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Abstract: Smokeless tobacco (ST) products vary significantly in their oral carcinogenicity. Much is
known about the differences in the chemical, but not the bacterial, constituents of these products.
In this study, we explored the composition and function of the bacteriome in ST products from four
countries using quantitative polymerase chain reaction (qPCR) and 16S rRNA-based next generation
sequencing. The bacterial load (16S rRNA copies/gram) was lowest in Swedish snus (3.4 × 106)
and highest in Yemeni shammah (6.6 × 1011). A total of 491 species-level taxa, many of which
are potentially novel, belonging to 178 genera and 11 phyla were identified. Species richness and
diversity were highest for Swedish snus and lowest for Yemeni shammah. Bacillus, Paenibacillus,
and Oceanobacillus spp. were the most abundant in American snuff; species of Pseudomonas, Massilia,
Propionibacterium, Puniceispirillum, and Gloeothece predominated in Swedish snus. In Sudanese
toombak, Facklamia, Desemzia, Atopostipes, and Lysinibacillus spp. accounted for the majority
of the bacteriome. Yemeni shammah exclusively contained Bacillus spp. Functional prediction
by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt)
showed that genes encoding cadmium/zinc and nickel transport systems were enriched in the
presumptively “high carcinogenicity” products. The bacteriome of ST products thus differed
qualitatively, quantitatively, and functionally. The relevance of these differences, particularly with
respect to nickel and cadmium, to oral carcinogenesis warrants further investigation.

Keywords: bacteria; bacteriome; carcinoma; microbiome; mouth; smokeless; snuff; tobacco

1. Introduction

Smokeless tobacco (ST) refers to forms of tobacco products that are used without burning. They are
usually chewed, sucked, or applied to the gingiva, while fine-powdered products are sometimes
sniffed through the nose. ST is available in many forms that are used by populations across five
continents. According to the International Agency for Research on Cancer (IARC) Working Group on
the Evaluation of Carcinogenic Risks to Humans, there is sufficient evidence to support carcinogenicity
of ST in humans and to consider it as a cause of cancers of the oral cavity, esophagus, and pancreas [1].

This position, however, is not unanimous, since different ST products seem to significantly vary
with respect to their carcinogenicity. For example, overall evidence strongly indicates that use of
Swedish snus poses a very small risk of oral cancer development and that use of American chewing
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tobacco and moist snuff are associated with a very low risk [2–4]. On the contrary, strong association
has been reported from other parts of the world between oral cancers and use of certain types of ST,
including toombak and saffa in Sudan [5–7], shammah in Yemen and the South of Saudi Arabia [8–10],
and almost all forms of chewing tobacco in India [11,12]. This variation in carcinogenicity of ST
products has been mainly attributed to differences in the concentrations of carcinogenic chemicals,
primarily tobacco-specific N-nitrosamines (TSNAs). Swedish snus and contemporary Americans
products, for example, have much lower concentrations of TSNAs and other carcinogens compared to
Sudanese toombak and Indian products [1].

What has not been explored adequately, despite being believed to have an important role in
accounting for differences in the carcinogenicity of ST products, is their microbial content. Bacteria
associated with tobacco are known to reduce nitrate into nitrite, which in turn reacts with tobacco
alkaloids to form TSNAs [13]; i.e., bacteria are determinants of TSNAs levels in tobacco. In addition,
Bacillus species recovered from chewing tobacco have been shown to experimentally induce exudation
from oral mucosa [14], suggesting that bacteria in ST products may also directly contribute to
development of oral cancer by inducing chronic inflammation [15]. However, literature on the
microbiology of ST products is sparse. Early reports, mostly by investigators of the tobacco industry,
performed identification and quantification of bacteria and fungi in fresh and processed tobacco
using cultivation-based methods [15]. Recently, 16S rRNA-based techniques including random
fragment length polymorphism (RFLP), denaturing gradient gel electrophoresis (DGGE), single
strand conformation polymorphism (SSCP), and sequencing have been used to characterize bacterial
communities in fresh and cured tobacco leaves as well as those associated with tobacco fermentation
process [16–20]. These studies revealed great deal of diversity and differences in the composition of
microbiota associated with the different forms of tobacco. One of them also demonstrated a correlation
between the microbial composition of tobacco and its content of TSNAs [20].

