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Objectives. Many studies have shown that dysregulation of metabolism contributes to oncogenesis. However, the exact roles of
metabolism-related genes (MRGs) in oral squamous cell carcinoma (OSCC) remain unclear. Thus, we aimed to identify a
prognostic signature related to MRGs in OSCC. Methods. The gene sequencing data of OSCC samples and the MRG set were
downloaded from The Cancer Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB). The Wilcoxon rank-
sum test was used to identify differentially expressed MRGs. Then, a prognostic signature was established by multivariate Cox
regression analysis. Finally, prognosis-related MRGs were selected and further validated in OSCC tissues and cell lines. Results.
A prognostic signature that included 8 MRGs was constructed. Multiple survival analysis revealed that only HPRT1 might be
an independent biomarker and indicator of poor overall survival in OSCC patients. The expression of HPRT1 was then found
to be upregulated in OSCC tissues and cell lines, and suppression of HPRT1 gene expression by siRNA inhibited the
proliferation, migration, and invasion of OSCC cells in vitro. Conclusions. MRGs play an important role in the development of
OSCC. Furthermore, HPRT1 might be an independent biomarker of OSCC and enhance OSCC proliferation, migration, and
invasion in vitro; these results emphasize the potential utility of HPRT1 in OSCC therapy.

1. Introduction

Oral squamous cell carcinoma (OSCC) is the most com-
mon type of oral cancer and has a critical impact on the
quality of life of patients around the world [1]. Cigarette
smoking, alcohol consumption, and betel nut consumption
are the most critical risk factors for OSCC [2]. Interest-
ingly, a recent investigation showed that the human
microbiome might also be a potential risk factor and could
play an important role in early OSCC detection [3]. The
oral cavity is an ideal place for microbiome growth due
to its temperature (37°C), pH (6.5~7.5), and hard tooth
surfaces. Among numerous microorganisms, Streptococca-
ceae species dominate most of oral habitats [4]. Recent
research discovered that Porphyromonas gingivalis can

cause oral cancer, for example, by reducing T cell prolifer-
ation [5]. Although few studies have focused on the rela-
tionship between the oral microbiome and OSCC, it is
clear that the microbiome at the tumor site is more
diverse than that of the healthy oral mucosa [3].

The basic options for treating OSCC are surgery, radia-
tion therapy (RT), chemotherapy, or a combination of these
therapeutic methods. The harm caused by RT to patients
cannot be ignored. With the development of technology,
some interventions are claimed to minimize harm to
patients; however, there is not enough evidence that these
interventions actually reduce the impact on patients [6].
Xerostomia, trismus, fibrosis and muscle atrophy, caries,
and osteoradionecrosis often occur after the implementation
of radiation therapy protocols. Therefore, in addition to
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improvements to treatment techniques, care for patients
after treatment should also receive attention [7].

Lymph node metastasis and recurrence result in an unfa-
vorable overall 5-year survival rate of OSCC, ranging from
only 45 to 50% [8]. Therefore, follow-up programs for
OSCC patient management are urgently needed. However,
the best follow-up strategy for OSCC remains controversial.
Experts have formulated follow-up plans for each primary
tumor subgroup according to their daily clinical practice
[9]. This approach will help to develop proper follow-up
strategies for different patients. Considering the unfavorable
5-year survival rate and the severe impact on patients, it is
necessary to better understand the potential mechanisms
underlying the initiation and development of OSCC [10].

It is known that normal cell metabolism is dependent on
normal signaling pathways and basic metabolites [11]. Many
studies have revealed that tumorigenesis relies on cellular
metabolism reprogramming as a direct or indirect result of
oncogenic mutations [12]. In the 1920s, Warburg initially
observed that cancer cells actively absorb glucose and turn
pyruvate into lactate despite the availability of sufficient oxy-
gen levels; this phenomenon is now known as aerobic glycol-
ysis [13]. This process creates an environment conducive to
tumor cell survival and proliferation and dramatically affects
the tumor microenvironment. Currently, it is widely
accepted that the metabolic mechanisms play crucial roles
in the initiation and development of cancer. Studies have
shown that metabolism-related genes are involved in lung
cancer [14], gastric cancer [15], and liver cancer [16]. How-
ever, only a few investigations have focused extensively on
the association of metabolic genes with OSCC.

