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This study was conducted to evaluate the effect of flavor on reproductive performance and fecal
microbiota of sows during late gestation and lactation. A total of 20 healthy Yorkshire sows were fed a
corn-soybean basal diet unsupplemented or supplemented with 0.1% flavor compound from d 90 of
gestation to 25 d post-farrowing, and then the piglets were weaned. The reproductive performance and
the fecal microbiota of sows were analyzed. Compared with the controls, flavor supplementation in
maternal diets increased (P < 0.05) weaning litter weight, litter weight gain, weaning body weight, and
average daily gain of piglets. There was a trend of increase in the average daily feed intake of sows
(P ¼ 0.09) by maternal dietary flavor addition. The backfat thickness and litter size were not affected by
flavor supplementation (P > 0.05). The 16S rRNA analysis showed that flavor supplementation signifi-
cantly increased the abundance of Phascolarctobacterium (P < 0.05), but significantly decreased genera
Terrisporobacter, Alloprevotella, Clostridium_sensu_stricto_1, and Escherichia-shigella (P < 0.05). Spearman
correlation analysis showed that Phascolarctobacterum was positively correlated with the average daily
feed intake of sows (P < 0.05), the litter weight gain and average daily gain of piglets (P < 0.05). In
contrast, Clostridium_sensu_stricto_1 and unclassified_f__Lachnospiraceae were negatively correlated with
the litter weight gain and average daily gain of piglets (P < 0.05). Taken together, dietary flavor sup-
plementation improved the reproductive performance of the sows, which was associated with enhanced
beneficial microbiota and decreased potentially pathogenic bacteria in the sows.
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1. Introduction

It is well-known that the performance of sows plays an impor-
tant role in the productivity of the whole swine industry. Modern
genetic selection for high growth rate and lean tissue accretion
results in lower appetite in sows (Wang et al., 2014), which might
exert a negative effect on the maintenance of body weight, body
condition, and lactation performance of the sows (Lundgren et al.,
2014). A lower feed intake during the lactation period results in
decreased milk production (Zijlstra et al., 1996; Kim et al., 2004),
which could limit the growth and development of nursery pigs (He
et al., 2017). So, increasing feed intake of the lactational sowsmight
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).
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Table 1
Chemical composition of milk flavor.

Chemical composition Content, %

Coconut aldehyde 4.25
Propyl octyl lactone 2.13
Benzyl alcohol 1.95
Isoamyl acetate 1.60
Strawberry aldehyde 1.07
Peach aldehyde 1.00
Ethyl butyrate 0.98
Piperonyl aldehyde 0.88
Butyric acid 0.75
Ethyl vanillin 0.75
Ethyl acetoacetate 0.40
Benzyl butyrate 0.33
Eugenol 0.33
Isoamyl isovalerate 0.33
Benzyl acetate 0.28
Ethyl acetate 0.26
4-Hydroxy-2-butanone 0.25
Decalactone 0.25
Anisic aldehyde 0.20

Table 2
Ingredients and chemical composition of diets (as-fed basis, %).

Item Content

Gestation Lactation

Ingredients
Corn 71.76 63.07
Wheat bran 3.76 5.67
Soybean meal 14.85 20.01
Extruded soybean 3.00 5.00
Soybean oil 2.50 2.50
Premix 1 1.00 1.00
Salt 0.50 0.50
Limestone 1.13 0.84
Calcium hydrophosphate 1.50 1.41

Total 100.00 100.00
Chemical composition 2

Metabolizable energy, kcal/kg 3,357.00 3,360.00
Crude protein 14.69 17.21
SID lysine 0.58 0.73
SID methionine þ cysteine 0.47 0.53
SID threonine 0.44 0.52
SID tryptophan 0.13 0.17
SID valine 0.56 0.65
Calcium 0.87 0.77
Phosphorus 0.62 0.65
STTD phosphorus 0.37 0.38

SID ¼ standardized ileal digestible; STTD ¼ standardized total tract digestible.
1 Premix provide the following per kilogram of diets: vitamin A 4,000 IU, vitamin

D3 800 IU, vitamin E 44 IU, vitamin K 0.5 mg, biotin 0.2 mg, choline 1250 mg, folacin
1.3 mg, niacin 10 mg, pantothenic 12 mg, riboflavin 3.75 mg, thiamin 1 mg, vitamin
B6 15 mg, Cu 10 mg, I 0.14 mg, Fe 80 mg, Mn 25 mg, Se 0.15 mg, Zn 100 mg.

2 Calculated value.
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be beneficial to maternal condition, and growth of nursery pigs.
Since the 1960s, feed flavors have been widely used in nursery pig
diets as palatability enhancers and feed attractants to increase feed
intake (Seabolt et al., 2010; Sulabo et al., 2010). However, the effect
of flavor addition on the performance of sows has seldom been
reported. Therefore, the effect of flavors supplementation on
maternal performance still needs to be further investigated.

It is generally believed that intestinal microbiota interacts with
host cells through multiple levels of mechanisms, therefore regu-
lating the metabolism, immunity, development, and behavior of
the host (Erkosar et al., 2013; Valeriano et al., 2017; Zhang et al.,
2017). Gut microbiota composition is affected by developmental
stage, physiological status of animals, as well as various environ-
mental factors, such as nutritional composition, pathogen infection,
antibiotic application, and others (Ji et al., 2017). It has been re-
ported that gut microbiota undergoes a remarkable shift during
pregnancy and lactation periods (Santacruz et al., 2010; Koren et al.,
2012a), which might be passed onto the developing fetus or
newborn piglets through the placenta or maternal milk, respec-
tively (Everaert et al., 2017; Macpherson et al., 2017). Recent studies
indicate that gut microbiota of the sows plays an important role in
the performance of both the maternal and offspring pigs (Wang
et al., 2018; Li et al., 2019; Xiong et al., 2019). Feed flavor, such as
palatability enhancers and feed attractants, was widely used in
swine production. But to the best of our knowledge, there has been
no research on the effect of dietary flavor on gut microbiota. Thus, it
was necessary to determine the effect of flavor addition on the gut
microbiota community.

Considering the critical role of intestinal microbiota on physi-
ology, metabolism, and immune response of the host (Hollister
et al., 2014), as well as the functional role of maternal intestinal
bacteria on the progeny gut microbiota colonization and shaping of
the immune response in newborn animals (Macpherson et al.,
2017), we hypothesized that flavor supplementation during late
gestation and lactation periods would improve reproductive per-
formance by improving feed intake and regulating gut microbiota
of the sows. In the present study, sows were unsupplemented or
supplemented with flavor compounds from d 90 of pregnancy to
25 d post-farrowing. Reproductive performance, fecal microbiota of
the sows, and growth performance of the piglets were determined.

2. Materials and methods

2.1. Animals, treatment, housing, and sample collection

This study was approved by the Institutional Animal Care and
Use Committee of China Agricultural University. A total of 20
healthy Yorkshire sows with second parity were assigned into a
control group (CON) or flavor supplementary group (FLA) based on
backfat thickness. The individual sow was considered as an
experimental unit, and there were 10 replicates per treatment
group. All the sows were artificially inseminated with pooled
semen from Landrace boars and were fed a soy-bean basal diet
unsupplemented or supplemented with 1.0 g of flavor/kg diet (milk
flavor; DadHank Biotechnology Corporation, Chengdu, China) from
d 90 of gestation to 25 d post-farrowing. The chemical composition
of milk flavor is presented in Table 1. The basal diets for the
gestational or lactational sows were formulated according to NRC
(2012). The composition of the basal diets is presented in Table 2.

Pregnant sows were housed individually in crates until d 108 of
pregnancy and then were housed in farrowing crates to 25 d post-
farrowing. The birth weight of piglets and litter size were recorded.
Cross-fostering was performed within 24 h post-farrowing and
litters of piglets were standardized to 10 to 12 piglets. Creep feed
was not offered. Sows were fed 2 times (i.e. 07:30 and 14:00) on
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gestationwith a total of 2.7 kg/d gestational diet, and they were fed
3 times (i.e. 07:30, 11:30 and 16:00) on lactation with a total of
1.5 kg/d lactational diet on d 1 and 2.5 kg/d on d 2. Sows were fed
0.5 kg more feed each day from d 3 to 7, and then sows were fed ad
libitum from d 8 to 25. Sows and piglets had free access to water.
The average daily feed intake of sows was calculated from d 8 to 25
during lactation. The numbers of litter after cross-fostering and
weaning were recorded. Nursing pigs were weighed on d 1 (birth)
and d 25 (weaning) of age. On d 90 of gestation and d 25 of lacta-
tion, the backfat thickness of each sow was measured at 6.5 cm off
the midline in the last rib level (P2) by using an ultrasonography
(Lean-meter; Renco Corporation, Minneapolis, MN, USA). Litter
weight, litter weight gain and average daily gain (ADG) were
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calculated. Fresh feces of the sows (n ¼ 5 per treatment) were
individually collected from the rectum on d 100 of gestation (G100)
and d 14 of lactation (L14), and then were transported to the lab-
oratory and stored at �80 �C until later analysis.

2.2. DNA extraction, PCR amplification, and bacterial 16S ribosomal
RNA (rRNA) gene sequencing

The total genomic DNA of fecal bacteria was extracted by using a
DNA Kit (Qiagen, Hilden, Germany) according to themanufacturer's
instructions. The quality of isolated DNA was determined by
agarose gel electrophoresis, and then the genomic DNAwas used as
a template for PCR amplification. The V3eV4 gene region of 16S
rRNA was amplified by using the primers F341 (50-
CCTACGGGRSGCAGCAG-30) and 806R (50-GGACTACVVGGGTATC-
TAATC-30) (Sun et al., 2017) and the 16S rRNA gene was sequenced
on the Illumina HiSeq sequencing platform at the Realbio Genomics
Institute (Shanghai, China). Sequences were quality filtered and
clustered into operational taxonomic unit (OTU) at 97% identity
(Wang et al., 2007).

2.3. Statistical analysis

An individual sow was considered as an experimental unit in all
of the statistical analyses. Beyond analysis, the data were tested for
normality and homoscedasticity using the KolmogoroveSmirnov
Table 3
The effect of flavor supplementation on the performance of lactating sows and
suckling piglets.1

Item CON FLA SEM P-value

Average daily feed intake, kg/d 7.11 7.44 0.10 0.09
Backfat thickness, mm
Initial backfat thickness 21.10 20.60 0.82 0.77
Weaning backfat thickness 15.80 15.00 0.72 0.59
Backfat thickness change, mm 5.30 5.60 0.49 0.77

Litter weight, kg
Cross-fostering litter weight 18.52 19.36 0.37 0.26
Weaning litter weight 77.04 90.09 2.48 <0.01
Litter weight gain, kg 58.52 70.72 2.43 0.01

Mean body weight, kg
Cross-fostering body weight 1.59 1.70 0.04 0.14
Weaning body weight 6.77 7.91 0.21 <0.01

Average daily gain, g/d 207.21 248.22 8.01 0.01
Litter size
Cross-fostering litter size 11.70 11.40 0.14 0.28
Weaning litter size 11.40 11.40 0.15 1.00

Weaning survival rate, % 97.50 100.00 0.91 0.19

1 CON, control group, basal diet; FLA, flavor supplementary group, basal
diet þ feed flavor supplement at 1 g/kg; n ¼ 10 for each group; P < 0.05 means a
significant difference.

Table 4
Sequencing data and the alpha diversity in each group of sows.1

Item G100 L14

CON FLA CON FL

Seq_num 37,236.40 35,306.80 36,122.60 35
OTU_num 701.80 708.80 621.60 59
Shannon 4.84 4.97 4.80 4.5
Simpson 0.020 0.017 0.020 0.0
ACE 809.51 820.79 713.66 70
Chao 820.16 823.74 715.00 70
Coverage 0.996 0.995 0.996 0.9

Seq_num ¼ sequence number; OTU_num ¼ operational taxonomic unit number; ACE ¼
1 Sows were regarded as the experimental units, n ¼ 5 for each group. G100: d 100 o

plementary group, basal diet þ feed flavor supplement at 1 g/kg. When significant main e
significant difference method with a P < 0.05 indicating significance.
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and Levene tests (with the significance level set at 5%). The t-test
was conducted to analyze the reproductive performance data by
SPSS statistical software (SPSS, Inc., Chicago, IL, USA). For the
analysis of 16S rRNA gene sequencing data, data were normalized
by copy number. Phylum and genus at <1.0% relative abundance for
both diets at different stageswere excluded from all analyses. Alpha
diversity (Shannon, Simpson, ACE, Chao, and Coverage) was
assessed by Mothur (Version 1.35.0) (Schloss et al., 2009). The
differences of alpha diversity indices were determined by two-way
ANOVA. Principal coordinate analysis (PCoA) was conducted based
on BrayeCurtis distance of OTU relative abundance in sow fecal
microbiota. The difference between groups was tested by the
analysis of similarities (ANOSIM). The differences between groups
on the phylum and genus levels were analyzed by the Wilcoxon
rank-sum test. Spearman correlation analysis was applied to assess
the correlations between differential genera and sows’ reproduc-
tive performance. Data are reported as means ± pooled SEM. Dif-
ferences were considered as statistically significant at P < 0.05, and
a tendency was considered to exist at 0.05 � P < 0.10.

3. Results

3.1. Effect of flavor supplementation on performance of the sows
and piglets

The performance of the sows and piglets are showing in Table 3.
Compared with the controls, flavor supplementation in maternal
diets increased (P < 0.05) weaning litter weight, litter weight gain,
weaning body weight, and average daily gain of piglets. Therewas a
trend of increase in the daily feed intake of sows (P ¼ 0.09) by
maternal dietary flavor addition. The backfat thickness, litter size,
and weaning survival rate were not affected by flavor supplemen-
tation (P > 0.05).

3.2. Effect of flavor supplementation on sequence data, alpha-
diversity, and beta-diversity

A total of 721,063 sequences were obtained, with an average of
36,053 sequences per sample, and the average length of the
sequencewas 416 bp. Overall, 1,146 OTUwere detected according to
a nucleotide sequence identity of 97% between sequences. Bacterial
diversity (Shannon and Simpson), richness estimators (Chao and
ACE), and the Coverage (good's coverage estimator) are shown in
Table 4. Shannon indexwas significantly decreased (P< 0.05) by the
reproductive stage, and there was a tendency to decrease (0.05 �
P < 0.10) by the diet � stage interaction. The richness of bacteria as
evidenced by Chao and ACE was decreased (P < 0.05) by the
reproductive stage, but not affected by the diet or the diet � stage
interaction. A similar result was observed for the Coverage, neither
SEM P-values

A Diet Stage Diet � Stage

,546.80 425.43 0.16 0.61 0.44
7.00 12.58 0.73 <0.01 0.54
8 0.04 0.59 0.02 0.05
24 0.001 0.87 0.26 0.24
0.84 16.61 0.98 0.01 0.72
4.77 16.56 0.92 <0.01 0.84
96 <0.001 0.31 0.05 0.76

abundance-based coverage estimator.
f gestation; L14: d 14 of lactation; CON, control group, basal diet; FLA, flavor sup-
ffects or interactive effects were observed, the means were compared using the least



Fig. 1. Beta-diversity analysis among experimental groups. Principal coordinates analysis (PCoA) between the control group (CON) and flavor supplementary group (FLA) on d 100 of
gestation (G100) (A) and on d 14 of lactation (L14) (B). PCoA betweenG100 and L14 in the CON (C) and in the FLA (D). Sowswere regarded as the experimental units, n¼ 5 for each group.
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the diet nor the reproductive stage affected the Coverage of the
fecal bacteria of the sows.

To evaluate overall differences in beta-diversity, PCoA was used
to identify discrepancies between groups. Principal coordinate
analysis was conducted based on BrayeCurtis distance of OTU
relative abundance in sow fecal microbiota. As shown in Fig. 1A, the
fecal microbiota of CON and FLA were similar on G100 (ANOSIM:
R ¼ 0.11, P ¼ 0.22), but it tended to be separate from each group
(ANOSIM: R¼ 0.20, P¼ 0.09) on L14 (Fig.1B). From Fig.1C and D, we
Fig. 2. Fecal microbiota composition in sows at different levels. Relative abundance of fec
regarded as the experimental units, n ¼ 5 for each group. CON_G100: d 100 of gestation o
lactation of control group sows; FLA_L14: d 14 of lactation of flavor group sows.
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can know the fecal microbiota of G100 and L14 in CON group were
not separated (ANOSIM: R ¼ 0.11, P ¼ 0.74), but they separated in
FLA group (ANOSIM: R ¼ 0.36, P ¼ 0.03).

3.3. Effects of flavor administration on community composition of
microbiota at phyla or genera level

The relative abundance of bacteria at the phylum level of all
samples are presented in Fig. 2A. As shown, the top 5 dominant
al microbiota in each group at the phylum level (A) and genus level (B). Sows were
f control sows; FLA_G100: d 100 of gestation of flavor group sows; CON_L14: d 14 of



Fig. 3. Differences in fecal microbiota at phylum level among experimental groups. Fecal microbiota differed in sows between the control group (CON) and flavor supplementary
group (FLA) on d 100 of gestation (G100) (A) and on d 14 of lactation (L14) (B). Fecal microbiota differed in sows between G100 and L14 in the CON (C) and in the FLA (D). Sows were
regarded as the experimental units, n ¼ 5 for each group.
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phyla (>1% at least in 1 of the 4 groups) were Firmicutes (45.19%),
Bacteroidetes (41.19%), Spirochaetes (7.83%), Proteobacteria (2.60%),
and unclassified_k_norank_d_Bacteria (1.44%). At the genus level,
34 dominant genera were identified (> 1% at least in 1 of the 4
groups). The top 5 dominant genera are norank_f_Muribaculaceae,
Treponema_2, Prevotellaceae_NK3B31_group, Lactobacillus, and
Rikenellaceae_RC9_gut_group, with an average percentage of 8.03%,
7.60%, 5.18%, 4.86%, and 4.42% respectively (Fig. 2B).
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The difference of fecal microbiota between CON and FLA on
phylum and genus level were analyzed. There was no significant
difference (P > 0.05) between CON and FLA on the phylum level on
G100 and L14 (Fig. 3A and B). As shown in Fig. 4A and B, compared
with CON, genus Phascolarctobacteriumwas increased (P < 0.05) by
flavor supplementation on G100 and L14, whereas genera Terri-
sporobacter, Alloprevotella, Clostridium_sensu_stricto_1, and Escher-
ichia-shigella were significantly decreased in response to flavor



Fig. 4. Differences in fecal microbiota at genus level among experimental groups. Fecal microbiota differed in sows between the control group (CON) and flavor supplementary
group (FLA) on d 100 of gestation (G100) (A) and on d 14 of lactation (L14) (B). Fecal microbiota differed in sows between G100 and L14 in the CON (C) and in the FLA (D). Sows were
regarded as the experimental units, n ¼ 5 for each group.
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addition (P < 0.05). Changes in the fecal microbiota were also
analyzed from G100 to L14. In CON, genera Ruminococca-
ceae_UCG_005 and Ruminococcaceae_NK4A214_group were signif-
icantly reduced (P < 0.05) from G100 to L14, but the genus
Alloprevotella was increased (P < 0.05) (Fig. 4C). Phylum Proteo-
bacteria, genera Escherichia-shigella, and Bacteroides were found to
be less abundant (P < 0.05) from G100 to L14, whereas genera Pre-
votellaceae_UCG_003 showed more abundance (P < 0.05) (Figs. 3D
and 4D).
3.4. Correlation between gut microbiota at genera level and the
sows’ reproductive performance

As shown in Fig. 5, the Spearman correlation matrix illustrated
that the relative abundance of Phascolarctobacterumwas positively
684
correlated with the average daily feed intake of sows (P < 0.05), the
litter weight gain and average daily gain of piglets (P < 0.05). In
contrast, Clostridium_sensu_stricto_1 and unclassified_f__Lachno-
spiraceaewere negatively correlated with the litter weight gain and
average daily gain of piglets (P < 0.05), and Alloprevotella was
negatively correlated with the average daily gain of nursing piglets
(P < 0.05).
4. Discussion

In the present study, we investigated the effects of flavor sup-
plementation on reproductive performance and fecal microbiota of
sows during lactation. To the best of our knowledge, this might be
the first study to evaluate the difference in the fecal microbiota
between the unsupplementation and supplementation of dietary



Fig. 5. Spearman correlation analysis between differential genera and sows' performance. Significant correlations are noted by: * 0.01 < P � 0.05, ** 0.001 < P � 0.01, ***P � 0.001.
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flavor and explore the correlation of fecal microbiota with the
reproductive performance of sows.

Insufficient feed intake during lactation resulted in a decrease
in the provision of nutrients for milk production, which could
limit the growth and development of piglets (Zijlstra et al., 1996;
Kim et al., 2004). It has been reported that flavor compounds as
palatability enhancers and feed attractants increase the feed
intake of the sow, which is correlated with increased milk pro-
duction as previously described (Strathe et al., 2017), and sup-
port piglet growth (Laws et al., 2018; Miao et al., 2019). In the
current study, flavor supplementation at a level of 0.1% in the
maternal diet increased the average daily feed intake of the sow,
litter weight gain, and average daily gain of the piglet. This result
was consistent with previous reports showing that flavor addi-
tion in maternal feed increased average daily feed intake, di-
gestibility of dry matter, gross energy, crude protein of sow, as
well as average daily gain of piglets (Wang et al., 2014; He et al.,
2017).

The mammalian gastrointestinal tract is inhabited by trillions
of microbes which are approximately 10 times the number of
body cells, and play a significant role in physiology, metabolism,
immunity, development, and the behavior of the host through
active interactions between bacteria and host cells. Growing
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evidence demonstrates that various factors, including develop-
mental stage, gut environment, nutritional and non-nutritional
dietary components, and antibiotics, are implicated in and
affect the composition of gut microbiota (Ji et al., 2017). Of in-
terest, maternal gut microbiota can subsequently be passed onto
the developing fetus or neonates through the placenta, maternal
milk, or other routes (DiGiulio et al., 2015; Macpherson et al.,
2017), and ultimately, directly or indirectly, affects fetal growth,
survival, and offspring development (Turnbaugh et al., 2009;
Houghteling and Walker, 2015). Considering the animal welfare
of the sows and piglets, as well as the correlation between mi-
crobial communities in fecal samples and that in the gut micro-
biota (Koren et al., 2012b; Falony et al., 2016), fecal microbiota
has been used as an indicator of the gut flora of sows in animal
nutrition related studies (Vandeputte et al., 2017; Zhao et al.,
2018; Li et al., 2019).

In the present study, we examined the microbiota of the fecal
samples by using 16S rRNA sequencing analysis and found that the
abundance of Phascolarctobacterium was increased by flavor addi-
tion on G100 and L14. Phascolarctobacterium is one of the short-
chain fatty acid (SCFA) producers (Zhang et al., 2015). The in-
crease of Phascolarctobacterium by flavor supplementation might
produce more SCFA by fermentation (He et al., 2017), which can be
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absorbed and used as a source of energy by enterocytes and pe-
ripheral tissue, affecting lipogenesis and gluconeogenesis (Zhang
et al., 2018). We found that the abundance of Phascolarctobacte-
rium was positive associated with the average daily feed intake of
sows, litter weight gain, and average daily gain of the piglet. Flavor
addition increased the abundance of Phascolarctobacterium, which
improves the energy supplementation of the sows therefore en-
hances the maternal condition, milk production, and the growth
performance of piglets.

During late gestation and lactation, sows experience substantial
immunological andmetabolic changes (Cheng et al., 2018). Increased
metabolic burdens cause elevated systemic oxidative stress during
the specific periods (Tan et al., 2016). Terrisporobacter is an anaerobic
pathogen (Cheng et al., 2016). The increased abundance of it con-
tributes to an increased oxidative stress as observed in animals (Cai
et al., 2019). In this study, flavor supplementation in the maternal
diet decreased the abundance of Terrisporobacter on d 100 of gesta-
tion, indicating that dietary flavor may alleviate maternal oxidative
stress during gestation and improve maternal health. Moreover, the
abundance of genera Clostridium_sensu_stricto_1 and Escherichia-
shigella, 2 potentially pathogenic bacteria associated with intestinal
disorders (Wells and Wilkins, 1996; Fukuda et al., 2011) were
decreased following flavor administration. It has been reported that
eugenol and butyric acid, 2 components of the flavor, could inhibit
biofilm formation and attenuate the virulence of Escherichia (Kim
et al., 2016) or Clostridium (Hsiao and Siebert, 1999; Salsali et al.,
2008), respectively. The unclassified_f__Lachnospiraceae, which be-
longs to the Lachnospiraceae family, is also involved in intra- and
extraintestinal diseases (Vacca et al., 2020). In our study, unclassi-
fied_f__Lachnospiraceae and Clostridium_sensu_stricto_1 were nega-
tively correlated with litter weight gain and average daily gain.
Dietary flavor addition reduced maternal pathogenic bacteria and
contributed to improve the performance of sows and piglets. The
genusAlloprevotella is considered to be beneficial bacteria,which can
produce SCFA (Kong et al., 2019). Unexpectedly, we observed a
decreased abundance of Alloprevotella following flavor administra-
tion on d 14 of lactation. The reason for this result is not clear at
present, and needs to be further investigated.

5. Conclusion

We found that flavor supplementation to maternal diet during
gestation and lactation increased feed intake of sows during
lactation, average daily gain, weaning body weight, and litter
weight gain of piglets. This beneficial effect of flavor was asso-
ciated with enhanced beneficial microbiota and decreased
potentially pathogenic bacteria in the gastrointestinal tract of the
sow.
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