Cultivation-independent assessment of bacterial constituents of ready-to use ST products is
limited to one very recent study in which next generation sequencing (NGS) with Ion Torrent PGM’s
chemistry was employed to profile bacteria in American moist and dry snuff products as well as
Sudanese toombak [21]. Samples of Swedish snus were initially also included; however, amplifiable
amounts of DNA could not be recovered from them in that particular study. In addition, the description
of the results was limited to the family level, which is probably a reflection of the low taxonomic
resolution provided by the V4 hypervariable region targeted [22] as well as the analysis pipeline used
(a Bayesian classifier using Greengenes 13_5 sequences and taxonomy as reference). In the current
study, we characterize the species composition and predict the functional attributes of the bacterial
community in ST products with different carcinogenicity, namely samples of American moist snuff,
Swedish snus, Sudanese toombak, and Yemeni shammah.

2. Materials and Methods

2.1. Smokeless Tobacco Products—DNA Extraction

Eleven, ready-to-use ST products were included in the study as follows: four brands of American
moist snuff (coded as A1–A4), three brands of Swedish snus (coded as S1–S3), a sample of Sudanese
toombak (SuT), and samples of three types of Yemeni shammah, namely black, yellow, and green
shammah (BS, YS, and GS, respectively). The American and Swedish products were bought from
tobacco shops in New York, NY, USA, and Bergen, Norway, respectively. The Sudanese toombak and
Yemeni shammah were obtained from the local market in Khartoum, Sudan, and Gizan, Saudi Arabia,
respectively. The samples were stored at room temperature and DNA extraction was performed
within three months of purchase, and, in the case of American and Swedish product, before the
expiration dates.

A half gram of each product was suspended by vortexing for 10 s at full speed (3300 rpm) in 2 mL
Tris EDTA (TE) buffer to recover bacterial cells and then briefly spun at 200 g to precipitate solid matter.
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Five-hundred microliters of the supernatant, as well as of a negative extraction control, were used for
DNA extraction, which involved an initial bead beating step followed by automated extraction on a
Maxwell® 16 Research Instrument (Promega, Madison, WI, USA) using the Maxwell 16 Tissue DNA
Kit (Promega) according to the manufacturer’s instructions. DNA concentration was measured using
a Qubit assay (Life Technologies, St. Louis, MO, USA).

2.2. Determination of Bacterial Load

A quantitative polymerase chain reaction (qPCR) assay was performed to determine bacterial
load in the extracts. Each reaction was set up to include 5 µL 2X SYBR Green/AmpliTaq Gold
DNA Polymerase mix (Applied Biosystems, Foster City, CA, USA), 4 µL DNA template (or negative
extraction control) and 1 µL the universal bacterial/archaeal 16S ribosomal ribonucleic acid (rRNA)
gene primer set 1406F/1525R [23] (0.4 µM). For each sample, three dilutions were run in triplicate.
To control for inhibition, another set of reactions spiked with Escherichia coli DH10B genomic DNA was
run in parallel using the E. coli-specific, rpsL primer set [23] (0.2 µM). A standard curve was generated
by running 10-fold serial dilutions of E. coli DH10B genomic DNA. Amplification was carried on
a ViiA7 platform (Applied Biosystems) including an initial enzyme activation cycle at 95 ◦C for of
10 min followed by 40 cycles of denaturation at 95 ◦C for 15 s, annealing at 55 ◦C for 20 s and extension
at 72 ◦C for 30 s. The cycle threshold (Ct) values were recorded and analyzed using ViiA7 v1.2 software.
Bacterial load was calculated as 16S rRNA gene copies per 1 gm tobacco sample.

