for the
process that is to be run in parallel, and registerDoParallel
is a parallel backend compatible for both Windows and Mac
OS X for running the function in parallel using the core
cluster defined earlier.

Some R package functions have been specifically
designed for parallel processing when a cluster of cores
has been appropriately set-up. In Example 3, the ddply

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

11

www.wileyonlinelibrary/psp4

function takes .parallel as an argument—where when .par-
allel equals TRUE the simulate.conc.cmpf function is
applied in parallel. Therefore, parameter sets for multiple
individuals can be processed simultaneously thus increas-
ing application speed.

Comparing the Shiny application and NONMEMVR

simulations
Performing an independent check of the differential equa-
tion system and simulated population characteristics of a
Shiny application is important. For applications such as
Example 3, R simulation output can be evaluated with the
simulation output provided by NONMEMVR 13 (or similar)
when given an equivalent population (i.e., input dataset)
and dosing regimen.

Figure 5 compares the simulated output for a loading-
bolus-bolus regimen (20-10-10 mg/kg) and a loading-

continuous infusion regimen (16–24 mg/kg) from Example 3
with the output provided if the same population model was
coded in NONMEMVR and an equivalent population of 1,000
individuals (i.e., post-natal age of 12 h and 1 kg weight)
administered the same dosing regimens and their resultant
concentration–time profiles were simulated at 15-min inter-
vals. The series of plots indicate that the application
produces median concentrations for R- and S-ibuprofen
(blue and red solid lines, respectively), and 80% empirical
confidence intervals for S-ibuprofen (red shaded ribbon)
comparable to those simulated by NONMEMVR .

Simulating the population (1,000 individuals) and updat-
ing the output plot using a Shiny application was consider-
ably faster than that achieved by the combined NONMEMVR

simulation and R processing times (NONMEMVR

1 R
method). Table 2 shows the mean computation times to
simulate and process output for the two dosing regimens

Figure 5 Comparison of Shiny and NONMEM
VR

simulation outputs. Shown are the median concentrations at 15-min intervals for R-
(blue solid line) and S-ibuprofen (red solid line), and the red shaded region represents the 10th and 90th percentiles for S-ibuprofen
simulated concentrations, over a 72-h period. For each dosing regimen, a 1 kg patient with a post-natal age of 12 h was used to create
a simulated population. (a,c) Concentration–time profiles based on the simulation of 1,000 individuals administered the IV loading-
bolus-bolus dosing regimen (20-10-10 mg/kg). (b,d) Concentration–time profiles based on the simulation of 1,000 individuals adminis-
tered the IV loading-continuous infusion regimen (16 mg/kg loading dose, 24 mg/kg continuously infusion over 72 h). (a,b) Shiny
Application Example 3 output; code embedded in Shiny’s server.R script was converted to a standard R-script to produce plots. (c,d)
NONMEM

VR

output; simulation output was processed and plotted using R.

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

12

CPT: Pharmacometrics & Systems Pharmacology

shown in Figure 5 by three different methods (i.e., NON-
MEMVR

1 R, uni-core Shiny, multi-core Shiny with compiled
functions) when run four times each. Note that using NON-
MEMVR also required considerably more user time. Whereas
running Example 3’s application with one core and no com-
piled functions largely improved the run time when com-
pared with NONMEMVR

1 R (� four- to sixfold reduction),
an over 60-s wait for plot results was required for both dos-
ing regimens. Compiling DES and simulate.conc functions
and the addition of parallel processing for concentration–
time profiles further improved the Shiny run times (� two-
to threefold reduction).

Whereas only two dosing scenarios have been demon-
strated using Example 3, the user-interface of this Shiny
application provided an easy-to-use platform to explore
other scenarios by changing widget values for both the
pharmacometricians who developed the application and the
nonpharmacometricians who raised the research question.

SHARING SHINY APPLICATIONS

Shiny applications can easily be shared by passing on the
ui.R and server.R scripts to a colleague with an installation
of R or RStudio and the installed Shiny package. However,
sharing is not limited to this mode. Shiny applications can
also be hosted on Web servers making them accessible to
those unfamiliar with, or do not have an installation of, R.
There are three ways that RStudio offers to host a Shiny
Web application: ShinyApps.io, Shiny Server, and Shiny
Server Pro. Users will find this a slower option than running
Shiny on their local machine—predominantly dependent on
the speed and latency of their Internet connection. When a
Shiny application is updating, the output is grayed out indi-
cating to the user that processing is taking place.