In this study, we aimed to evaluate the differentiated
profiles of MRG expression in OSCC and develop a Cox
regression model to predict the overall survival of OSCC
patients. Ultimately, the function of HPRT1, a selected dif-
ferentially expressed MRG, was investigated in vitro. This
study may provide insight into the molecular mechanism
underlying OSCC and provide a novel potential therapeutic
target for OSCC.

2. Materials and Methods

2.1. Data Collection and Preprocessing. The transcriptomic
data of OSCC including oral cavity, floor of the mouth, pal-
ate, buccal mucosa, the anterior 2/3 of the tongue, and gin-
giva were obtained from TCGA (https://portal.gdc.cancer
.gov/) database. The RNA-seq data were evaluated, including
312 tumor cases and 39 neighboring nontumor cases from
TCGA database. The MRGs were found using gene set
enrichment analysis (GSEA) on the metabolic pathway-
related gene sets “c2.cp.kegg.v7.0.symbols.” MRGs can be
studied further if included in the two datasets above.

2.2. Differentially Expressed MRGs. MRGs with differential
expression were identified in OSCC and normal oral tissues
using the R package “limma” and the Wilcoxon test method
[17]. Results were considered significant at jlog FCj>1 and
adjusted p < 0:05. The heatmap and volcano plot were con-
structed by using the ggplots2 package in R software.

2.3. Gene Ontology and Kyoto Encyclopedia of Gene
Enrichment Analysis. Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis were carried out with the R package
clusterProfiler to investigate the biological function and pos-
sible pathways of these MRGs. The functional categories
were provided with a false discovery rate (FDR) of less than
0.05.

2.4. Protein-Protein Interaction Network Construction. The
STRING database was used to map the differentially
expressed MRGs, resulting in an interactive network that
displays gene connections. The protein-protein interaction
network was then visualized using the Cytoscape software.
The cytoHubba plugin was utilized to discover a hub gene
in this complete network.

2.5. Prognostic Model Construction and Evaluation. All
OSCC samples were randomly divided into a training set
(n = 224) and a validation set (n = 88). The training set was
used to build the prognosis model, while the validation set
was used to test it. The primitive data for metabolism-
related genes were converted and normalized in a log2ðx +
1Þ. Univariate Cox regression was used to select prognosis-
related factors. We then used the R package to do Cox
regression analysis paired with LASSO regression to create
a risk model. The cross-validation method chose the penalty
regularization parameter lambda (λ) with an n-fold equal to
10. In the meantime, lambda Cox regression analysis was
used to select the variables. Finally, according to the risk
score for each patient, eight metabolism-related genes were
included in risk Cox regression and survival analysis, scatter
diagram, and heatmap in R software [18]. Furthermore, uni-
variate and multivariate Cox regression was used to see if the
risk score was a prognostic factor on its own [19]. The vali-
dation set was also used to analyze the prognostic model to
verify its value. Ultimately, the gene expression profile from
GEO (Gene Expression Omnibus) was used to verify these
biomarkers.

2.6. ROC Analysis. A receiver operating characteristic (ROC)
curve analysis was performed to assess the sensitivity and
specificity of the MRGs for OSCC diagnosis by using the R
package. The area under the curve (AUC) value was calcu-
lated and used [20].

2.7. Gene Set Enrichment Analysis. GSEA version 2-2.2.3
(JAVA) [21] and MSigDB version v6.2 (Molecular Signa-
tures Database) were downloaded from the Gene Set Enrich-
ment Analysis website (http://software.broadinstitute.rg/
gsea/index.jsp). Using the default weighted enrichment sta-
tistical method, the approach was made 1000 times for each
analysis. We identified gene sets with a false discovery rate ð
FDRÞ < 0:25 and a family‐wise error rate < 0:05.

2.8. Patients and Sample Collection. 20 pairs of oral squa-
mous cell carcinoma specimens and normal adjacent tissues
were collected at Nanfang Hospital, Southern Medical Uni-
versity (Guangzhou, China), and written informed consent
was obtained from all patients.
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2.9. Cell Culture. The human OSCC cell lines scc9, scc15,
scc25, and cal27 and the normal oral epithelial cell line
HOK were obtained from the Institute of Antibody Engi-
neering, Southern Medical University (Guangzhou, China).
HOK was cultivated in MEM (Gibco, Cat#C12571500BT-
10), scc9 in Dulbecco’s modified Eagle’s medium F12
(DMEM/F12) (Gibco, Cat#C11330500BT), scc15 and scc25
in DMEM (Gibco, Cat#11995500TB), and cal27 in α-MEM
(Gibco, Cat#C1257100BT-10).

2.10. RNA Extraction and RT-qPCR. Total RNA was isolated
from cells and tissues according to the manufacturer’s
instructions for TRIzol (Takara, Cat# 9109). The manufac-
turer followed the Reverse Transcription Kit (Vazyme,
Cat# R212-02) to reverse the total RNA to cDNA. The
expression levels of each gene were standardized to GAPDH.
Experiments were carried out in triplicate, with the results
shown as mean values with standard deviations. The follow-
ing are the primer sequences in detail:

GAPDH: forward primer (5′-3′): CGCTGAGTACG
TCGTGGAGTC; reverse primer (5′-3′): GCTGATGATCT
TGAGGCTGTTGTC

HPRT1: forward primer (5′-3′): CCTGGCGTCGTGAT
TAGTGAT; reverse primer (5′-3′): AGACGTTCAGTCCT
GTCCATAA

2.11. Immunohistochemical Analysis. OSCC and normal tis-
sue samples were fixed with 4% formaldehyde, dehydrated,
embedded in paraffin, and ultimately sectioned into 4μm
sections. Dewaxing and rehydration of tissue section in
xylene and graded ethanol were performed. After that, slices
were treated with 3% hydrogen peroxide for 10 minutes to
inhibit endogenous peroxidase. Following that, 15 minutes
in a pressure cooker with 0.01M citrate buffer (pH6.0) was
used to accomplish antigen retrieval. The sections were
treated overnight at 4°C with the primary antibody and 1
hour at room temperature with the secondary antibody.
Finally, 3,3′-diaminobenzidine (DAB) was used to visualize
the sections.

2.12. Western Blotting. RIPA lysis buffer was used to lyse
cells. Proteins were separated by electrophoresis, transferred
to membranes, and then sealed with 5% skim milk. HPRT1
(dilution 1 : 1000) and GADPH (dilution 1 : 1000) primary
antibodies were incubated in 4°C for one night. Following
that, goat anti-mouse and goat anti-rabbit secondary anti-
bodies were incubated for 1 hour at room temperature.

2.13. Cell Transfection. siRNAs (TINGKE, 100mM) for
HPRT1 were transfected into cells using Lipofectamine
3000 (Invitrogen, Cat# L3000-015). Transfection was per-
formed in 6-well plates with 2500 ng siRNA. After 2-4 days,
RNAs were collected. Additionally, the siRNA sequence was
as follows:

SI-HPRT1-1: sense 5′-3′: GCCCUUGACUAUAAUG
AAUTT; antisense 5′-3′: AUUCAUUAUAGUCAAGGGC
TT

SI-HPRT1-2: sense 5′-3′: CCCACGAAGUGUUGGA
UAUTT; antisense 5′-3′: AUAUCCAACACUUCGUGGG
TT

SI-HPRT1-3: sense 5′-3′: CCUGCUGGAUUACAUC
AAATT; antisense 5′-3′: UUUGAUGUAAUCCAGCAGG
TT

2.14. Colony Formation Assay. Cells were inoculated in 12-
well plates at a density of 2000 cells/well and incubated
under 37°C and 5% CO2 conditions for one week. One week
later, the cells were washed with phosphate-buffered saline
(PBS), fixed in 1mL/well 4% paraformaldehyde (Leagene
Biotechnology, Beijing, China) for 20min, and stained with
1% crystal violet staining solution (Solarbio, Beijing, China)
for 10min at room temperature. Finally, the crystal violet
staining solution was slowly washed off with running water
and dried in the air.

2.15. Transwell Assay. The Matrigel 1 : 8 dilution was coated
at the bottom of the chamber and put at 37°C for 2 hours.
5 ∗ 104 transfected cells were suspended in 200μL serum-
free medium per well and seeded in the upper chambers.
600μL DMEM or DMEM/F12 with 10% FBS was placed to
the bottom wells. In addition, transfected cells were cultured
at 37°C with 5% CO2 for 24-72 hours. Subsequently, the cells
in the upper side were removed with a cotton swab, and the
migration and invasion cells were fixed with 4% formalde-
hyde and then stained with crystal violet. Finally, the num-
ber of migration and invasion cells was counted by using
an inverted microscope.

2.16. Wound Healing Assay. The transfected cells were cul-
tured in 6-well plates at a density of 5 ∗ 105 cells/well. When
cells grew until reaching a confluence of 90%, a linear wound
was generated across the cell monolayer by using a sterile
200μL pipette tip. Furthermore, the cells were washed with
PBS 3 times to remove floating cells or debris and then cul-
tured in a serum-free medium with 5% CO2 at 37°C for
additional 12-24 hours. Images were taken at 0 and 24 hours
under an inverted phase-contrast microscope.

2.17. Statistical Analysis. SPSS23.0 software (IBM) was used
to conduct all statistical analyses. Statistical significance was
determined by Student’s t-test. The log-rank test was used to
compare the Kaplan-Meier survival curves. Data were con-
sidered statistically significant if the p value was less than
0.05.

3. Results

3.1. Identification of Differentially Expressed MRGs and
Functional Analysis. A total of 170 differentially expressed
MRGs were identified using the cutoff criteria (adjusted p
value < 0.05 and jlog FCj > 1:0), and these differentially
expressed MRGs included 104 downregulated and 66 upreg-
ulated MRGs (Figures 1(a) and 1(b)). Although we know
that these genes are involved in metabolism, GO and KEGG
analyses were essential to explore the specific pathways and
biological functions of these MRGs. GO analysis revealed
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Figure 1: Identification of MRGs. (a) Heatmap of MRGs between 312 tumor tissues and 39 normal oral tissues in TCGA database. (b)
Volcano plot of MRGs in TCGA database. The red dots in the plot represent significantly upregulated genes, and the green dots
represent significantly downregulated genes. (c) Enriched GO terms. (d) Enriched KEGG pathways. (e) The top 10 MRGs with the
highest degree of connectivity were determined to be hub genes.
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that the differentially expressed MRGs were predominantly
enriched in biological processes, such as iron ion binding,
oxidoreductase activity, and oxygen coenzyme binding
(Figure 1(c)). The enriched cellular component terms
revealed that the differentially expressed MRGs were mostly
related to the chitosome, melanosome membrane, and mito-
chondrial matrix (Figure 1(c)). For molecular function, the
selected MRGs were mainly enriched in cellular amino acid
metabolic processes, alpha-amino acid metabolic processes,
and small molecule catabolic processes (Figure 1(c)). In
addition, KEGG pathway analysis showed that differentially
expressed MRGs were associated with tyrosine metabolism,
arginine and proline metabolism, and fatty acid degradation
pathways (Figure 1(d)). Then, we built a protein-protein
interaction network to explore the connections of these

MRGs. The confidence score was greater than 0.7. Hub
genes were selected through cytoHubba’s DMNC algorithm,
and the top 10 genes are shown (Figure 1(e)). The most sig-
nificant hub gene was CYP26B1, with a score of 0.618139,
followed by POLA2 (score = 0:583436) and HPRT1
(score = 0:57059). Genes with high scores were also highly
correlated with other genes and might play key roles in
metabolism-related pathways; these findings will be the
focus of future research.

3.2. Establishment and Validation of a Metabolism-Related
Prognostic Signature for OSCC. A univariate Cox regression
analysis was initially performed on 170 differentially
expressed MRGs in the training group, and this analysis
revealed that 9 MRGs were significantly associated with OS
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Figure 2: Construction and validation of a metabolism-based prognostic signature. (a) Survival curves of the low-risk and high-risk groups
in the training set. (b) Time-independent receiver operating characteristic (ROC) analysis of risk scores for the prediction of overall survival
(OS) in the training set. (c) Survival curves of the low-risk and high-risk groups in the validation set. (d) Time-independent receiver
operating characteristic (ROC) analysis of risk scores for the prediction of OS in the validation set.
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(Supplement Figure 1A). Then, Lasso Cox regression
analysis was used to determine variables (Supplement
Figures 1B and 1C). Finally, eight variables were selected
(Supplement Figure 1D), including ASPA, HPRT1, CA9,
ADH7, AGPAT4, CHDH, ADA, and PCK1. Risk score = ð
2:164481 ∗ASPAÞ + ð0:019928 ∗HPRT1Þ + ð0:008596 ∗
CA9Þ + ð0:010405 ∗ADH7Þ + ð0:257026 ∗AGPAT4Þ + ð−
0:88363 ∗ CHDHÞ + ð0:018996 ∗ADAÞ + ð0:980108 ∗ PCK
1Þ. The risk score for each patient was then calculated using
this prognostic model. A total of 224 OSCC patients were
divided into a high-risk group (n = 112) and a low-risk
group (n = 112) based on the median risk score. The
Kaplan-Meier curve and log-rank test revealed that
patients in the high-risk group had significantly shorter life
expectancy than those in the low-risk group (Figure 2(a)).
The areas under the curve values of the prediction of the
1-, 2-, and 3-year OS rates by the signature were 0.761,
0.727, and 0.744, respectively, indicating that this
prognostic model had good sensitivity and specificity
(Figure 2(b)). The validation set was used to analyze the
prognostic model to verify its value. The survival analysis
based on the validation set revealed that the OS of the
high-risk group was more unfavorable than that of the
low-risk group (Figure 2(c)). The AUCs of the validation
set for 1-, 2-, and 3-year OS rates were 0.664, 0.695, and
0.681, respectively (Figure 2(d)), suggesting that in both
the training and validation sets, the prognostic model
performed well. In addition, the GSE37991 dataset was
used to validate the mRNA expression levels of the eight
genes. The results showed that HPRT1, CA9, AGPAT4,
CHDH, and ADA expression in OSCC tissues was higher
than that in nearby normal oral tissues, while ADH7,
ASPA, and PCK1 expression was lower in OSCC tissues
than in adjacent tissues (Supplement Figure 2).

3.3. Clinical Value of the Prognostic Signature. Statistical
analysis was performed to investigate whether this prognos-
tic model was associated with other clinical characteristics of
OSCC patients. The results showed that the risk score was
higher in older patients (Figure 3(a)) and in patients with
higher clinical stage and T classification (Figures 3(b) and
3(c)). Univariate and multivariate Cox regression analyses
were used to assess the independent prediction ability of
the metabolism-related prognostic signature (Figures 3(d)
and 3(e)). The results revealed that only the metabolism-
related prognostic signature could be used as an indepen-
dent prognostic factor. The AUC values of the risk score
were higher than those of other clinicopathologic character-
istics (Figure 3(f)). The eight genes in this signature were
used to create a nomogram for predicting 1-, 2-, and 3-
year OS in OSCC patients (Figure 3(g)).

3.4. Identification of Biomarkers Related to MRGs for the
Diagnosis of OSCC. ROC curve analysis revealed that among
the 8 genes in the prognostic signature, ADA, HPRT1, CA9,
ASDA, and PCK1 achieved an AUC value of >0.85 and had
high sensitivity and specificity for OSCC diagnosis
(Figure 4); these results indicated that ADA, HPRT1, CA9,
ASDA, and PCK1 had potential diagnostic value in OSCC.

3.5. Selection of Prognostic Biomarkers of OSCC. The inter-
section of Cox regression analysis (Supplement Figures 1A
and 1D), Kaplan-Meier analysis (Supplement Figure 3), and
hub genes (Figure 1(e)) revealed that only HPRT1 was a
potential biomarker of OSCC (Figure 5(a)). Further analysis
found that HPRT1 mRNA expression was significantly
related to pathological grade (Figure 5(b)), clinical stage
(Figure 5(c)), and T classification (Figure 5(d)). However,
the expression of HPRT1 decreased in patients with stage IV
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and T4 disease, which requires further study. Using GSEA, we
discovered functions and biological pathways associated with
low and high HPRT1 expression levels in TCGA expression
datasets. The pathways were considered significant with the
standard of jNESj > 1, NOM< 0:05, and FDR < 0:05. The
results showed that the high HPRT1 expression phenotype

was associated with numerous vital pathways related to
tumorigenesis, including the mTORC1 signaling pathway,
P53 signaling pathway, cell cycle pathway, DNA replication
pathway, glyoxylate and dicarboxylate metabolism pathway,
purine metabolism pathway, and pyruvate metabolism
pathway (Figure 5(e)).
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Figure 4: Identification of key genes for the diagnosis of OSCC. Genes with an AUC value of >0.85 are shown in (a)–(e).
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3.6. Exploration of the Biological Functions of HPRT1 In
Vitro. The mRNA expression levels of HPRT1 were evalu-
ated in 20 pairs of OSCC tissues and normal tissues as well
as in four oral squamous cell cancer cell lines. The results
suggested that HPRT1 mRNA expression was higher in
OSCC tissues than in normal tissues and higher in the OSCC
cell lines than in the HOK cell line (Figures 6(a) and 6(b)).
Then, the protein expression of HPRT1 in OSCC tumors
was found to be higher than that in paired normal tissues
by the immunohistochemistry assay (Figure 6(c)). HPRT1
is mainly distributed in the cytoplasm. Since higher HPRT1
expression levels were positively correlated with the
advanced clinical stage (Figure 3(c)), we decided to investi-
gate whether HPRT1 affected the proliferation, invasion,
and migration of OSCC cells. The SCC9 and CAL27 cell
lines were selected for this experiment. HPRT1 expression
was silenced with siRNA in SCC9 and CAL27 cells. The
transfection efficiency of siRNA against HPRT1 was mea-
sured by real-time PCR and Western blotting assays
(Figures 6(d) and 6(e)). The results showed that silencing
HPRT1 expression suppressed the proliferation, migration,
and invasion of SCC9 and CAL27 cells, as shown by colony
formation, wound healing, and Transwell assays
(Figures 7(a)–7(c)).

4. Discussion

OSCC, the most common type of oral cancer, presents a sig-
nificant challenge to the medical community due to its high
recurrence rate and low 5-year overall survival rate [22]. In
recent years, there has been a marked increase in interest
in the dysregulation of metabolism in cancer [23]. Accord-
ing to accumulating data [24], MRGs have been shown to
play a critical role in the development and progression of
cancer. Therefore, it is necessary to explore the critical
MRGs that could be used as prognostic biomarkers and
therapeutic targets for OSCC [25].

In this study, a total of 170 DEMRGs (differentially
expressed MRGs) were identified in TCGA dataset; of these
DEMRGs, 104 MRGs were downregulated and 66 MRGs
were upregulated. According to GO analysis, the DEMRGs
were enriched in biological processes such as iron ion bind-
ing, oxidoreductase activity, and oxygen coenzyme binding,
which play crucial roles in tumorigenesis. In addition,
KEGG pathway analysis showed that DEMRGs were mainly
enriched in tyrosine metabolism, arginine and proline
metabolism, and fatty acid degradation pathways. Among
these pathways, the tyrosine metabolism pathway and the
arginine and proline metabolism pathways are significantly
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Figure 6: Validation of HPRT1 expression. (a, b) Validation of HPRT1 mRNA expression by real-time PCR in 20 pairs of tissues and
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related to different types of cancer. The phosphorylation of
tyrosine is a ubiquitous posttranslational modification that
is important for the metabolic reprogramming of cancer
cells [26]. In addition, studies have revealed that the arginine
and proline metabolism pathways are relevant to the prolif-
eration and metastasis of human prostate cancer [27].

Univariate Cox regression analysis revealed that 9 MRGs
were related to overall survival in OSCC, which indicated

that MRGs might play an important role in OSCC carcino-
genesis. An innovative prognostic signature consisting of 8
MRGs (ASPA, HPRT1, CA9, ADH7, AGPAT4, CHDH,
ADA, and PCK1) was established by LASSO regression
and multivariable Cox regression analysis. OSCC patients
were divided into high-risk and low-risk groups based on
their gene signatures. Patients in the high-risk group had
significantly shorter overall survival than those in the low-

Si-NC Si-HPRT1
SC

C9
CA

L2
7

0.0

0.1

0.2

0.3

0.4

0.5 SCC9

Si-NC

Cl
on

og
en

ic
ity

 (%
)

Si-HPRT1

0.004

0.0

0.1

0.2

0.3

0.4

0.5

Cl
on

og
en

ic
ity

 (%
)

Si-NC Si-HPRT1

CAL27

0.0012

(a)

0h

24h

0h

24h

SC
C9

CA
L2

7

Si-NC Si-HPRT1

Si-NC Si-HPRT1

100 𝜇m

100 𝜇m

100 𝜇m

100 𝜇m

100 𝜇m

100 𝜇m

100 𝜇m

100 𝜇m

SCC9

0.0146

0.0

0.5

1.0

1.5

Re
lat

iv
e m

ig
ra

tio
n

Si-NC Si-HPRT1

0.0187

0.0

0.5

1.0

1.5

Re
lat

iv
e m

ig
ra

tio
n

CAL27

Si-NC Si-HPRT1

(b)