2.3. Amplicon Library Preparation and Sequencing

Library preparation and sequencing were done at the Australian Centre for Ecogenomics
according to the workflow outlined by Illumina [24] with the exception of replacing the polymerase
specified with the Q5 Hot Start High-Fidelity 2X MasterMix (New England Biolabs, Ipswich,
MA, USA). Briefly, the degenerate primers 27FYM (AGAGTTTGATYMTGGCTCAG) [25] and 519R
(GWATTACCGCGGCKGCTG) [26], modified to contain Illumina’s specific adapter sequences 803F and
1392wR, were used to amplify the V1-3 region of the 16S rRNA gene using standard PCR conditions.
The resultant PCR amplicons (≈520 bp) were then purified (Agencourt AMPure XP beads, Beckman
Coulter, Brea, CA, USA), indexed with unique 8-base barcodes (Nextera XT v2 Index Kit sets A-D
(Illumina, San Diego, CA., USA)) and pooled together in equimolar concentrations. A set of negative
amplification controls (mastermix alone and with other reaction components) were included for both
the amplicon production and indexing reactions. Finally, sequencing of the indexed library was
performed as part of a pool of 192 samples employing the v3 2 × 300 bp chemistry on a MiSeq platform
(Illumina, USA) according to the manufacturer’s protocol (targeted depth of 100,000 reads pre sample).

2.4. Preprocessing of Sequencing Data

The raw data were submitted to Sequence Reads Archive (SRA) under project no PRJNA339213.
Reads with mismatches in the primer sequences were filtered out before the latter were trimmed
off. The software PEAR [27] was then employed to stitch paired sequences using the following
parameters: minimum amplicon length = 432 bp; maximum amplicon lengths = 522 bp; and P = 0.001
(a lower P value reduces false positive rates but decreases read merging rates; program default
is 0.01). The merged reads were subsequently preprocessed using the mothur software package
version 1.38.1 [28]. Firstly, to stringently minimize sequencing errors, reads with ambiguous bases,
with homopolymers >8 bases long or that did not achieve a sliding 50-nucleotide Q-score average of
≥35 were filtered out. Secondly, the high quality reads were aligned using Needleman’s method to
SILVA reference alignment [29], and those with bad alignment (reads with start and end positions
different than those of the majority of the reads) were removed. Finally, the remaining reads were
cleared of chimeras with Uchime [30] using the self-reference approach, in which each read is checked
against reads with higher abundance in the same sample [31].
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2.5. Taxonomy Assignment Algorithm

The high quality, non-chimeric reads were classified to the species level employing the
BLASTN-based algorithm illustrated in Figure 1. Briefly, reads were individually BLASTN-searched
against NCBI’s Microbial 16S rRNA gene reference sequence set (ftp://ftp.ncbi.nlm.nih.gov/
blast/db/16SMicrobial.tar.gz) supplemented with a modified version of the Greengenes Gold
set (modified-GGG) [32] and the Human Oral Microbiome Database (HOMD) version 14.5 [33].
These combined contain 22,002 well-curated, near full-length reference sequences representing a total
of 13,164 microbial species. NCBI’s BLAST version 2.2.28+ was run using the parameters and matching
criteria shown in Figure 1, ranking hits by percent identity and, when equal, by bit score. Reads were
then classified to the species level based on taxonomy of the top hit reference sequence. If a read
returned top hits representing multiple species (two in most cases), it was subject to secondary de novo
chimera checking with USEARCH program version v8.1.1861 [34] using a percent identity cutoff of
98% and if found to be non-chimeric, was considered valid and assigned a multiple-species taxonomy.
Reads with no matches at the specified criteria were pooled together and subject to the de novo chimera
checking as above, and then to species-level de novo operational taxonomy unit (OTU) calling at 98%
identity cutoff using USEARCH. The resultant OTUs were labelled as potentially novel species and
a representative read from each was BLASTN-searched against the same reference sequence set again
to determine the closest species for taxonomy assignment.
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2.6. Down-Stream Biological Observation Matrix Analysis

All assigned reads (unique species, multispecies, and potentially novel species) were used to
generate species-level Biological Observation Matrix (BIOM) table for down-stream analysis with
QIIME (Quantitative Insights Into Microbial Ecology) software package version 1.9.1 [35]. The full
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BIOM table was used to generate taxonomy plots from the species to kingdom level. The samples
were then randomly subsampled to obtain equal number of reads across samples, based on the sample
with lowest read count (rarefaction). The rarefied BIOM table was subsequently used to calculate
species richness and a range of alpha and beta diversity indices. The phylogenetic tree required
for constructing the UniFrac-based matrices used in some of the beta diversity analyses, was built
dynamically from reference sequences with matched reads.

2.7. Imputed Functional Predictions

Mothur was employed to reclassify the sequences using Wang’s method [36] and Greengenes
97% OTUs (version 13.5) as reference, assign them to OTUs based on their taxonomy and generate
a BIOM table. Subsequently, PICRUSt (phylogenetic investigation of communities by reconstruction of
unobserved states) [37] was used to normalize the OTU table for 16S rRNA copy number variations
and then impute the functional bacterial content of each of the samples based on KEGG orthologs (KO)
and pathways. Based on evidence from the literature on their oral carcinogenicity, the Swedish and
American products were grouped together as “low carcinogenicity” while the Yemeni and Sudanese as
“high carcinogenicity.” Differences in genes and pathways between the two groups were explored using
Linear Discriminant Analysis Effect Size (LEfSe) [38]. Secondarily, the taxonomy obtained by Wang’s
method (Bayesian classifier) was compared with that obtained by the BLASTN-based classification
pipeline described above.

3. Results

3.1. Bacterial Load of the ST Products

The log10-transformed, absolute bacterial 16S rRNA gene copy counts in each of the samples
are presented in Figure 2. The American, Sudanese and Yemeni samples, except YS, had comparable
bacterial load at around 1010 gene copies per gram. The load was higher by one log in YS (1.7 × 1011)
and lower by four logs in Swedish snus (3.4 × 106). No amplification was observed for the negative
extraction control.
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3.2. Sequencing and Data Processing Statistics

A total of 1,142,994 raw paired reads were obtained; the negative PCR controls did not generate
any background noise. Filtering out reads with primer mismatches removed ≈15% of the sequences.
Around 97% of the remaining reads could be successfully stitched with PEAR. At the stringent quality
filtration step, 93% of the merged reads were removed. Subsequent alignment and chimera check
removed a further 1.3%, leaving a final of 54,970 high-quality, non-chimeric merged reads with an
average length of 489 bp. Applying the same read merging and quality-filtration algorithm to data
obtained from a mock community in a previous study [39] resulted in 10 fold reduction in sequencing
error rate (data not shown).

During the taxonomy assignment stage, 2044 reads were identified as chimeras; the rest were
successfully classified to the species level. The final read count per sample ranged from 2265 for SuT to
7955 for S2 (mean of 4811 ± 1738 reads per sample). The results presented below were obtained using
a minimum read count per species (MC) of one. Results for higher MC cutoffs (2, 5, 10, 50, and 100)
can be found at ftp://www.homd.org/publication_data/20170315/qiime_results/index.html.

3.3. Species Richness, Diversity, and Coverage

The observed and expected number of species (Chao1), Shannon index (α-diversity) and Good’s
coverage, calculated by rarefaction based on the sample with lowest read count (2265 reads) are
presented in Figure 3 (results for individual samples shown in Supplementary Figure S1). The observed
species richness and diversity were highest for the Swedish snus and lowest for the Yemeni Shammah.
SuT showed the highest expected number of species (Chao1) but the lowest Good’s coverage, which is
consistent with the rarefaction curves (Figure 4A): by extrapolation, an additional 2000 reads would
have been required to obtain a coverage of 0.99 (saturation) for SuT. The result of principle component
analysis (PCoA) based on weighted UniFrac is presented in Figure 4B. Each tobacco type formed a
separate cluster, with the exception of the American A1 that clustered with the Yemeni shammah, and
the Swedish S1 that fell between the American and other Swedish products. Grouping was found to
be statistically significant by Analysis of Similarities (ANOSIM; p = 0.01).
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3.4. Bacteriome Identified in the ST Products

A total of 11 phyla were identified in the samples as shown in Figure 5. The number of phyla per
sample ranged from one to three for the Yemeni samples, three to five for the American and Sudanese
samples, and eight to 10 for the Swedish samples (Supplementary Table S1). Phylum Firmicutes
accounted for >99.7% of sequences in all American and Yemeni samples; it also predominated in
SuT and S1. Instead, Proteobacteria was the predominant phylum in S2 and S3, and accounted for
a significant proportion of the reads in S1. Actinobacteria was identified in all Swedish samples as
well as in SuT. S2 and S3 in addition contained considerable levels of Cyanobacteria, Bacteroidetes,
Chloroflexi, and Fusobacteria. Using the Bayesian classifier, almost identical results were obtained at
the phylum level (See Supplementary Figure S2).
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The genus-level bacteriome of each of the ST samples is presented in Figure 6. A total of 178 genera
were identified, 36 of which were at relative abundance ≥1% (Supplementary Table S2). The number
of genera per sample ranged from three to nine for the Yemeni shammah, 10 to 12 for the American
snuff, and 78 to 84 for the Swedish snus; 38 were detected in SuT. The genus Bacillus constituted
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>99% of the reads in the Yemeni varieties and American A1, and made up significant proportions
in A3, A4 and the Swedish S1. Paenibacillus was the predominant genus in A2, while Oceanobacillus
accounted for the majority of sequences in A3 and A4 as well as S1. The Swedish products S2 and S3
had a totally different profile with a mix of genera Massilia, Pseudomonas, Candidatus Puniceispirillum,
Gloeothece, Propionibacterium, Sphingonomas, and Methylobacterium making up the bulk of the bacteriome.
SuT also had a unique composition with genera Desemzia, Atopostipes, Facklamia, Lysinibacillus and
Corynebacterium accounting for ≈90% of the reads. Using the alternative classification pipeline (Wang’s
method) a significant proportion of the reads in some samples were unclassified at the genus level;
however, for reads that returned genus-level taxonomies, the results were comparable to that obtained
by the BLASTN pipeline (See Supplementary Figure S3).
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Figure 7 illustrates the species-level bacteriome of each of the ST products. A total of 491
species-level taxa were identified, of which 66 had a relative abundance of ≥1% (Supplementary
Table S3). The number of species per sample ranged from 10 to 23 for the Yemeni shammah,
28 to 43 for the American snuff, and 121 to 139 for the Swedish snus; 95 were detected in SuT.
The most abundant species in the American products were Bacillus safensis/pumilus (A1 and A3),
Bacillus stratosphericus/altitudinis (A1 and A4), Bacillus clausii (A1), Paenibacillus barcinonensis (A2), and
Oceanobacillus profundus (A3 and A4). The predominant species in the Swedish varieties S2 and S3
were Pseudomonas aeruginosa, Massilia timonae, Propionibacterium acnes in addition to two potentially
novel species with no close relatives: the closest species were Puniceispirillum marinum (90.85%) and
Gloeothece membranacea (86.56%). S1 harbored a mixture of the species found in A4 and those identified
in S2 and S3. In SuT, Facklamia tabacinasalis in addition to three potentially novel species close to
Desemzia incerta (96.59%), Atopostipes suicloacalis (96.98%), and Lysinibacillus chungkukjangi (96.21%)
accounted for the majority of the bacteriome. The composition of the bacteriome varied significantly
across the Yemeni samples. BS primarily contained Bacillus clausii and a novel species close to Bacillus
persicus (96.8%), while YS harbored Bacillus okhensis/wakoensis and two novel species close to Bacillus
cellulosilyticus (97.6%) and Bacillus alkalisediminis (97.59%). The latter novel species made the majority
of the bacteriome of GS. To demonstrate reproducibility of sequencing, we carried out comparison
of bacterial species profile obtained from two sequencing runs carried one year apart for four of the
samples (see Supplementary Figure S4).
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3.5. Differentially Enriched Microbial Genes and Pathways

The microbial genes and pathways enriched in each of the two groups are presented in in Figure 8.
At the gene level, genes encoding cadmium/zinc transporting ATPase and peptide nickel transport
system permease and ATP binding proteins were enriched in the high carcinogenicity group while
those encrypting Amino Acid Transporter (AAT) family and two-component system, OmpR family,
sensor kinase were overrepresented in the low carcinogenicity samples. At the pathway level, genes
involved in glycolysis/gluconeogenesis, pyruvate metabolism, translation, and selenocompound
metabolism were significantly more abundant in the high carcinogenicity group, while those encoding
membrane and intracellular structural molecules and involved in inorganic iron transport and
metabolism, C5-branched dibasic acid metabolism and pantothenate and CoA biosynthesis were
the most significantly overrepresented in the low carcinogenicity products.
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4. Discussion

The purpose of this study was to elucidate the differences in composition and function of the
bacteriome among ready-to-use ST products with different oral carcinogenicity. The ST products were
selected so as to include the most commonly consumed brands/types in each of the four countries.
In fact, this is the first study to perform microbial profiling of Swedish snus and Yemeni shammah.
One limitation, however, is that only one sample per product was examined, missing the opportunity
to assess variation in microbial composition across batches. Another limitation is that there is a
possibility that part of the microbiome in the samples was not captured because DNA extraction
was performed on a supernatant rather than the solid material; however, the idea was to avoid high
plant DNA background in the extracts. The SuT had lower coverage than other samples, i.e., did not
reach saturation, but was still included in the analysis. Although rarefaction is a common practice in
microbiome studies, there is some evidence to suggest that it may result in loss of power and should
thus not be performed [40]. In the current study, however, rarefaction was used only to normalize
counts for calculation of coverage and diversity indices; the complete microbiome was employed in
assessing differential abundance and performing the functional analysis.

By sequencing the V1–V3 region with Illumina’s 2 × 300 paired-end chemistry and merging
the resultant reads, relatively long reads (472–562 bp) were generated which improved taxonomic
resolution. Using a BLASTN-based algorithm inspired from previous work [32], we ventured to
classify the reads to the species level. Very stringent read quality-filtration was implemented which,
while negatively impacted on sequencing depth by eliminating the majority of reads (another study
limitation), ensured the lowest possible sequencing errors rate and in turn maximized reliability of the
species-level assignment. Nevertheless, the results of classification should be interpreted with caution.
The reference databases used comprise mainly 16S rRNA sequences of named species. Therefore,
a species to which a read is assigned may not necessarily be the same species from which the read
was obtained, but rather the closest named species to it. Despite this limitation, this is probably more
informative than limiting classification to higher ranks. For comparison purposes, we also classified the
reads using Wang’s method (a Bayesian classifier) against Greengene version 13.5 reference database.
While the taxonomy assignments were almost identical at the phylum level to that obtained by our
pipeline and a significant proportion of the reads were not classified at the genus level, which is
probably why the results reported by Tyx et al. [21] were limited to the family level.

As expected, the Swedish snus harbored far lower bacterial counts than the other products,
which is consistent with the fact that Swedish snus products are subject to pasteurization during their
manufacturing process, and also explains the low levels of TSNAs present in them [41]. A considerable
proportion of the quantified DNA in the Swedish sample possibly represented non-viable bacteria.
The Yemeni YS had the highest microbial load. The levels of TSNAs in Yemeni shammah have not been
yet established, but can be assumed to be high in view of the strong association between shammah
use and oral cancer [8,10]. The American, Sudanese, and Yemeni products had comparable bacterial
loads. However, studies indicate that they significantly vary with respect to their TSNA content [42];
SuT in particular has very high concentrations of TSNAs [43]. Obviously then, the levels of TSNAs
in ST products differ not only as function of total microbial load but probably also as a function of
microbial community composition. Indeed, a very recent study has found the TSNA concentrations in
tobacco leaves to correlate positively with the proportions of Firmicutes and inversely with those of
Proteobacteria [20]. Interestingly, Firmicutes was the predominant phylum in the American, Sudanese,
and Yemeni products in this study, while Proteobacteria was the major phylum in the Swedish products.

Tyx et al. [21] recently reported on the microbiology of American moist snuff and Sudanese
toombak using sequencing of the hypervariable region V4. Although description of the results was
limited to the family level, the supplementary material did provide genus-level information that can be
directly compared with our results. In their study, Tetragenococcus, Aerococcus, Alliococcus, Staphylococcus,
and an unclassified genus of the family Aerococcaceae were identified as the predominant genera in the
American moist snuff, which is markedly inconsistent with the current study in which Paenibacillus,
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Oceanobacillus, and Bacillus were the most abundant genera in the corresponding samples. Desemzia,
Facklamia, Lysinibacillus, and Atopostipes, four out of the five most abundant genera in SuT in the present
study, were either not detected or detected at very low abundance in their SuT samples, in which
Corynebacterium, Staphylococcus, and an unclassified genus of the family Aerococcaceae made up the
bulk of the microbiome instead. While these vast differences in results between the two studies may
be explained in part by methodological variations, they probably reflect genuine differences in the
microbial composition of samples used in the two studies. Since the products were coded in both
studies, it is very likely that the two studies included different brands of American moist snuff. SuT is
produced widely across Sudan in non-standard production settings, so its microbiological composition
can be expected to vary significantly as a function of where and how it is produced. Obviously,
a larger-scale study including representative samples of each ST product would be necessary to resolve
this question.