ShinyApps.io
ShinyApps.io (https://www.shinyapps.io/) allows you to upload
applications from an R session to a server hosted by RStudio
for free but does not guarantee privacy. It links with your
existing Google or GitHub account (also free if you do not
have one) to have administrative control over the application.
Depending on your operating system, other packages and

programs may need to be installed before deploying an appli-
cation. At this date, instructions on how to upload an applica-
tion are available on the Shiny by RStudio website—http://
shiny.rstudio.com/articles/shinyapps.html. The three examples
in this tutorial are hosted using ShinyApps.io.

Shiny Server and Shiny Server Pro
Installing the Shiny package in R allows output Web-pages to
be served to a port (connection) on the localhost (the user’s
own computer). These are typically (depending on the config-
uration) accessed by a URL such as http://127.0.0.1:4748/ or
http://localhost:4748/ where 4748 is the particular (configura-
tion dependent) port number that will serve the Web-page.

It is also possible to host your own Shiny server to make
Shiny pages available over the Internet. RStudio supplies
Shiny Server software—this is not an R package, but sepa-
rate software which can be installed only on servers run-
ning specific Linux distributions. In more sophisticated
configurations, the Shiny server might run alongside an
Apache Web server and a database such as MySQL with
data exchanged between R, the database, Shiny and other
Web deployment software. Such configurations do require
some Web/programming expertise, and are probably only
of interest to those wishing to make a Shiny application
available to a wide audience. Shiny Server is open source,
and Shiny Server Pro is a commercial version with
enhanced security (possibly allowing confidential Web shar-
ing of proprietary material) and additional features.

Shiny resources
Shiny has several resources available, predominantly
online, to assist new and advanced users in developing and
deploying applications.

• Shiny by RStudio;9 the developers of Shiny provide a tutorial
series for developing and deploying applications built with
exercises and discussion boards—http://shiny.rstudio.com/

• Stack Overflow; search for the “shiny” tag and read
answers posted by other users or post your own ques-
tion—http://stackoverflow.com/questions/tagged/shiny

• GitHub—https://github.com/rstudio/shiny
• Shiny Google mailing list; a discussion forum that allows

you to receive daily summaries by means of email of
questions asked and answered by others of the group—
https://groups.google.com/d/forum/shiny-discuss

• Commercially available book, Web Application Develop-
ment with R Using Shiny by Chris Beeley20

CONCLUSIONS

The Shiny package of R is part of a larger movement amongst
data scientists (e.g., Google charts, https://developers.google.
com/chart) exploring interactive data visualization by means of
Web-browsers. Like data science, the problem of communicat-
ing and sharing the information embodied in pharmacometric
models is challenging. Representing pharmacometric models
in R requires a degree of competency, but it is a skill that is
increasingly common in the pharmacometric work force. We
note that models coded in other software such as NONMEMVR

are relatively easily converted to R, and believe that the

Table 2 Shiny versus NONMEM
VR

1 R processing: comparisona of run times

Methodb

IV loading-

bolus-bolus

(20–10-10 mg/kg)

(seconds)

IV loading-

continuous infusion

(16–24 mg/kg)

(seconds)

NONMEM
VR

1 R Processingc � 385 � 366

Shiny: one core � 103 � 60

Shiny: four cores,

compiled functions

� 35 � 27

aBased on application Example 3 with n 5 1,000 and evaluations at 15-min

intervals over 72 h.
bSimulations were performed using a DellVR Power Edge R910 server with

4 x 10 core Xeon 2.26 GHz processors and 256 GB of RAM running Win-

dows 8 Server SP1 64-bit.
cNONMEM

VR

Version VII Level 3.014 using the Wings for NONMEM (Version

734) interface (http://wfn.sourceforge.net/), with IntelVR Visual Fortran Com-

poser XE 2013 Update 1, and ADVAN8 subroutine.

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

13

www.wileyonlinelibrary/psp4

https://www.shinyapps.io/
http://shiny.rstudio.com/articles/shinyapps.html
http://shiny.rstudio.com/articles/shinyapps.html
http://127.0.0.1:4748/
http://localhost:4748/
http://shiny.rstudio.com/
http://stackoverflow.com/questions/tagged/shiny
https://github.com/rstudio/shiny
https://groups.google.com/d/forum/shiny-discuss
https://developers.google.com/chart
https://developers.google.com/chart
http://wfn.sourceforge.net/

Shiny package of R is an exciting development that allows
pharmacometric models coded in R to be made accessible
to a wider audience (e.g., drug development teams, clini-
cians). Elegant and flexible interfaces to models can be pro-
duced relatively quickly once the basics of Shiny are
mastered. We also believe that pharmacometricians them-
selves may find Shiny applications a quick and informative
way of simulating from their models. We hope that the infor-
mation and examples provided here is sufficient to allow
interested readers to start creating their own pharmacomet-
ric Shiny Web applications.