SC
C9

CA
L2

7

Si-NC Si-HPRT1

100 𝜇m100 𝜇m

100 𝜇m100 𝜇m

SCC9

0.0003

0.0

0.5

1.0

1.5

Re
lat

iv
e i

nv
as

io
n

Si-NC Si-HPRT1

0.0006

0.0

0.5

1.0

1.5

Re
lat

iv
e i

nv
as

io
n

CAL27

Si-NC Si-HPRT1

(c)

Figure 7: Functional experiment in vitro. (a) The proliferation of SCC9 and CAL27 cells was measured by a colony formation assay. (b)
Inhibiting HPRT1 expression inhibited the migration of OSCC cells. (c) Inhibiting HPRT1 expression inhibited the invasion of OSCC cells.
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risk group. According to time-dependent ROC analysis, it
was determined that the AUCs for 1-, 2-, and 3-year OS
were 0.761, 0.727, and 0.744, respectively. These results sug-
gested that the prognostic signature has some value in pre-
dicting tumor prognosis. This signature’s prognostic value
was successfully verified in the validation set. Further study
showed that this signature might be an independent prog-
nostic predictor.

ROC analysis revealed that 5 of these genes (ADA,
PCK1, HPRT1, CA9, and ASPA) were potential molecular
markers for the diagnosis of OSCC due to their relatively
high sensitivity and specificity. PCK1, CA9, ADA, and ASPA
were found to exert carcinogenic effects in a metabolism-
dependent manner in various malignancies. PCK1 is the
rate-limiting enzyme of gluconeogenesis, and its expression
is frequently increased in individuals with metabolic syn-
drome and diabetes mellitus [28]. Liu et al. found that
PCK1 gene expression is downregulated in primary hepato-
cellular carcinoma (HCC) and that low PCK1 expression is
associated with a poor prognosis in HCC patients [29]. In
oral cancer, PCK1 expression is also downregulated. Car-
bonic anhydrase 9 (CA9) belongs to the carbonic anhydrase
family and is a transmembrane enzyme. CA9 is overex-
pressed in urinary bladder cancer and is a potentially prom-
ising diagnostic marker for the disease [30]. We discovered
that CA9 expression was similarly elevated in OSCC. ADA
was also reported to play an oncogenic role in hepatocellular
carcinoma [31]. Regrettably, few studies have indicated that
these MRGs are associated with OSCC carcinogenesis. Fur-
ther research is needed to determine the roles of these genes
in OSCC.

By Kaplan-Meier analysis, we found that only HPRT1
has the potential to predict the prognosis of OSCC patients.
HPRT1 is essential in providing building blocks for future
cell growth. It is a housekeeping gene widely used as an
endogenous control in gene expression studies [32]. How-
ever, recent research revealed that it might play a role in car-
cinogenesis. The expression level of HPRT1 increased across
many cancer types [33]. HPRT1 expression was found to be
upregulated in head and neck squamous cell carcinoma and
might be a promising prognostic indicator and treatment
target for HNSCC [34]. Nevertheless, the biological func-
tions of HPRT1 in OSCC remain unclear. Our results con-
firmed that HPRT1 expression was upregulated in OSCC
tissues and positively correlated with advanced clinical stage.
Furthermore, our research indicated that HPRT1 promoted
the proliferation, invasion, and migration of OSCC
in vitro, which revealed that HPRT1 might play an essential
role in OSCC carcinogenesis. GSEA showed that HPRT1
was significantly enriched in pathways and essential biolog-
ical functions related to tumorigeneses, such as the
mTORC1 signaling pathway, P53 signaling pathway, and
cell cycle pathway.

In the current research, we developed a risk model based
on the expression of MRGs. Additionally, the risk score may
be an independent predictive biomarker according to uni-
variate and multivariate Cox regression analyses. Finally,
survival analysis showed that HPRT1 might contribute to
the tumorigenesis of OSCC. By confirming the expression

levels and functions of HPRT1 in OSCC cells, it was deter-
mined that HPRT1 enhanced cell proliferation, migration,
and invasion in vitro.

However, we must acknowledge that the current study
has limitations that should be addressed in future research.
First, because the transcriptome and clinical data of patients
with OSCC were collected from a public database, potential
selection bias could not be ruled out. Second, the function of
these biomarkers in OSCC, as well as the underlying mech-
anisms, needs to be further studied in vivo.
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