Despite having the lowest bacterial load, the Swedish snus displayed the highest diversity at all
taxonomic levels. With the exception of S1, which looked like a blend of A4 and S2/S3, the Swedish
products were almost free of the phylum Firmicutes; a significant proportion of the sequences belonged
to human-associated taxa, namely M. timonae, P. aeruginosa, and P. acnes, which probably represent
contamination at a later stage of production. Interestingly, the presence of genus Pseudomonas in
tobacco has been shown very recently to inversely correlate with TNSAs levels [20]. Novel, probably
environmental, taxa also accounted for a considerable fraction of the reads in the Swedish products.
The Yemeni shammah showed the lowest diversity, with almost all of the reads belonging to known
and novel species of the genus Bacillus. The majority of the reads in SuT also represented novel species.
Isolation and characterization of the novel species from Yemeni shammah and SuT is, therefore,
warranted not only to ascertain their ability to accumulate nitrites, but also to assess their direct effects
on oral epithelium.

Differences in predicted functions between the presumptively low carcinogenicity and high
carcinogenicity products at the pathway level did not seem to be relevant to oral carcinogenesis.
However, the differences at the gene level did. Genes encoding cadmium/zinc and nickel transport
systems were enriched in the presumptively “high carcinogenicity” products, suggesting these heavy
metals are present at higher concentrations in them. Cadmium is considered as a carcinogen by
the International Association on Cancer Research (IACR) [44]. Interestingly, it is also present in ST
products [45], although its role in oral carcinogenicity has not been assessed. Nickel is linked in the
literature to nasal and lung cancers [46]; recently, it has also been implicated in oral cancer [47,48].
In addition, it has been detected in ST products [49]. Together, this suggests, keeping in mind this is
only based on predictive functional analysis, that cadmium and nickel may be important carcinogens
in Yemeni and Sudanese ST products.

A microbial community with high nitrate reducing but low nitrite reducing properties (incomplete
denitrification) is probably required to support formation of high levels of TSNAs in tobacco [13].
Predictive metagemonic analysis (PICRUSt), however, did not show a significant difference in
abundance of nitrate or nitrite reductase genes between the low and high carcinogenicity product
groups, although, the formate- dependent and NO forming nitrite reductase genes tended to be
enriched in the Swedish snus samples (data not shown). In fact, production of TSNA is not only
dependent on ability of bacteria to accumulate nitrites but also on environmental factors e.g., moisture,
temperature, pH, the nitrite/nitrate content of the product, etc. [1,50]. In any case, since TSNA levels
were not directly measured in the samples included in this study, the attempts made here to correlate
between the bacterial composition and the assumed TSNA concentrations based on the literature are
at best speculative.

5. Conclusions

The current study demonstrates that ST products differ qualitatively, quantitatively, and
functionally in their bacterial composition. However, a larger-scale study involving more representative
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samples of each type is required to uncover the full breadth of microbial diversity across these products.
The high taxonomic resolution used here helped identify the reads to the closest species; several
potentially novel species were identified. The possibility that some of these species contribute to
oral carcinogenesis, either via influencing levels of TSNAs or directly inducing chronic inflammation,
warrants further investigation. Imputed functional prediction did not demonstrate a difference in
potential for TSNA production between low and high carcinogenicity products; however, it did
suggest that the presumptively high carcinogenicity products have higher concentrations of nickel and
cadmium; this needs to be confirmed using whole metagenome sequencing as well as chemical analysis.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/4/106/s1.
Table S1: List of all phyla identified and their abundance in each of the ST products. Table S2: List of all
genera identified and their abundance in each of the ST products. Table S3: List of all species-level taxa identified
and their abundance in each of the ST products. Figure S1: Species richness, α-diversity and coverage for
the individual samples. Figure S2: The bacteriome profile at the phylum level obtained using the Bayesian
classifier and Greengene version 13.5 as reference. Figure S3: The bacteriome profile at the genus level obtained
using the Bayesian classifier and Greengene version 13.5 as reference. Figure S4: Reproducibility of sequencing.
Comparison of results from two sequencing runs, one year apart, for 4 of the ST products.
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