Acknowledgments. The authors acknowledge that the Australian
Centre for Pharmacometrics is an initiative of the Australian Government as
part of the National Collaborative Research Infrastructure Strategy.

Author Contributions. J.W. wrote the manuscript, designed the
research, performed the research, and contributed analytical tools. A.M.H.
contributed analytical tools and revised the manuscript. R.N.U. wrote the
manuscript, designed the research, performed the research, and contributed
analytical tools.

Conflict of Interest. The authors declared no conflict of interest.

1. Zhang, L., Pfister, M. & Meibohm, B. Concepts and challenges in quantitative phar-
macology and model-based drug development. The AAPS J. 10, 552–559 (2008).

2. Mould, D.R. & Upton, R.N. Basic concepts in population modeling, simulation, and
model-based drug development. CPT Pharmacometrics Syst. Pharmacol. 1, e6 (2012).

3. Bonate, P. What happened to the modeling and simulation revolution? Clin. Pharma-
col. Ther. 96, 416–417 (2014).

4. Ito, K. & Murphy, D. Application of ggplot2 to pharmacometric graphics. CPT Phar-
macometrics Syst. Pharmacol. 2, e79 (2013).

5. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. <http://had.co.nz/ggplot2/
book>. (Springer, New York, 2009).

6. R Core Team. R: A language and Environment for Statistical Computing. <http://
www.R-project.org/>. (R Foundation for Statistical Computing, Vienna, Austria, 2014).

7. Krause, A. & Lowe, P.J. Visualization and communication of pharmacometric mod-
els with Berkeley Madonna. CPT Pharmacometrics Syst. Pharmacol. 3, e116
(2014).

8. RStudio Inc. shiny: Web Application Framework for R. R package version 0.10.1.
<http://CRAN.R-project.org/package5shiny> (2014).

9. <http://shiny.rstudio.com/> Accessed 18 September 2014.
10. Boxenbaum, H. Pharmacokinetics tricks and traps: flip-flop models. J. Pharm. Pharm.

Sci. 1, 90–91 (1998).
11. Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. R

package version 1.9. (2015).
12. Soetaert, K., Petzoldt, T. & Setzer, R.W. Solving differential equations in R: Package

deSolve. J. Stat. Softw. 33, 1–25 (2010).
13. Beal, S., Sheiner, L.B., Boeckmann, A. & Bauer, R.J. NONMEM User’s Guides.

(1989-2009). (ed. Sheiner, L.B.) (Icon Development Solutions, Ellicott City, MD,
2009).

14. Gregoire, N., Desfrere, L., Roze, J.C., Kibleur, Y. & Koehne, P. Population pharma-
cokinetic analysis of Ibuprofen enantiomers in preterm newborn infants. J. Clin. Phar-
acol. 48, 1460–1468 (2008).

15. Dani, C. et al. High-dose ibuprofen for patent ductus arteriosus in extremely preterm
infants: a randomized controlled study. Clin. Pharmacol. Ther. 91, 590–596 (2012).

16. Kato, M., Nishida, S., Kitasato, H., Sakata, N. & Kawai, S. Cyclooxygenase-1 and
cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs: investigation
using human peripheral monocytes. J. Pharm. Pharmacol. 53, 1679–1685 (2001).

17. Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40,
1–29 (2011).

18. Revolution Analytics and Steve Weston. doParallel: Foreach parallel adaptor for the paral-
lel package. R package version 1.0.8. <http://CRAN.R-project.org/package5doParallel>
(2014).

19. Revolution Analytics and Steve Weston. foreach: Foreach looping construct for R. R
package version 1.4.2. <http://CRAN.R-project.org/package5foreach> (2014).

20. Beely, C. Web Application Development with R Using Shiny 1st edn. (PACKT Pub-
lishing, Birmingham, United Kingdom, 2013).

VC 2015 The Authors CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the
terms of the Creative Commons Attribution-NonCommer-
cial License, which permits use, distribution and reproduc-
tion in any medium, provided the original work is
properly cited and is not used for commercial purposes.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://www.wileyonlinelibrary.com/psp4)

Interactive Pharmacometric Applications With Shiny
Wojciechowski et al.

14

CPT: Pharmacometrics & Systems Pharmacology

http://had.co.nz/ggplot2/book
http://had.co.nz/ggplot2/book
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny
http://shiny.rstudio.com/
http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach

