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Abstract
Atherosclerosis, the major cause of cardiovascular diseases, has been a leading contributor to morbidity and mortality in the
United States and it has been on the rise globally. Endothelial cellecell junctions are critical for vascular integrity and maintenance
of vascular function. Endothelial cell junctions dysfunction is the onset step of future coronary events and coronary artery dis-
ease.
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Atherosclerosis, the major cause of cardiovascular
diseases, has been a leading contributor to morbidity
and mortality in the United States1 and it has been on
the rise globally. Endothelial cellecell junctions are
critical for vascular integrity and maintenance of
vascular function. Endothelial cell junction dysfunc-
tion is the onset step of future coronary events and
coronary artery disease. After a brief review of the
pathophysiology of coronary atherosclerosis, we will
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discuss the changes of junctions between endothelial
cells during coronary sclerosis.

Junctions of coronary artery endothelial cell (ECs)

Vascular endothelial cells are a continuous flat
monolayer cells which constitute a dynamic and highly
effective cellular barrier between the vessel wall and
bloodstream. It regulates fluid and solute balance in
addition to movement of molecular/cellular compo-
nents between the bloodstream and tissues2 and pre-
sents a nonthrombogenic surface for blood flow. As
such, the regulation of the endothelial barrier integrity
(or permeability) is a central pathophysiologic mech-
anism of many vascular processes, including wound
healing, angiogenesis, and vascular diseases.3 The
endothelial barrier function is predominantly main-
tained by the interendothelial junction structures
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including tight junctions, adherence junctions, and gap
junctions4 which is regulated by a complex signaling
network.

The formation of coronary sclerosis

Atherosclerosis, the major cause of cardiovascular
diseases, has been a leading contributor to morbidity
and mortality in the United States and it has been on
the rise globally.

Endothelial dysfunction is a predictor of future
coronary artery disease (CAD).5 The changes of
endothelium in atherosclerosis include ECs prolifera-
tion, atrophy and degeneration. The damaged structure
of degenerative EC junctions leads to bareness of
subendothelial proliferative fibrous tissue. The barrier
functions of vascular endothelium are reduced or lost,
leading to extracellular edema and lipid in the blood
easily penetrating into the vascular wall. When the
functions of vascular enthothelium are damaged and
subendothelial collagen tissue is exposed, platelets
adhere and aggregate and inflammatory cells and
monocytes infiltrate, and then a thrombus is formed.

Changes of tight junction

The tight junction (TJ) is localized at cellecell
contact sites between ECs. It serves as a paracellular
barrier to restrict the movement of ions and proteins
across tissue boundaries.6 Dysfunction of the TJ occurs
in response to a variety of inflammatory stimuli and
also during ischemia, leading to tissue edema and
damage. The proteins that form tight junctions include
occludin, claudin family members, junctional adhesion
molecules 1 to 3, cingulin 7H6, spectrin, and linker
proteins, such as the zonula occludens family members
(ZO-1/2/3).7

Occludin

Occludin, which has four transmembrane domains,
forms a rate-limiting transport structure within the
intercellular cleft.8 Occludin contains two extracellular
loops forming a junctional seal. The carboxy tail of
occludin is linked to the actin cytoskeleton via ZO-1,
ZO-2 and ZO-3. ZO-1 plays a central role in the or-
ganization and assembly of the transmembrane pro-
teins. ZO-1 protein levels, in contrast to occludin
levels, are most likely not regulated by oxidized lipids,
vascular endothelial growth fact (VEGF), or shear
stress; however, they may be affected by oxidants.9

The most prominent changes induced by oxidative
stress were decreased tyrosine phosphorylation of
occludin and increased serine/threonine phosphoryla-
tion of ZO-1.

Claudin

Claudins play an essential role in the control of
paracellular ions flux and in the maintenance of cell
polarity.10 Claudin has four transmembrane domains
but no sequence similarity to occludin. It has not yet
been defined as to how these novel proteins interact
with occludin or other TJ components. The claudin-5
protein was initially considered to be a TJ compo-
nent of the claudin protein family.11

Junctional adhesion molecules

Junctional adhesion molecules (JAMs), currently
are composed of JAM-A, -B, -C,12 JAM-4, ESAM
(EC-selective adhesion molecule), and CAR (cox-
sackie virus and adenovirus receptor) that localize at
cellecell contacts and are specifically enriched at tight
junctions with some being directly implicated in
leukocyte transendothelial cell migration.13

JAM-A
JAM-1, also known as JAM-A, is a transmembrane

protein which is found on endothelial and epithelial
cells at cellecell contacts in particular within tight
junctions. JAM-A binds in a homotypic manner to
regulate tight junction integrity and permeability.14

JAM-A may regulate the basic fibroblast growth fac-
tor (bFGF) and extracellular signaleregulated kinases
(ERK) signaling pathways involved in EC migration,
leading to wound repair. JAM-1 has a PDZ
domainebinding motif, through which it binds other
PDZ domainecontaining tight junction proteins, such
as zona occuldens protein 1 (ZO-1), partitioning
defective-3 homologue (PAR-3), and Afadin 6 (AF-
6).15

JAM-B
In contrast, JAM-B, also referred to as vascular

endothelial-junctional adhesion molecule (VE-JAM) is
prominently expressed at intercellular boundaries of
the endothelium, particularly in venules. JAM-B is also
involved in adhesive processes of lymphocytes.16

JAM-C
JAM-C provides a novel molecular target for

antagonizing interactions between vascular cells that
promote inflammatory vascular pathologies such as in
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atherothrombosis. In contrast to healthy vessels,
atherosclerotic arteries display increasing expression
of JAM-C in EC layers and intimal smooth muscle
cells (SMCs), and Oxidized LDL (oxLDL) induces the
redistribution of JAM-C from inter endothelial contacts
supporting leukocyte recruitment.

Endothelial Celleselective adhesion molecule (ESAM)
ESAM localizes to EC tight junctions and is

involved in leukocyte adhesion and transmigration
across the endothelium into areas of atherosclerotic
plaque formation and progression. Increased levels of
soluble ESAM (sESAM) are independently associated
with measures of both coronary calcium and athero-
sclerosis, based on the putative role of sESAM in
mediating endothelial damage attributable to chronic
inflammation.

Adherence junction

Adherens junctions (AJs) are important subcellular
structures responsible for endothelial cellecell attach-
ment, and they represent multiprotein complexes that
consist of cadherin, g-catenin, and p120 catenin
(p120ctn). Cadherins have two major forms, vascular
endothelial cadherin (VEecadherin) or cadherin-5, and
N-cadherin. VE-cadherin, a major regulator of endo-
thelial adherens junctions, regulates the integrity of EC
monolayers, EC growth, vascular development and
angiogenesis. Elevated levels of soluble VE-cadherin are
associated with coronary atherosclerosis. Under inflam-
matory conditions, VE-cadherin junctions disassemble,
which facilitates paracellular passage. A previous report
showed that reduced expression of the adherens junction
marker VE-cadherin in plaque microvessels coincided
with open junctions.17

Tobacco smoke (TS)

TS augments cytokine effects on endothelial
permeability and VE-cadherin/b-catenin complexes.18

The TS potentiation of cytokines operates through
suppression of phosphatase and tensin homolog
(PTEN) activity, leading to Phospho-Tyrosine Mouse
mAb (p-Tyr） and dissociation of VE-cadherin/b-cat-
enin complexes in endothelium.

Laminar shear stress

Under laminar shear stress conditions, VEecadherin
expression was significantly increased and associated
with enhanced human coronary artery endothelial
motility and wound closure with a physiologic arterial
level of flow compared with static conditions. This
enhancement in motility may in part result from stimu-
lation of VEecadherin signaling pathways involving
catenin intermediaries such as g-catenin and p120ctn.

Rap1

Rap1, a member of the Ras family small G proteins,
plays a key role in EC functions, including migration
and the formation of intercellular junctions. Activation
of the Rap1 GTPase in ECs accelerated de novo as-
sembly of endothelial cellecell junctions and
increased the barrier function of endothelial mono-
layers. In contrast, depressing Rap1 activity by
expressing Rap1 GAP led to disassembly of these
junctions and increased their permeability.19

ADMA10

ADAM10-mediated VE-cadherin cleavage contrib-
utes to the dissolution of adherens junctions during EC
activation and apoptosis. Endothelial activation by
lipopolysaccharide, tumor necrosis factors a (TNF-a),
or anti-graft antibodies induces an upregulation of
ADAM10 at the EC surface.20 ADAM10 over-
expression is functionally associated with an increase
in endothelial permeability. ADAM10 activity also
contributes to the thrombin-induced decrease of
endothelial cellecell adhesion.21

Gap junction

Gap junction (GJ) channels, composed of six con-
nexins to form a hemichannel in the cell membrane,
allow the direct intercellular communication between
intracellular and extracellular spaces.22 The proteins
connexin (Cx)37, Cx40, and Cx43 are expressed in the
endothelium coexisting within a given plaque. In vivo
abundant Cx43 expression has been associated with
disturbed flow conditions at atherosclerotic lesions of
vessel constrictions and bifurcations, where no Cx37,
and, in some cases, no Cx40 are found. Recent studies
have suggested that Cx43 was upregulated in the early
stage of atherosclerosis or neointimal formation after
vascular injury.23

Aging

Aging seems to induce a general decrease in con-
nexin expression, with Cx40, being relatively undis-
turbed for a long time.24
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Hypertension

Hypertension is a cause of ECs dysfunction and a
major risk factor of atherosclerosis. In mice, Cx40 and
Cx37 are strongly expressed in the EC, and ablation of
Cx40 produces marked hypertension. Deletion of
Cx37 does not alter blood pressure. The poly-
morphism of Cx37 in humans has been associated
with myocardial infarction, coronary artery disease,
and atherosclerosis.25

Diabetes mellitus

The correlation between coronary heart disease and
both type 1 and type 2 diabetes mellitus has been
recognized by analysis of epidemiological data. Coro-
nary ECs of diabetic mice show lowered protein levels of
Cx37 and Cx40, but not Cx43, and a reduction of GJ
communication.26

Tissue hypoxia

Tissue hypoxia and the subsequent reoxygenation
by coronary intervention induced by reperfusion in-
creases the production of superoxides that have
different biological effects. Hypoxia/reoxygenation of
ECs inhibits GJ communication. Moreover, abrupt
reoxygenation of Ecs reduces protein kinase A activity
and reduces electrical coupling.

TNF-a

TNF induces a progressive disruption of endothelial
cell junctions and an increase in endothelial perme-
ability and elongation. ECs are very sensitive to TNF-
a, which activates ECs by promoting expression of
adhesion molecules. Treatment of ECs with TNF-a
decreases the expression of Cx37 and Cx40 but does
not change Cx43 expression.27

The current morbidity and mortality and increasing
age of the population with coronary heart disease require
the development of new diagnostic and therapeutic
strategies to treat early subclinical disease stages. In this
review, we have summarized an emerging role of endo-
thelial cells junctions in coronary atherosclerosis. A brief
analysis of endothelial cells junction regulation could
lead to an understanding of normal physiology as well as
pathology and to the identification of novel therapeutic
targets. Future challenges now include the development
of specific endothelium-targeting drugs for therapeutic
applications.
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